
LATEX2ε, pict2e and complex numbers

Claudio Beccari
Politecnico di Torino
Turin, Italy
claudio dot beccari (at) polito dot it

Abstract

In 2003 the endless list of LATEX packages was enriched by the package pict2e,
intended to substitute for the dummy one that has accompanied every LATEX dis-
tribution since 1994. This package implements everything as stated by Lamport
in the second edition of his LATEX manual (for LATEX2ε). But if you explore the
inner workings of the new pict2e, you discover the new package has some unex-
pected potential applications, especially if complex number arithmetic operations
are included in it.

1 Introduction

The original package pict2e which accompanied the
first release of LATEX2ε in 1994 was just a dummy
package that would simply type out an info message
that the real package was not yet available. Nev-
ertheless, the LATEX manual by Leslie Lamport [2]
already described the features of this expected pack-
age; its primary function was to relieve the strong
limitations of the picture environment, mainly due
to the fact that graphic objects were realized by
means of special fonts which necessarily contained
a limited number of “graphic” glyphs.

Anyone who has used the original picture en-
vironment in LATEX may have looked forward to the
new pict2e package, so as to be able to draw the
usual graphics available with other drawing facili-
ties, even those that are an integral part of commer-
cial and/or open source text processors.

The new pict2e [1] relieves all the limitations
of the old picture environment, in particular: the
small set of possible inclinations of segments and
vectors; the limited number of radii for drawing cir-
cles; the rigidity in drawing ovals, whose corners suf-
fered from the limited number of quarter circle arcs;
the shortest length of segments and vectors limited
to 10pt except for horizontal and vertical ones; the
line thickness limited to two values due to the very
limited number of special picture fonts; only sec-
ond order Bézier curves which were made up of small
dots partially superimposed on one another.

The new pict2e resorts to the output driver fa-
cilities, in the sense that it is dvips or pdf(la)tex1

that takes care of drawing straight and curved lines,
filled and unfilled contours, arrow tips, and the like,

1 Some other drivers are partially or totally supported.

with all the facilities offered by the powerful Post-
Script language, even in its simplified form as used
in PDF documents.

Figure 1 shows an example of a set of lines with
slopes of 10◦, 20◦, . . . , 80◦. The following picture
code reflects the usual syntax, with the only excep-
tion that line slopes are three digit integers, instead
of the relatively prime one digit integers limited to
a magnitude of 6 as in the “old” picture environ-
ment. The coefficients of the line slopes are simply
obtained by rounding to the closest integers the sines
and cosines of the angular slopes multiplied by 1000.

\unitlength=1mm
\begin{picture}(70,70)
...
\put(0,0){\line(985,174){68.95}}
\put(0,0){\line(940,342){65.80}}
\put(0,0){\line(866,500){60.62}}
...
\put(0,0){\line(342,940){23.94}}
\put(0,0){\line(174,985){12.18}}
\end{picture}

Depending on the output driver, pict2e inserts
the necessary \special commands with the appro-
priate syntax, so that when running pdflatex the
output PDF file contains the drawings that are di-
rectly visible with the PDF viewer. When running
latex, the DVI file generally2 must be processed
with dvips to get a PostScript file where the draw-
ings are directly visible with the PostScript viewer,
and/or the PostScript file may be processed with
ps2pdf to get a self-contained PDF file.

2 Several DVI file previewers can interpret the PostScript
\specials, but this is not universally true.

202 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

LATEX2ε, pict2e and complex numbers

x

y

Figure 1: Line segments with angular slopes that are
multiples of 10◦, drawn with pict2e

When dealing with pict2e, I believe the latex
+ dvips + ps2pdf procedure is less interesting than
the direct production of a PDF file by means of
pdflatex, because in the former case the author
may alternatively use the well-known and more pow-
erful PSTricks [3].

I would like to encourage any LATEX users who
may be unaware of the availability of pict2e to
download the package from CTAN, if necessary, and
experiment with the new features. In particular, I
would like to draw to the attention of Linux users
that TEX distributions coming with some Linux sys-
tems are quite out-of-date with respect to CTAN.
My own Linux-based distribution (2005/08/15), for
example, contains only issue 14 of latexnews.dvi
dated 2001/06/01, while my updated MiKTEX dis-
tribution contains issue 16 dated 2003/12/01. The
new pict2e was announced in issue 15, also dated
2003/12/01. The current version (as of Septem-
ber 2006) of pict2e was updated 2004/08/06. The
current version is available in current and future dis-
tributions of MiKTEX and TEX Live.

