
Nastaleeq: A challenge accepted by Omega

Atif Gulzar, Shafiq ur Rahman
Center for Research in Urdu Language Processing,
National University of Computer and Emerging Sciences, Lahore, Pakistan
atif dot gulzar (at) gmail dot com, shafiq dot rahman (at) nu dot edu dot pk

Abstract

Urdu is the lingua franca as well as the national language of Pakistan. It is based
on Arabic script, and Nastaleeq is its default writing style. The complexity of
Nastaleeq makes it one of the world’s most challenging writing styles. Nastaleeq
has a strong contextual dependency. It is a cursive writing style and is written
diagonally from right to left. The overlapping shapes make the nuqta (dots) and
kerning problem even harder.

With the advent of multilingual support in computer systems, different solu-
tions have been proposed and implemented. But most of these are immature or
platform-specific. This paper discuses the complexity of Nastaleeq and a solution
that uses Omega as the typesetting engine for rendering Nastaleeq.

1 Introduction

Urdu is the lingua franca as well as the national
language of Pakistan. It has more than 60 mil-
lion speakers in over 20 countries [1]. Urdu writing
style is derived from Arabic script. Arabic script has
many writing styles including Naskh, Sulus, Riqah
and Deevani, as shown in figure 1. Urdu may be
written in any of these styles, however, Nastaleeq
is the default writing style of Urdu. The Nastaleeq
writing style was developed by Mir Ali Tabrazi in
14th century by combining Naskh and Taleeq (an
old obsolete style) [2].

Figure 1: Different Arabic writing styles (from
top to bottom: Nastaleeq, Kufi, Sulus, Deevani and
Riqah) [3]

1.1 Complexity of the Nastaleeq writing
style

The Nastaleeq writing style is far more complex
than other writing styles of Arabic script–based lan-
guages. The salient features‘r of Nastaleeq that
make it more complex are these:

• Nastaleeq is a cursive writing style, like other
Arabic styles, but it is written diagonally from
right-to-left and top-to-bottom, as shown in fig-
ure 2. Numerals add to the complexity as they
are written from left-to-right (figure 7).

Figure 2: Direction of Nastaleeq writing style

• In most Arabic styles (especially digitized forms
(fonts) of these styles), each character may as-
sume up to four different shapes (isolated, ini-
tial, medial and final) depending on its position
in the ligature. The character Beh (U+0628)
takes four shapes depending on its position in
isolated (a), initial (b), medial (c) or final (d)
place in a ligature, as shown in table 1.

Nastaleeq is also a highly context sensitive
writing style. The shape of a character is not
only dependent on its position in a ligature but
also on the shapes of the neighboring charac-
ters (mostly on the shape of the character that

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 89



Atif Gulzar, Shafiq ur Rahman

d c b a

Table 1: Shapes of the character Beh at a) isolated,
b) initial, c) medial, and d) final position

Table 2: Shapes of character Beh at initial and
medial positions in different contexts

follows it). Table 2 shows a subset of the varia-
tions of Beh in different contexts. In Nastaleeq
a single character may assume up to 50 shapes.

• In Nastaleeq some glyphs are overlapped with
adjacent glyphs as shown in figure 3:

Figure 3: Overlapping glyphs in Nastaleeq

These overlapping shapes in Nastaleeq pose a
major concern for kerning, proportional spacing
and nuqta placement. As shown in figure 4, the
ligature needs to be kerned to avoid clashing
with the preceding ligature:

(b) (a)

Figure 4: before (a) and after (b) kerning

• Proportional spacing is a major issue in Nas-
taleeq writing style. The diagonality of liga-
tures produces extra white space between two
ligatures. Proper kerning is needed to solve that
problem, as shown in figure 5.

• Nuqta placement is still another major issue in
Nastaleeq rendering. Nuqtas are placed accord-
ing to context, to avoid clashing with other nuq-
tas and boundaries of glyphs. As shown in fig-
ure 6, the nuqtas are moved downward (c) (to
avoid clashing with the boundary of glyph (b))
from the default position (a).

(b) (a)

Figure 5: before (a) and after (b) kerning

(c) (b) (a)

Figure 6: (a) nuqtas at default position;
(b) default nuqta positioning produces a clash in
different contexts; (c) default nuqtas are repositioned
contextually to avoid clash.

1.2 Current Solutions

Two different techniques have been adopted for dig-
itizing the Nastaleeq script: a ligature-based ap-
proach and a character-based approach. Each has
its own limitations. The most dominant and widely
used solution is the ligature-based Nori Nastaleeq. It
has over 20,000 pre-composed ligatures [2]. This font
can only be used with the proprietary software In-
Page. The other promising solutions are character-
based OpenType fonts. These fonts use OpenType
technology to generate ligatures. The OpenType
solution is very slow for the Nastaleeq writing style
and has limitations for proportional spacing and jus-
tification.

