
Design decisions for a structured front end to LATEX documents

Barry MacKichan
MacKichan Software, Inc.

barry dot mackichan at mackichan dot com

1 Logical design

Scientific WorkPlace and Scientific Word are word
processors that have been designed from the start to
handle mathematics gracefully. Their design philos-
ophy is descended from Brian Reid’s Scribe,1 which
emphasized the separation of content from form and
was also an inspiration for LATEX.2 This logical de-

sign philosophy holds that the author of a document
should concern him- or herself with the content of
the document, and with identifying the role that
each bit of text plays, such as a header, a footnote,
or a quote. The details of formatting should be ig-
nored by the author, and handled instead by a pre-
defined (or custom) style specification.

There are several very compelling reasons for
the separation of content from form.

• The expertise of the author is in the content;
the expertise of the publisher is in the presen-
tation.

• Worrying and fussing about the presentation is
wasted effort when done by the author, since
the publisher will impose its own formatting on
the paper.

• Applying formatting algorithmically is the eas-
iest way to assure consistency of presentation.

• When a document is re-purposed it can be re-
formatted automatically for its new purpose.
This can happen when a document is put on
the Web in addition to being published, or even
when the author sends the document to a new
publisher.

The most powerful typesetting programs tend
to be programming languages themselves. The two
most prominent examples are PostScript and TEX.
Although these are extremely powerful, they are not
always simple, and they do not separate content
from form. Consequently, there is a migration on
the following plot from the top to the bottom, and
from the left to the right.

1 Brian K. Reid, “Scribe: A Document Specification

Language and its Compiler,” Ph.D. Dissertation,

Carnegie-Mellon University, Pittsburgh, PA, Oct. 1980.
2 Leslie Lamport, LATEX: A Document Preparation

System, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, Second Edition, 1994.

Procedural

Declarative

S
tr

u
c
tu

re
d

U
n

s
tr

u
c
tu

re
d

TeX

PostScript

PDF

LaTeX

Thus, PostScript is a powerful programming
language, but it was later supplemented by PDF,
which is not a programming language, but instead
contains declarations of where individual characters
are placed. PDF is not structured, but Adobe has
been adding a structural overlay. LATEX is quite
structured, but it still contains visible signs of the
underlying programmability of TEX, so I haven’t
quite placed it at the bottom of the plot. The pat-
tern is that power and flexibility generally get sup-
plemented or replaced in some circumstances with
structured and declarative alternatives.

The original design philosophy for Scientific

WorkPlace and Scientific Word was to make visual
word processors that live at the bottom right of
the diagram, and produce their output by generat-
ing LATEX using one of over a hundred typesetting
styles. This is the optimal solution for publishing,
at least when we support a publisher’s style, or
when a publisher’s style uses the same tags as one
of the standard LATEX document types.

2 Enter the customer

Although this philosophy works very well for pub-
lishing, many of our customers want to have greater
control over the appearance of their documents. The

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 335



Barry MacKichan

truth is that not all mathematical documents are
written for publication in a journal. The author
might want to post a document on the Web or to
send out preprints, or to prepare reports that will
not be published, or to prepare handouts for stu-
dents. The cold hard truth is that programs like
Microsoft Word — despite its intellectual roots be-
ing also in Scribe — have over the years encouraged
users to fiddle and futz with formatting. The ex-
perts may all agree that the result is ugly, but the
customer is the one who pays our salaries.

In the past, Scientific Word users had a hard
time if they wanted to change or add to a style.
The advice of our tech support staff has been:

• You don’t want to do that
• You shouldn’t do that
• You can use package X to do that
• You can rewrite the style file

We no longer give the first two responses, and
our users are not going to be able to use the fourth
bit of advice. Due to the large number of useful
packages, we now encourage users to start with a
standard LATEX document type and to use packages.
This works, but it is not the most elegant way to
solve the problem, since you shouldn’t have to write
options for the geometry package in order to change
a margin.

We also allow the user to enter snippets of raw
TEX or LATEX code in what we call a “TEX but-
ton” (which is how we enter “TEX” and “LATEX”)
but this runs counter to the design philosophy, and
can’t address problems when a user wants to change,
for example, how list items are generated (since the
code to be added would be in the middle of code we
have generated).

3 A statement of the problem

This discussion now allows a statement of the prob-
lem we are solving.