In the following sections I will give some ex-
amples of pict2e usage, and then describe some
enhancements of the package, how to use some in-
ternal commands and how to build powerful new
commands to draw arbitrary curves by means of
third order Bézier curves. I will also need to describe
some elementary properties of complex numbers and
therefore how to implement complex number arith-
metic by means of LATEX and the underlying TEX
macros and primitives.

sinφ

φ

−1

0

+1

2 4 6

Figure 2: A sine wave

Figure 3: A curve containing a cusp

2 Examples

Our first example is an accurate sine wave, as in
figure 2. This can be created as follows:
\Curve(0,0)<1,1>% 0 deg

(1.570796,1)<1,0>% 90 deg

(4.712389,-1)<1,0>% 270 deg

(6.283185,0)<1,1>% 360 deg

where the parentheses contain the curve node coor-
dinates and the angle brackets contain the direction
coefficients of the curve tangents at each node.

A diagram with a cusp is shown in figure 3; the
code used is the following:
\Curve(2.5,0)<1,0>(5,3.5)<0,1>%

(2.5,3.5)<-.5,-1>[-.5,1]%

(0,3.5)<0,-1>(2.5,0)<1,0>

Another example is given in figure 4 where the
\polyline macro, described later, is used. The code
for generating the heptagon and star vertices is the
following:
\begin{picture}(5,5)(-2.5,-2.5)

\DividE 360pt by 7pt to\Seventh

\DirFromAngle\Seventh to\Dir

\CopyVect 0,2.5 to\Vone

\MultVect\Vone by\Dir to\Vtwo

\MultVect\Vtwo by\Dir to\Vthree

\MultVect\Vthree by\Dir to\Vfour

\MultVect\Vfour by\Dir to\Vfive

\MultVect\Vfive by\Dir to\Vsix

\MultVect\Vsix by\Dir to\Vseven

TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting 203

Claudio Beccari

Figure 4: Heptagon and seven pointed star

\polyline(\Vone)(\Vtwo)(\Vthree)(\Vfour)%

(\Vfive)(\Vsix)(\Vseven)(\Vone)

\thicklines

\polyline(\Vone)(\Vfour)(\Vseven)%

(\Vthree)(\Vsix)(\Vtwo)(\Vfive)(\Vone)

\end{picture}

3 Extensions to the pict2e package

The pict2e package, according to the description
in [2], retains the limitation that the slope param-
eters of the picture segments are represented with
integer numbers. According to the authors, Rolf
Niepraschk and Hubert Gäßlein, this limitation is
due to the specific division routine used, as well as
fulfilling the line and vector specifications specified
by Lamport.

In a previous paper [4] I complained about the
fact that even ε-TEX does not implement real float-
ing number calculations and I invited developers to
extend ε-TEX functionality in that direction.

Meanwhile, the LATEX programmer must rely on
“poor man” methods. The only TEX object that is
representable with a fractional number in the input
flow is the scale factor used for scaling lengths: when
you type

\newlength{\dimA} \newlength{\dimB}
\setlength{\dimA}{33.25pt}
\setlength{\dimB}{1.44\dimA}
\showthe\dimB

you expect to see on the log file (and on the screen)
that the dimension register \dimB contains the value
of 47.88pt. Actually the log file will exhibit the
value of 47.88008pt because of conversion, round-
ing and truncation errors during the whole process.
Here is where the floating point arithmetic would
be handy. . . in the future. But notice that 47.88 is
the arithmetic product of the fractional measure in
points of the register \dimA multiplied by the frac-

tional number 1.44. Multiplication is then relatively
an easy task provided we can convert back and forth
fractional numbers and dimensions.

The trick is easy, and despite being classified as
“dirty” in The TEXbook [5, page 375], it has been
used by almost everyone needing to use this poor
man approach to fractional number multiplication.

Division is trickier because it can produce over-
flows (like multiplication), the division by zero error,
and it does not have any relation to scale factors, the
only objects that TEX can use as multipliers.

Integer division is generally unusable and so the
routine Gäßlein and Niepraschk used accepts integer
dividend and divisor transformed into lengths, but
yields a length whose measure in points is the re-
quired fractional quotient.

At the time pict2e became available I had been
using a division routine for several years; it was part
of a package of mine that was never published. The
good point is that I had been using that package for
years and that routine always worked reliably, al-
though no controls were actually performed to avoid
overflows or divisions by zero (they could be possi-
bly be done before calling the routine). This routine
actually divides two lengths and yields their ratio as
a fractional signed decimal number. The code may
be seen in figure 5.

TEX programming was used together with some
plain TEX macros that are also available in the ker-
nel of LATEX. I chose to use the delimited argu-
ment facility of TEX, which is not available in LATEX,
because coding becomes more readable; the funny
choice of the name with initial and final capitals
has a long and insignificant history, but I did not
want to change it here, for the sake of avoiding con-
tradictions. For the same reason I did not trans-
late \segno into, say, \Sign, but I suppose that its
meaning is understandable by everybody. In prac-
tice \DividE implements a long division between the
numerator and denominator lengths translated into
scaled points (this is what TEX does when a counter
is assigned a length value) stored into two numerical
counters; at every iteration the remainder is multi-
plied by ten and the single digit new quotient \q is
appended to the overall quotient \Q.