Current solutions for the rendering of Nastaleeq
script are inadequate because they do not offer con-
sistent platform-independence and are inefficient in
handling the complexity of the Nastaleeq script.
These solutions are inconsistent in the sense that the
results of rendering may differ from one platform to
another. Currently the complete Nastaleeq solution
is only available for the Windows platform. The
support currently provided by Pango is quite sim-
plistic. It implements the basic context-less initial,
medial, and final rules in the OTF tables. This is no
better than a Unicode font based on the Arabic pre-
sentation forms in which a character has one shape
at each position. But Urdu is traditionally written
in the Nastaleeq script. There is a need to provide
a platform-independent solution for Nastaleeq.

The solution devised here provides Nastaleeq
rendering support in Linux through Omega. Omega
has the strong underlying typesetting system TEX
to handle the complexity of Nastaleeq rendering and

90 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Nastaleeq: A challenge accepted by Omega

Omega Translation Processes (ΩTPs) provide a so-
lution for the complexity of Nastaleeq script (e.g.
contextual shape substitution) [4].

The present solution is limited to the basic al-
phabets of Urdu ( (U+0627) to (U+06D2)) and
numerals (0 to 9). These alphabets are listed in Ap-
pendix A. The solution provides:

• correct glyph substitution according to the con-
textual dependency of a character.

• correct cursive attachment(s) of a glyph

• nuqta placement

• automatic bidirectional support for numerals

2 Methodology

There are two possibilities for implementing support
for Nastaleeq in Omega: internal ΩTPs and external
ΩTPs. It is observed that internal ΩTPs are syntax
dependent; for example, it is almost impossible to
implement reverse chaining (processing characters/
glyphs in the reverse order in a ligature) using the
syntax of internal ΩTPs. External ΩTPs can be im-
plemented using Perl or C/C++, and give the free-
dom to implement custom logic [4].

The solution is broadly divided into four phases.
The first phase discusses the Omega virtual font gen-
eration for rendering Nastaleeq. The second and
third sections discuss the contextual shape selec-
tion and smooth joining of the selected shapes. The
fourth section discusses contextual nuqta placement,
the most difficult feature in Nastaleeq rendering.

2.1 An Omega virtual font for Nastaleeq

An Omega virtual font file is generated from a Nafees
Nastaleeq TTF font file. A total of 827 glyphs have
been used to render Nastaleeq. These glyphs are
placed in four different Type 1 files and four dif-
ferent TFM files are also generated. The Omega
program itself uses only the single virtual font file
nafees.ofm that contains pointers to the above gen-
erated font files.

2.2 Substitution logic

Nastaleeq is highly context dependent. The shape of
each character in a ligature depends on the shapes
of the neighboring characters. It is observed that
the shape of a character is mostly dependent on
the shape of the character that follows it. How-
ever, the shape of a final character in a ligature
is dependent on the second to last character, with
a few exceptions. For example, the character Reh

( , U+0631) has two glyphs and (as in

and ) when the character Jeem ( , U+062C)
occurs at the initial and medial position of a lig-
ature, respectively. Similarly, characters U+0631,
U+0691, U+0632, U+0698, U+0642, U+0648 and
U+06CC all have different final glyphs depending on
the glyph of the preceding character in a ligature.

In order to choose the correct glyph of a char-
acter, ligatures are processed from left-to-right, the
reverse of the natural writing style of Urdu, which
is right-to-left. The solution uses two lookup tables
(initial and medial) to get the initial and medial
shape of character according to the context. The
format of these tables is shown in Table 3 below.

U+0628 U+0629 U+0630
shape1 shape4 shape6 ...
shape2 shape8 shape9 ...
shape3 shape5 shape9 ...
shape4 shape10 shape8 ...

... ... ... ...

Table 3: Format of lookup table for initial and
medial shape context

The first row of the table consists of Unicode
values. The remainder are indices that point to the
corresponding shapes in the font. For each character
listed in the first row the shape of that character can
be determined by looking up the shape following it,
in the first column.

To find the shape of the final character two final
tables are used: final1 and final2 for two character
combinations and more than two character combina-
tions, respectively. It is needed because final shape
depends on the rightmost character; and there are
only two possibilities for a character at the (n−1)th

position: either it is an initial shape (in a two char-
acter combination) or a medial shape (in a more
than two character combination).