1. We want an internal form for our documents
that is both rich and extensible, and a rendering
engine that is rich enough to render a LATEX
document and which is extensible.

2. We want to convert a LATEX document to our
internal form in a way that is extensible and
preferably uses standard, well-documented tools,
and in particular does not require access to our
source code.

3. We want to convert our internal form to LATEX
in a way that is extensible and uses standard
tools, and does not require access to our source
code.

Part of the motivation for not needing access to
our source code is that extending these operations
will be easier for us if it is not necessary to change
and re-build C++ code in order to support a new
tag or to change the behavior of a standard tag.
The other part of the motivation is that if the tools
are standard and well-documented, then advanced
users can make their own changes.

3.1 Internal form of a document

Scientific Word has an internal form that is not
LATEX but looks superficially like LATEX, and we have
an adequate rendering engine for it. However, it is
not extensible — that is, to extend it means rewrit-
ing C++ code and extending the rendering engine.
To avoid this problem and get the extensibility we
need, we choose an internal form that is rich enough
and extensible (and it must also be declarative and
structured). The obvious candidate (at least in this
century) is XML. We are basing future versions of
our software on the Mozilla Gecko rendering engine
for HTML and XML. Tags can be introduced at will,
and CSS (Cascading Style Sheets) are used to deter-
mine how these tags appear on the screen.

Some of the features of Gecko that are very use-
ful to us are:

• The rendering engine is open-source under a li-
cense that allows us to extend it if necessary.

• The rendering engine is rich and powerful (the
program user-interface is in fact a Gecko docu-
ment).

• XML is a standard that is easily converted to
and from LATEX.

• A powerful scripting language is integrated into
Gecko.

• A technology (XBL–XML Binding Language)
allows attaching behavior to (new) XML tags.

• A system of broadcasters and observers simpli-
fies coordinating the behaviors of objects.

• Support for infinite undo and redo is built into
the document-modifying functions.

3.2 Conversion from LATEX

Scientific Word does not process TEX or LATEX files
with TEX. It simply determines the structure of
the file by recognizing tags such as \section and
\subsection. In the past, it has caused problems
when users defined their own macros: we did not
recognize them and loaded the macro invocation as
a TEX button. Beginning with version 5.5 (two years
ago) we now run a version of the TEX macro pro-
cessor, and we evaluate macros defined by the user,
but we do not evaluate macros defined in LATEX or
any of the standard packages. The result should be

336 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting



Design decisions for a structured front end to LATEX documents

a document that contains only the standard macros,
and which can be read by Scientific Word.

We continue with this same approach in our
new architecture, except that the definitions of the
standard LATEX macros converts them to XML. The
resulting files are complicated, but most of the com-
plication is in some utility macros that make the fi-
nal macros quite easy to understand. Some sample
code from one of these files is:

\def\out@begin@abstract{%

\msitag{^^0a}%

\msiopentag{abstract}{<abstract>}

}

\def\out@end@abstract{%

\msitag{^^0a}%

\msiclosetag{abstract}{</abstract>}

}

This is all that is required to convert the abstract

environment to XML.

3.3 Conversion to LATEX

The conversion to LATEX is done using XSLT (XML

Stylesheet Language Transformations). As the name
implies, XSLT was designed as part of a method of
applying styles to XML objects, which sometimes re-
quires making some transformations or re-ordering
the XML elements. It has evolved into a powerful
standalone transformation language for XML docu-
ments. It can be used to transform XML into XML,
or XML into text, which includes TEX.

For instance, here is the XSLT rule that gener-
ates the abstract environment:

<xsl:template match="abstract">

\begin{abstract}

<xsl:apply-templates/>

\end{abstract}

</xsl:template>

When XSLT finds the <abstract> tag, it first
generates \begin{abstract}, then applies any rules
needed for the content of the tag, and finally gen-
erates \end{abstract} when it reaches the end of
the abstract node. The tag may have attributes,
which might affect the TEX generated, and the rules
can depend on the context of the tag.

The point here is that it is relatively easy to
add support for new tags, or to change the TEX
that gets produced by a tag. In older versions of
our products, these operations took place in com-
piled code, but now they are controlled by text files
that can be replaced or modified without rewriting
or recompiling C++ code. It is now feasible to sup-
port different flavors of TEX for Math Reviews, or
to support something like ConTEXt.

The next section addresses the question of how
you can tailor the on-screen presentation of a tag.