The only test I added to this last version of the
routine is to assign a positive maximum TEX value
to the quotient in case of division by zero, so that
the best TEX approximation to infinity is used.

With this division routine at hand, we can ex-
tend the slope argument of segments to any reason-
able fractional number; the \line of pict2e may
be changed to the code in figure 6.

Some comments are in order because some of

204 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

LATEX2ε, pict2e and complex numbers

\def\DividE#1by#2to#3{%
\begingroup
\dimendef\Numer=254\relax \dimendef\Denom=252\relax
\countdef\Num 254\relax \countdef\Den 252\relax \countdef\I=250\relax
\Numer #1\relax \Denom #2\relax
\ifdim\Denom<\z@ \Denom -\Denom \Numer -\Numer\fi
\def\segno{}\ifdim\Numer<\z@ \def\segno{-}\Numer -\Numer\fi
\ifdim\Denom=\z@
\ifdim\Numer>\z@\def\Q{16383.99999}\else\def\Q{-16383.99999}\fi

\else
\Num=\Numer \Den=\Denom \divide\Num\Den
\edef\Q{\number\Num.}%
\advance\Numer -\Q\Denom \I=6\relax
\@whilenum \I>\z@ \do{\DividEDec\advance\I\m@ne}%

\fi
\xdef#3{\segno\Q}\endgroup

}%

\def\DividEDec{\Numer=10\Numer \Num=\Numer \divide\Num\Den
\edef\q{\number\Num}\edef\Q{\Q\q}\advance\Numer -\q\Denom}%

Figure 5: Another division routine for fractional values

the code may seem redundant. The \line macro
behaves as in the original pict2e, except that the
“only” argument #1 actually has the usual format
of two fractional or integer numbers separated by
a comma; this is the form I will give to the rep-
resentation of complex numbers; the \line macro
does not actually need this machinery, but since the
necessary macros are already there, why not?

The \DirOfVect macro takes the two direc-
tion comma-separated coefficients passed in argu-
ment #1, interprets them as the horizontal and ver-
tical components of a vector and determines the di-
recting cosines, or, if you prefer, normalizes these
two vector components to the length of the vector it-
self, so that they are both fractional numbers whose
magnitude does not exceed unity. This is good for
the following operations and division calculations.
The rest of the macro is very similar to the original
one. But it may be observed that the above nor-
malization does not depend on the integer or frac-
tional nature of the directional coefficients; it even
neglects the fact that their magnitude may be larger
than 1000, which is the last constraint remaining in
the original pict2e \line macro.

Of course these coefficients should not be too
large, even though the length of the vector compu-
tation implies some powers of two and a square root;
computations are made in such a way as to extract
from the root the largest of the two components,
so that a number not exceeding unity gets squared

and the radicand never exceeds 2. The \ModOfVect
macro actually executes this square root and I have
never observed any deficiency in its calculations.

This extension suggests another one; since the
direction coefficients may be of any reasonable mag-
nitude, why should we maintain the picture syntax
for defining lines, where along with the direction
coefficients it is necessary to specify the horizon-
tal projection of the segment? Why not define the
line with its absolute horizontal and vertical com-
ponents? Everything would be much cleaner and
the execution time would be much shorter. Thus, I
defined an alternative line description, as follows:

\def\Line(#1,#2){%
\pIIe@moveto\z@\z@
\pIIe@lineto{#1\unitlength}%

{#2\unitlength}%
\pIIe@strokeGraph}%

where the arguments passed to the macro represent
the actual components of the segment, and no length
is specified. With \put you put the segment ori-
gin as usual and the \Line macro does the rest.
The “moveto”, “lineto” and “stroke” keywords
are those used in PostScript and in many descrip-
tive graphic languages; these are some of the new
keywords introduced by pict2e and they may in-
duce a small revolution in considering graphics with
LATEX.

For example it is possible to define a macro for
tracing a polygonal line joining an arbitrary number

TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting 205

Claudio Beccari

\def\line(#1)#2{\begingroup
\@linelen #2\unitlength
\ifdim\@linelen<\z@\@badlinearg\else
\expandafter\DirOfVect#1to\Dir@line
\GetCoord(\Dir@line)\d@mX\d@mY
\ifdim\d@mX\p@=\z@\else

\ifdim\d@mX\p@<\z@ \@tdB=-\p@\else\@tdB=\p@\fi
\DividE\@tdB by\d@mX\p@ to\sc@lelen \@linelen=\sc@lelen\@linelen

\fi
\pIIe@moveto\z@\z@
\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
\pIIe@strokeGraph

\fi
\endgroup\ignorespaces}%

\def\GetCoord(#1)#2#3{%
\expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

\def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%

\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to\@tempa \DividE\t@X\p@ by\@tempdimc to\t@X
\DividE\t@Y\p@ by\@tempdimc to\t@Y
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
\@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
\ifdim\@tempdima>\@tempdimb