The format of the final table is a little different
from others. It has Unicode values in the first col-
umn as well, because at the beginning only Unicode
values are available.

U0628 U0629 U0630
U0628 shape4 shape6 ...
U0629 shape8 shape9 ...

... ... ... ...

Table 4: Format of lookup table for final shape
context

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 91



Atif Gulzar, Shafiq ur Rahman

The shape of the final character of the input
string can be found by looking up the second-to-last
character of the input string in the first column.

The first step for substitution is to break the
input string into ligature strings. Ligatures are then
processed from left to right as follows:

For a ligature of length n, the shape of the nth

character is recognized by consulting the final tables.
//if there are more than two characters
if (n>1)
ligature[n] = final2[lig[n]][lig[n-1]]

//if there are only two characters
elseif (n>0)
ligature[n] = final[lig[n]][lig[n-1]]

Where the lig string consists of Unicode values of
characters in a ligature and the ligature string holds
the shapes of these characters.

For the remaining n− 2 characters, the medial
table is consulted. The shape of the nth character
can be found in the medial table as follows:
for (k=n-1; k>0; k--) {
ligature[k] =
medial[mrcompress[ligature[k+1]][lig[k]]

}

Where mrcompress is the compressed medial table.
The shape of first character in a ligature can be

found by consulting the initial table:
ligature[0] =
initial[ircompress[ligature[1]][lig[0]]

where ircompress is the compressed initial table.
Finally the ligature is checked to see if it is com-

posed of numerals. In case of numerals, the string
is printed in reverse order, so as to maintain the
direction of numeric characters — from left to right.
if (ligature is composed of

numeric characters)
for (i=n; i>=0; i--)
Output ligature[i]

Figure 7: Sample string with numeric characters

2.3 Positioning

Nastaleeq is written diagonally from right-to-left
and top-to-bottom. The baseline of Nastaleeq writ-
ing style is not a straight horizontal line; instead,
the baseline of each glyph is dependent on the base-
line of following glyph. Similarly, the position of
a particular glyph is relative to the position of the
glyph following it.

TEX does not know anything about the shape
of a character. It only knows the box with height,
width and depth properties. TEX output contains
a list of boxes concatenated with each other. By
default these boxes are aligned along the baseline
(Fig. 8). But these boxes can be shifted horizontally
or vertically.

Figure 8: TEX boxes

The devised solution uses the pre-computed en-
try and exit points of glyphs that are stored in a file.
Entry points are points where the immediate right-
hand glyph should connect; similarly, exit points
represent the points where the immediate left-hand
glyph should connect.

Figure 9: Entry and exit points

In the above example the vertical adjustment
for the right-hand glyph will be y1 − y2. And the
resulting output is shown in figure 10:

Figure 10: After vertical adjustment

Similarly, the horizontal adjustment can also
be made for proper cursive attachment between two
consecutive glyphs:

Figure 11: After vertical and horizontal adjustment

92 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Nastaleeq: A challenge accepted by Omega

Two passes are needed for proper glyph posi-
tioning in a ligature. For vertical positioning the
ligature is processed from left-to-right. It is done
this way because the nth (last) glyph of a ligature
always resides on the baseline, while the other n− 1
glyphs move vertically upward according to the en-
try and exit points.

y=0;
for (j=n; j>=1; j--) {
y = enex[ligature[j]][1]

- enex[ligature[j-1]][3] + y;
ligenex[j-1][1] = y;
}

where the enex table contains the entry and exit
points, the ligenex table holds the resultant cursive
attachments and ligature contains the shape indices
of ligature.

In the 2nd pass the ligature is processed from
right-to-left for horizontal positioning. The first
glyph of a ligature is positioned horizontally with
respect to the previous ligature and then the re-
maining n− 1 glyphs are kerned for smooth joining.

for (j=0; j<n; j++) {
ligenex[j+1][0] =
(enex[ligature[j]][2]
+enex[ligature[j+1]][0])

}

Kerning is another major issue in Nastaleeq
rendering. There are two kinds of kerning problems:
one produces extra space between ligatures (a), and
the other creates a clash between ligatures (b). Case
(a) is not included in the present implementation,
but case (b) is handled.

(b) (a)
Figure 12: Types of kerning problems

The final shapes of the characters Yeh Barree

( , U+06D2), Jeem ( , U+062C) and Ain ( ,
U+0639) produce (in some cases) negative kerning,
which results in clashes with the preceding ligature.
To avoid such clashes a positive kerning is made.
The factor of this kerning is calculated by subtract-
ing the width of final glyph from the sum of widths
of the preceding n − 1 glyphs of the same ligature,
as shown in figure 4.

kern = width[n-1] - width of final glyphs

where kern is the positive kerning value for a liga-
ture of length n, where width[x] holds the aggregate
widths of x glyphs.