4 Some examples

4.1 Displaying ‘LATEX’ on screen

This is a brief discussion of how you can display
a new tag, such as <latex/>, on the screen. This
is done by using XBL. We’ll skip lightly over the
details.

In a CSS file there is a line that tells Gecko that
special rules apply to this tag:

latex {

-moz-binding: url(

"resource://app/res/xbl/latex.xml#latex");

}

In the file latex.xml, there is a section that
says how to display the tag:

<xbl:content>

<sw:invis><xbl:children/></sw:invis>

<sw:latex2>L<sw:latexa>A</sw:latexa>

<sw:latext>T</sw:latext>

<sw:latexe>E</sw:latexe>X</sw:latex2>

</xbl:content>

Each letter in LATEX (almost) is in a separate
tag, which allows us to change the style for each
letter. Here is the style rule for the ‘A’ (the tag
latexa):

latexa {

font-size: smaller;

position: relative;

bottom: .15em;

left: -0.20em;

}

This rule shrinks the ‘A’ and moves it up and
left. A style rule for the latex2 rule changes the
letter spacing to squeeze them together a bit. The
final result on the screen is:

Actually, what appears in the internal format
is <latex>LaTeX</latex>. The content of the tag
(‘LaTeX’) is thrown away, except when the XML doc-
ument is viewed by some other browser, such as In-
ternet Explorer, or even Firefox. Internet Explorer,
when it sees the -moz-binding statement in the CSS

file will ignore it completely. Firefox will understand
it, but will be unable to find the latex.xml file,
which is internal to our program. As a result, they
will ignore the latex tag and will simply display the
contents. Thus, the above displayed on Firefox will
appear as:

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 337



Barry MacKichan

Of course, the LATEX generated by this tag, no
matter what its content, will be \LaTeX.

4.2 Spaces

LATEX provides a wide choice of spaces, both hor-
izontal and vertical. It is possible to make them
visible by selecting a menu item “Show Invisibles”.
This is accomplished in the same way as the above
example, with special CSS rules to apply in the case
when “Show Invisibles” is on.

5 User interface enhancements

The next two items are not particularly related to
the new architecture for Scientific Word; rather, they
can be looked on as one solution to the problem
of converting a rich keyword-value interface to a
friendlier (to the novice) dialog-based interface. The
result is marginally less powerful, but still allows the
advanced user to get access to almost all the features
of the keyword-value interface.

The dialog shown in figure 1 is for selecting
OpenType fonts. Before the user gets to this point,
he will be warned that if he proceeds, his document
will have to be compiled with X ETEX and therefore
will not be completely portable.

This allows the user to pick the three main
fonts: the main (roman) font, the sans serif font,
and the monospaced font. He can also choose other
fonts and give them names. We have a rtlpara tag
for right-to-left text, and this uses the rtl font, for
which the user has chosen Narkisim.

There are many font attributes, and many are
not widely supported in available fonts, so we have
chosen only two for access by checkboxes: old-style
numerals and swash italics. Other attributes are
accessible, but only by falling back on the keyword-
value interface and clicking on the “Go native” link;
see figure 2.

The first line in the “Go native” box was pro-
vided automatically since the user had clicked on
“Old style nums” and “Swash”. The user added the
next line to use the MinionPro-Bold font as his bold
Roman font rather than the default Semibold. This
interface allows almost complete access to the power
of the fontspec package but gives more casual users
the ability to choose basic fonts easily.

Another dialog interface to package options is
the page layout dialog, as shown in figure 3. Here
the user is adjusting the left margin by pressing or
holding the up or down arrow key in the left margin
width field.

Figure 1: Dialog for selecting OpenType fonts.

6 Conclusion

Scientific WorkPlace and Scientific Word are de-
signed to make it easy for authors to write a beau-
tiful LATEX document with skills they already have.
To keep its simplicity from becoming a limitation,
we have to provide ways for more advanced users to
override the default decisions that Scientific Word

makes. This paper has covered a few of the new
technologies we are using to make a more modular
system, with the interconnections provided by sta-
ble and well-documented standards in a way that
we, or a knowledgeable user, can easily customize.
We expect this new platform to allow us to be more
nimble than before in responding to the changing
needs of our customers, and to serve as a solid base
for the next ten years of development.

338 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting



Design decisions for a structured front end to LATEX documents

Figure 2: Selecting OpenType font attributes.

Figure 3: Page layout dialog.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 339