\DividE\@tempdimb by\@tempdima to\@T
\@tempdimc=\@tempdima

\else
\DividE\@tempdima by\@tempdimb to\@T
\@tempdimc=\@tempdimb

\fi \ifdim\@T\p@>\z@
\@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
\advance\@tempdima\p@
\@tempdimb=\p@
\@tempcnta=5\relax
\@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
\advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
\advance\@tempcnta\m@ne}%
\@tempdimc=\@T\@tempdimc

\fi
\Numero#2\@tempdimc

\ignorespaces}%

\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Figure 6: Redefinition of the \line macro using the new division routine

206 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

LATEX2ε, pict2e and complex numbers

of nodes as such, as in \polyline here:3

\def\polyline(#1){\beveljoin

\GetCoord(#1)\d@mX\d@mY

\pIIe@moveto{\d@mX\unitlength}%

{\d@mY\unitlength}%

\p@lyline}%

\def\p@@lyline(#1){%

\GetCoord(#1)\d@mX\d@mY

\pIIe@lineto{\d@mX\unitlength}%

{\d@mY\unitlength}%

\p@lyline}%

\let \lp@r(\let\rp@r)

\def\p@lyline{%

\@ifnextchar\lp@r{\p@@lyline}%

{\pIIe@strokeGraph\ignorespaces}%

}%

This simple macro \polyline would be rather dif-
ficult to realize without the moveto, lineto and
stroke keywords.

A final small improvement consists in setting
the shape of the line terminators; by default they are
square caps but when tracing thick lines that meet
at the same point it is better to set them round. See
figure 7 for a comparison. The following code gives
access to these settings:
\ifcase\pIIe@mode\relax

\or %PostScript

\def\roundcap{\special{ps:: 1 setlinecap}}%

\def\squarecap{\special{ps:: 0 setlinecap}}%

\def\roundjoin{\special{ps:: 1 setlinejoin}}%

\def\beveljoin{\special{ps:: 2 setlinejoin}}%

\or %pdf

\def\roundcap{\pdfliteral{1 J}}%

\def\squarecap{\pdfliteral{0 J}}%

\def\roundjoin{\pdfliteral{1 j}}%

\def\beveljoin{\pdfliteral{2 j}}%

\fi

I prefer to have the round cap version as the default
setting, but this is a question of personal taste. Ap-
parently these settings, set up by means of the spe-
cial programming language of the destination file,
are global ones so it is necessary to countermand
them once the default has to be restored; it is not
possible to rely on groups in the usual TEX way. I
also have the impression that at each closing of a pic-
ture environment any setting is lost; I do not know
the PostScript language well enough to understand
if some internal pict2e command executes this re-
set, but after all it is no trouble to reset the preferred
settings at the beginning of each picture.

3 Of course with delimited arguments it is not possible to
use the LATEX macro definition commands.

x

y

x

y

Figure 7: Square and round caps

It happens that the line terminator choice does
not work with the original pict2e \line definition
when the drawn segments are purely horizontal or
vertical, while it does work with my redefinition, as
can be seen in figure 7. After all the original pict2e
definition of \line mimics the original “LATEX 2.09”
one, where it was important to avoid drawing lines
by means of the special graphic fonts when hori-
zontal and vertical lines could be more easily and
efficiently drawn with the low level DVI commands
TEX uses for vertical and horizontal rules. When
lines are drawn with the device driver facilities it is
no longer necessary to make horizontal and vertical
lines special cases.

I should remark that several other graphic pack-
ages are available; among them the curves package
by Ian Maclaine [6] certainly is the first one that
might benefit from these new facilities introduced
by pict2e. There is also the package bundle pgf by
Till Tantau [7]; PGF stands for “portable graphic
format” and its intention is to provide LATEX with a
portable set of macros providing nearly as much as
PSTricks, even when running pdflatex. The latter
program is at the base of the excellent presentation
document class beamer and is certainly worth using
because of its fine properties. In the event, I did not
extend pgf because I found some difficulties in writ-
ing some macros, such as to relocate output to spec-
ified coordinates. Moreover I believe that pict2e,
although much simpler then pgf, is part of LATEX,
not a major extension as pgf is.4

4 Complex numbers

As has partially been seen, drawing implies treat-
ing directions; in particular, it is necessary to ma-
nipulate vectors and their directions. METAFONT

[8], the program for drawing fonts written by Knuth
himself, treats all these objects with complex num-
bers. Knuth hardly ever cites complex numbers in

4 With pict2e I had no difficulties rewriting the macros
of a package of mine for drawing electronic circuits; I was not
able to do the same with pgf; of course the one to blame is
just myself.

TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting 207

Claudio Beccari

The METAFONTbook, but all the inner and outer
workings are done by means of pairs that are noth-
ing else but complex numbers. The manipulation of
directions and angles is always done in an alternat-
ing change from Cartesian to polar representation of
complex numbers; here and there some of the opera-
tions available on pairs are explicit complex number
operations.