2.4 Contextual nuqta placement

Nuqta placement is the most complex problem of
Nastaleeq rendering. Due to overlapping shapes,
nuqtas cannot be placed at fixed positions, but must
be adjusted according to the context. Thus, nuqtas
are stored separately from the base glyph. There are
two major kinds of nuqta problems: nuqta collision
with the neighboring glyph (a) and nuqta collision
with adjacent nuqtas (b), as shown in figure 13:

(b) (a)
Figure 13: Nuqta collision types

Initially nuqtas are placed at the most natural
position (figure 14) for individual glyphs. Nuqtas
are then adjusted for the above two problems.

Figure 14: Nuqta placement at default positions

There are 26 characters in Urdu that have nuq-
tas, as shown below; character Yeh ( , U+064A)
has nuqtas at only its initial and medial position.

The intra-ligature clashes of nuqtas with the
neighboring characters are handled case by case.
Our investigations found that the following char-
acters influenced the nuqta positioning due to the
shape of their glyphs.

For example, the final glyph of Yeh Barree ( )
produced problems for the nuqta characters that are
vertically overlapped over the shape of Yeh Barree.
To avoid this problem all such nuqtas are placed
below the horizontal strike of the Yeh Barree shape,
as shown in figure 15.

Nuqta clashes are removed according to follow-
ing observations.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 93



Atif Gulzar, Shafiq ur Rahman

(b) (a)
Figure 15: Nuqta placement for YehBarree

• The nuqtas of final letters are usually not dis-
placed.

• The nuqtas of isolated letters are usually not
displaced.

• The nuqtas of dad (U+0639) and zah (U+0638)
are not displaced.

• Nuqtas of initial letters are preferably placed in
their position.

• Nuqtas’ clashes with neighboring characters are
handled case by case.

• The nuqtas are displaced right (preferably) in
case of clash with neighboring nuqtas.

• If the displaced nuqtas are confused with the
next letter or clashes, the nuqtas are moved
downwards (or upwards) instead of horizon-
tally.

3 Results and discussions

There are more than 20,000 valid ligatures in Urdu.
The sample data of approximately 7,000 ligatures is
randomly selected from the corpus of 20,000 valid
ligatures. The data is tested for correct contextual
substitution, cursive attachment and nuqta place-
ment. The next table shows the test results for the
following test points.
• Proper glyph is substituted
• There is a smooth cursive join between glyphs
• Nuqtas are positioned at the right place without

clashing with another nuqta or the boundary of
a glyph.

The test results are shown in table 5.

4 Future enhancements

This work will provide a platform for the following
future enhancements.
• Support for diacritics
• Proportional spacing across ligatures
• Justification
• Improvements in nuqta placement

Number of Number Incorrect Incorrect Nuqta
characters of substi- position- clash

in a ligatures tution ing
ligature tested

8 26 0 0 1
7 253 0 0 5
6 1545 0 0 20
5 1500 0 0 18
4 1500 0 0 15
3 1500 0 0 5
2 600 0 0 0

total 7000 0 0 65

Table 5: Test results

Acknowledgement

We would like to thank the Nafees Nastaleeq font de-
velopment team, especially the calligrapher Mr. Jamil-
ur-Rehaman who created the beautiful glyphs for this
font. The beauty of this font gave us the inspiration
to provide Nafees Nastaleeq rendering support in Linux
through Omega.

References

[1] http://www.ethnologue.com

[2] http://en.wikipedia.org/wiki/Nastaliq

[3] Urdu calligraphy and fonts by Sarmad Hussain
at Urdu Fonts Development Workshop,
2003. http://www.tremu.gov.pk/tremu/
workingroups/presentation.htm

[4] Draft Document for the Ω system, by John
Plaice, Yannis Haralambous, March 1999.

Appendix A

Characters in scope are listed in the table below.

U+0622 U+0627 U+0628 U+067E U+062A

U+0679 U+062B U+062C U+0686 U+062D

U+062E U+062F U+0688 U+0630 U+0631

U+0691 U+0632 U+0698 U+0633 U+0634

U+0635 U+0636 U+0637 U+0638 U+0639

U+063A U+0641 U+0642 U+06A9 U+06AF

U+0644 U+0645 U+0646 U+06BA U+0648

U+06C1 U+06BE U+0626 U+06CC U+06D2

U+06F0 U+06F1 U+06F2 U+06F3 U+06F4

U+06F5 U+06F6 U+06F7 U+06F8 U+06F9

94 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007