Most people don’t know or don’t like complex
numbers; perhaps this is due to the fact that they
contain imaginary quantities, something far away
from the everyday reality of numbers.

Mathematicians, on their side, usually do little
to ease students’ learning of complex numbers, and
with their love for abstraction and generalization
they sometimes miss conveying the message that
these entities are nothing more than “scale-rotate”
operators: they simply scale an object up and down
and rotate it around a pivoting point. Almost ev-
erybody is familiar with these operators, from using
one of the many interactive drawing programs, even
relatively simple ones.

To see this, take a vector ~v drawn from the
origin of a Cartesian plane defined with axes x and y;
if you project the above vector on the x axis you get
the horizontal component ~vx, while if you project it
on the y axis you get the vertical component ~vy. If
you define two unit vectors, ~ux parallel to the x axis
and pointing to increasing x values, and similarly ~uy

for the y axis, you can separate in every component
the information of its magnitude from that of its
direction and you can write

~v = ~vx + ~vy = vx~ux + vy~uy

Now let us emphasize the link the vector ~v has
with the unit direction along the x axis by writing

~v = [vx + (~uy/~ux)vy]~ux

so that we may interpret the contents of the square
brackets as the operator that acts on the unit x
vector, by scaling it according to the magnitude of
~v, and by rotating it by a certain angle, the angle
of ~v with respect to the x axis. The contents of
the square brackets have the same characteristics as
those we anticipated for complex numbers.

The ratio ~uy/~ux is generally given the name of
‘i’ by the mathematicians and ‘j’ by most technolo-
gists.5 Its application has the geometric meaning of
changing the unit vector ~ux to the unit vector ~uy,
i.e. rotating the unit vector ~ux 90◦ counterclockwise.

If we apply twice in a row the 90◦ rotation op-
erator ‘i’ to the unit vector ~ux, producing a total

5 Notice that this mathematical operator is not a variable
and therefore according to international standards must be
written with an upright font.

rotation of 180◦, we get the renowned expression
i ~uy = i(i ~ux) = i2 ~ux = −1~ux

that is
i2 = −1 or i =

√
−1

which induced XVI century mathematicians to call
‘i’ the imaginary unit.

If we further process the above results, we get

vx + (~uy/~ux)vy = vx + i vy = |~v|
(

vx

|~v|
+ i

vy

|~v|

)
where

|~v| =
√

v2
x + v2

y

We recognize that if the original vector ~v is in-
clined by an angle θ counterclockwise with respect
to the x axis, then the two above fractions represent
the cosine and sine of such an angle

vx

|~v|
= cos θ

vy

|~v|
= sin θ

The scaling factor of the operator acting on the unit
x vector is |~v| and the direction of the x unit vector
is changed by the angle θ counterclockwise. The
operator is actually a scale-rotate operator, i.e. a
complex number.

If we apply two scale-rotate operators in a row
to the unit x vector, we make the following observa-
tions:

1. the two scaling factors behave as two multipliers
and are commutative;

2. the two rotation angles add up and are commu-
tative;

3. the total effect produced by the two operators
is therefore equivalent to that of a single opera-
tor whose magnitude is the product of the two
magnitudes and whose angle is the sum of the
two angles.

In order to represent such effects with the operation
of multiplication it is advisable to use magnitudes
as regular factors, and to use angles as exponents of
a suitable base; the mathematicians tell us that a
scale-rotate operator of magnitude a and of angle θ
can be represented as

a(cos θ + i sin θ) = a ei θ

which is called Euler’s formula. There are many
serious reasons for choosing ‘e’ as the base and for
representing the exponent as an imaginary quantity,
but we are not concerned here with them; we simply
note that given two scale-rotate operators a exp(i θ)
and b exp(iφ) their total effect is (ab) exp[i(θ + φ)].

This observation together with Euler’s formula
lets us understand the meaning of division by a com-
plex number, i.e. a scale-rotate operator; in fact, the

208 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

LATEX2ε, pict2e and complex numbers

division is nothing but the inverse operator of a mul-
tiplication, and this can be expressed as[

a ei θ
]−1

=
1
a

e− i θ

where we observe that the scaling factor is simply
the reciprocal of the multiplicative one, while the ro-
tation term is just in the opposite direction relative
to the multiplicative one.

The scale-rotate interpretation of complex num-
bers also lets us understand very easily the meaning
of addition and subtraction of such entities — which
end up being the same as addition and subtraction
of vectors. Moreover the vector notation becomes
redundant, since the scale-rotate operators always
act on the unit x vector, which can thus be taken
for granted and omitted from the complex number
expressions. These expressions therefore maintain
the meaning of vector operations and of complex
number relationships.

For our present purposes, let us emphasize that
exp(i θ) has unit magnitude, and therefore contains
only the information on the direction. Furthermore,
exp(− i θ) represents a rotation in the opposite di-
rection; if we have the means of multiplying by such
factors we can change the direction of any vector the
way we like, either counterclockwise or clockwise.

For TEX arithmetic it is better to use simple
multiplications without exponentials, but Euler’s
formula lets us change back ad forth from the expo-
nential form to the Cartesian one; the exponential
form gives us an easy interpretation of the rotat-
ing effects while the Cartesian form gives us an easy
mechanism for executing the complex multiplication
and therefore the required rotation.

5 Complex number TEX macros

I am not going to include here the code for every
complex number operation [9]; let me just list the
macro names of the operations I wanted to realize,
with some explanations to clarify detail.

Notice that I decided to maintain most if not
all fractional numbers in control sequences. I also
use control sequences to pass complex values to the
macros, so that in order to operate on the complex
number parts a macro (\GetCoord) is needed to sep-
arate them, and another (\MakeVectorFrom) to re-
assemble them.

Most macros have delimited arguments, with
the main command is followed by the sequence of ar-
guments separated by keywords; rarely, arguments
must be enclosed in the traditional curly braces, as
normally necessary in LATEX. For example in or-
der to extract the magnitude (modulus) and the
direction from a given vector the macro name is

\ModAndDirOfVect but the various arguments are
separated by the words to and and so that a typical
call might be
\ModAndDirOfVect\VectorA to\ModA and\DirA

In this context the word “vector” is synonymous
with complex number or scale-rotate operator; the
word “direction” refers to a complex number with
unit magnitude so that the scaling factor is unity.

In the following list of macros the parameters
#1, #2,. . . are the arguments passed to the various
macros. The macro names are assumed to be self
explanatory.
\SinOf#1to#2

\CosOf#1to#2

\TanOf#1to#2

\MakeVectorFrom#1#2to#3

\CopyVect#1to#2

\ModOfVect#1to#2

\DirOfVect#1to#2

\ModAndDirOfVect#1to#2and#3

\GetCoord(#1)#2#3

\DistanceAndDirOfVect#1minus#2to#3and#4

\XpartOfVect#1to#2

\YpartOfVect#1to#2

\DirFromAngle#1to#2

\ScaleVect#1by#2to#3

\ConjVect#1to#2

\AddVect#1and#2to#3

\SubVect#1from#2to#3

\MultVect#1by#2to#3

\MultVect#1by*#2to#3

\DivVect#1by#2to#3

The list ends with the usual four arithmetic oper-
ations performed on any mathematical entity; the
variant of the multiplication that contains an aster-
isk performs the multiplication of the first operand
by the complex conjugate of the second operand; the
complex conjugate of a complex number is just the
scale-rotate operator where the rotation direction
has been reversed.

The above list starts with the usual trigonomet-
ric functions. Actually, I stated earlier that arith-
metic in TEX should be done with numbers and di-
rections; angles, that are so expressive in Euler’s
formula, should be avoided. Nevertheless, at some
point it’s necessary to convert angles to their sines
and cosines, but switching back and forth from the
Euler representation to the Cartesian one implies
the computation of both direct and inverse trigono-
metric functions. TEX can do both operations (with
acceptable approximations) but it slows down quite
a bit with frequent transformations. I implemented
the computation of the direct trigonometric func-
tions of angles in degrees, not in radians, by means
of the continued fraction expansion of the half angle

TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting 209

Claudio Beccari

tangent and the parametric formulas:

sin θ =
2 tan x

1 + tan2 x

cos θ =
1− tan2 x

1 + tan2 x

tan θ =
2 tan x

1− tan2 x

where

tanx =
1

1
x
− 1

3
x
− 1

5
x
− 1

7
x
− · · ·

and x = θ/114.591559 is the half angle in degrees
converted to radians.

This iterative formula for the tangent is quite
fast and its precision is remarkable if we consider
the modest performance of TEX calculations with
fractional numbers. I decided to stop the continued
fraction with the term containing the coefficient ‘11’;
probably it is a little too much for TEX capabilities
but I prefer to perform one extra cycle than to miss
the target.

Unfortunately I could not find similar fast algo-
rithms for the inverse trigonometric functions; I de-
cided to avoid using such inverse functions. META-
FONT implements both algorithms, but METAFONT

is not TEX: the former was designed to perform frac-
tional number calculations (although represented in
fixed radix notation) while the latter was designed
for efficiently typesetting text, with calculations re-
duced to integer operations with some simple tricks
to cope with the necessity of fractional “factors”.

The macro \DirFromAngle is the only one that
uses trigonometric functions; further on, just direc-
tion vectors are used.

6 Circular arcs

pict2e implements only the drawing commands
specified by Lamport in [2]; it can draw full cir-
cles or quarter circles but it cannot draw arcs of
any other specified angle amplitude. Or better: it
cannot draw them because of the lack of user com-
mands, but it has all the potentialities.

Suppose we want to draw an arc by specifying
its center, its starting point and its angle amplitude.
The center and the starting point may be absolute
coordinates in the picture environment space or
may be relative to the position specified with a \put.

With pict2e we can resort to third order Bézier
curves as it is done in METAFONT; if the third order
curve is not misused, it can approximate up to a half

O

P1P2
B

A
Q1Q2

θθ

Figure 8: Circular arc elements

circle with remarkable precision. The problem is to
find the arc end point and the correct control points
of the Bézier curve.

With reference to figure 8 it is a simple exercise,
given the center O, the starting point P1, and the
arc angle 2θ, to determine the coordinates of the end
arc point P2 and the two control points Q1 and Q2.

For the end point P2 it suffices to take the vec-
tor −−−−→P1 −O and rotate it about the center point by
the given angle 2θ; this operation is simplified by
the complex number arithmetic described above.

A little trickier is the determination of the
control points. It is evident that they lie on the
segments perpendicular to the vectors −−−−→P1 −O and−−−−→P2 −O, but how long are the vectors −−−−−→Q1 − P1 and−−−−−→Q2 − P2 ? To answer, it is necessary to know the
cubic Bézier equation:

P = P1(1− t)3 + 3Q1t(1− t)2 + 3Q2t
2(1− t) + P2t

3

that can be found (using other symbols) in The
METAFONTbook.

P is the generic point on the curve; the start
and end points and the control points form the co-
efficients of the equation; t is a parameter that runs
from 0 to 1 while P moves from P1 to P2. The
above equation in reality represents the pair of equa-
tions obtained when the point coordinates are sub-
stituted; therefore it represents the pair of paramet-
ric equations that describe the curve in the usual xy
Cartesian plane.

If we move the origin of the coordinates to point
B of figure 8 and exploit the obvious symmetry, the
similar triangles, the Bézier equation, and the fact
that point A must be distant from O just as P1 and
P2, it turns out that the length K of the required

210 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

LATEX2ε, pict2e and complex numbers

vectors is
K =

4
3

1− cos θ

sin θ
R

where R is the arc radius, the length of the vector−−−−→P1 −O. Again, with the complex number opera-
tions we have at our disposal, it is straightforward
to exploit the information we have to trace the cubic
Bézier curve from P1 to P2; the result is indistin-
guishable from a true circle when the total arc angle
does not exceed 90◦ and is not noticeable with the
naked eye when the total arc angle does not exceed
180◦.

Therefore a good \Arc macro should check the
amount of the total arc angle and possibly split the
total arc into sub-arcs none of which exceeds a half
circle, or, even better, a quarter circle. This is why
in actual computations it is much better to measure
angles in sexagesimal degrees than in radians; with
radians the reduction of angles by amounts corre-
sponding to quarter or half circles intrinsically re-
quires approximation due to the irrational nature of
π; TEX introduces its own approximation errors, so
let us not contribute with further ones.

7 General curves

The abovementioned package curves [6] by Ian
Maclaine offers the user the possibility of tracing
arbitrary curves by stating just the curve nodes;
METAFONT is entirely built on this possibility, al-
though it uses much finer mathematics and it offers
the user the opportunity to optionally specify node
tangents and arc tensions.

From the user’s point of view these differences
are great by themselves, but there is another im-
portant difference: curves uses quadratic Bézier
curves, while METAFONT uses cubic ones. This pro-
duces dramatic differences when the curve nodes im-
ply the presence of inflection points. In this case the
algorithm devised by Maclaine more often than not
produces anomalous loops; such loops are very rare
with cubic Bézier curves — it is necessary to work
hard just to find examples of such loops.

Of course Maclaine had to sacrifice some graph-
ical functionality in favor of simpler mathematics,
which, as we know, is not TEX’s best feature.

I tried to devise a chain of macros that trace one
cubic Bézier arc at a time, and pass one another the
end point tangent directions. These macros are
\StartCurveAt#1WithDir#2
\CurveTo#1WithDir#2
\CurveFinish

where the first argument is a point coordinate pair
(a complex number) and the second argument is a
direction (a complex number with unit magnitude).

The first macro initializes the process and memo-
rizes the first point direction; the second macro gives
the destination program the necessary information
on the arc nodes and control points, and the third
macro eventually strokes the curve with the syntax
of the destination program.

The first macro basically uses the moveto key-
word, the second macro curveto, and the final
macro stroke; we have already partially seen these
keywords while discussing lines and polylines. The
first and second macros also normalize the direc-
tions given, so the end user does not need to make
preliminary calculations in order to normalize the
direction magnitude. They also memorize the spec-
ified and normalized direction for the benefit of the
next \CurveTo call.

The \CurveTo macro is the one that has to do
the main work in determining the position of the
control points. Obviously it must start by check-
ing the trivial situations where the directions form
zero or 180◦ angles with the arc chord; it must also
distinguish the situations where the tangents form
90◦ angles with the chord. It must behave correctly
even if the end nodes and the directions imply an in-
flection point. But in most cases it has to deal with
normal situations where the control point directions
relative to the respective end points are given but
the distances of the control points from the nodes
must be determined.

There is a great margin for arbitrary decisions.
I decided to divide the chord in two parts that are
more or less proportional to the projection of the
directions on the chord and to determine the dis-
tance K of each control point from its neighboring
node with the same formula as for circular arcs. The
chord fraction is treated as half the chord of a circu-
lar arc and the corresponding radius is determined
so as to use the mentioned formula. This choice is
totally arbitrary but, as it is easily understandable,
it is a reasonable one.

This done, the usual complex number arith-
metic can be used to locate the position of the con-
trol point and to give the internal command for in-
structing the destination program how to draw the
desired curve. In figure 2 there is a simple example
of a sine curve that has been drawn with three arcs:
from the origin to the maximum, from this point to
the minimum, and lastly from the minimum to the
end of the cycle.

Actually the three above macros are the ingre-
dients of the general macro \Curve that operates on
an arbitrary number of couples of nodes and direc-
tions:

TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting 211

Claudio Beccari

\Curve(〈P0〉)<〈dir0〉>(〈P1〉)<〈dir1〉>...
(〈Pn〉)<〈dirn〉>

whose code is the following:
\def\Curve(#1)<#2>{%

\StartCurveAt#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\PackageWarning{curve2e}{%

Curve specifications must contain at least

two nodes!\Messagebreak

Please, control your Curve

specifications\MessageBreak}}}

\def\@Curve(#1)<#2>{%

\CurveTo#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\@ifnextchar[\@ChangeDir\CurveFinish}}

\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

For each node it is necessary to specify the direc-
tion of the tangent to that node, but these tangent
direction coefficients need not be normalized. They
are normally given within angle brackets. If there
is a cusp, the tangent changes abruptly so that a
new direction must be specified before continuing
to draw the curve; this “optional” change in direc-
tion is indicated with a direction enclosed in square
brackets; see the code implementing the heart shape
in figure 3.

In the light of that example it is not a burden
to specify all the directions at each node, although
a simpler syntax such as that used in METAFONT

would be desirable.

8 Conclusion

I wanted to illustrate the use of fractional number
TEX arithmetic applied to complex numbers. These
are formidable tools for graphics applications and
the necessary macros are actually within the range
of every TEXnician; there is no need to be a guru.

I hope the ideas I gave here may be exploited
better than I can do for extending the existing
graphic packages so as to get the best from the
pict2e package. This package in particular may
benefit from some simple extensions, or may incor-
porate the user macros for drawing circular arcs and
arbitrary curves, possibly even with the filling capa-
bilities that are being offered by other programs.

There might even be some expert programmer
who feels challenged to write a user graphical inter-
face that exploits the suggested extensions.

The pict2e package may still have minor
glitches,6 but even right now it opens many pos-
sibilities that were unthinkable when the standard
LATEX 2.09 picture environment provided the only
native graphics for LATEXers. They eventually had to
give up and move to other dedicated programs; these
are fine, but they do not necessarily produce com-
pletely compatible code and generally, with some
remarkable exceptions (such as pgf), require special
treatment in order to insert the same fonts used in
the main text.

I hope the features described here will be in-
cluded in future releases of the mentioned packages.
Until that time, I have made a package curve2e
available from CTAN [9] for anyone who wishes to
make use of them.

References

[1] Gäßlein H. and Niepraschk R., The pict2e

package, PDF document attached to the “new”
pict2e bundle; the bundle may be downloaded
from CTAN.

[2] Lamport L., LATEX: A Document Preparation
System. Addison Wesley Publishing Co., Read-
ing, Massachusetts, 1994.

[3] van Zandt T., PSTricks, CTAN. See also
http://www.tug.org/PSTricks for further doc-
umentation and examples.

[4] Beccari C., Floating point numbers and Meta-
font, MetaPost, TEX, and PostScript Type 1
fonts, TUGboat 23:3/4, 2002, pp. 261-269.

[5] Knuth D.E., Computers & Typesetting volume
A: The TEXbook, Addison Wesley Publishing
Co., Reading, Massachusetts, Millennium Edi-
tion.

[6] Maclaine I., curves and curvesls, CTAN.
[7] Tantau T., User’s Guide to the PGF Package,

included in the pgf bundle downloadable from
CTAN.

[8] Knuth D.E., Computers & Typesetting volume
C: The METAFONTbook, Addison Wesley Pub-
lishing Co., Reading, Massachusetts, Millennium
Edition.

[9] Beccari C., curve2e, CTAN.

6 With the version I have at hand, pict2e traces vectors
a little bit thicker than segments, although the line thickness
is maintained constant; with my redefinition of \vector this
glitch appears to be corrected.

212 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

