
TUGboat, Volume 26 (2005), No. 3 253

Hints & Tricks

Glisterings

Peter Wilson

Seagulls scream upon the shorelines’ wrack
And seals abound
Amid the setting sun’s glistering track
Across the Sound.

Puget Sound

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome. Speaking of which, David El-
liott was the first1 to point out that in the last col-
umn [6] I mistakenly attributed Matthew Arnold’s
poem Dover Beach to Tennyson. I have no idea why
I should have done that.

The three topics which are the subject of this
month’s column have all been suggested by readers.

They cannot scare me with their empty
spaces
Between stars — on stars where no human
race is.

Desert Places, Robert Frost

1 Empty arguments

In an earlier column [5] I talked about how to check
if two strings were the same, that is, that they con-
sisted of the same characters in the same order. A
recent query on the texhax mailing list [2] asked
about how to check if an argument was empty, which
on the face of it is just a check comparing a string
with an empty string. However the earlier approach
does not work in this case.

In LATEX there is often a need to check if an
optional argument is present or not. The typical
form for this is:
\newcommand{\amacro}[1][\@empty]{...

\ifx\@empty#1 ... % no optional

\else ... % optional not \@empty

The question at hand, though, is what is the proper
replacement for the pseudo code in the second line
below?
\newcommand{\amacro}[1]{...

\if(#1 is empty) ... % no argument

1 My wife was a close second.

\else ... % argument not empty

where ‘empty’ means zero or more spaces. Thus {}
and { } both qualify as ‘empty’. If you are a
LATEX user then the ifmtarg package on CTAN pro-
vides a solution. For TEX users here is the equivalent
code, noting that all the macro definitions before the
\begingroup are a regular part of LATEX.
\def\makeatletter{\catcode‘\@11\relax}

\def\makeatother{\catcode‘\@12\relax}

\makeatletter

\long\def\@gobble #1{}

\long\def\@firstofone#1{#1}

\long\def\@firstoftwo#1#2{#1}

\long\def\@secondoftwo#1#2{#2}

\begingroup

\catcode‘\Q=3

\long\gdef\@ifmtarg#1{%

\@xifmtarg#1QQ\@secondoftwo\@firstoftwo\@nil}

\long\gdef\@xifmtarg#1#2Q#3#4#5\@nil{#4}

\long\gdef\@ifnotmtarg#1{%

\@xifmtarg#1QQ\@firstofone\@gobble\@nil}

\endgroup

\makeatother

The useful parts of this are
\@ifmtarg{〈arg〉}{〈empty code〉}{〈not empty code〉}
\@ifnotmtarg{〈arg〉}{〈not empty code〉}

For example these could be used like
\def\isempty#1{\@ifmtarg{#1}{EMPTY}{FULL}}

\def\isnotempty#1{\@ifnotmtarg{#1}{FULL}}%

\def\mt{}

\isempty{} -> EMPTY

\isempty{ } -> EMPTY

\isempty{\mt} -> FULL

\isempty{ E } -> FULL

\isnotempty{} ->

\isnotempty{ } ->

\isnotempty{ \mt } -> FULL

The ifmtarg package originally had a much simpler
approach until Donald Arseneau pointed out the er-
ror of my ways. The perils of empty were discussed
in the late Michael Downes’ Around the Bend se-
ries; the one in question is available from CTAN in
info/aro-bend/answer.002

Faultily faultless, icily regular, splendidly
null,
Dead perfection, no more.

Maud, Alfred, Lord Tennyson

2 The usefulness of nothing

Another respondent on texhax [1] wanted an even-
page version of LATEX’s \cleardoublepage. It might
appear that a \cleardoublepage, which will get
you to the next odd-numbered page, followed by a



254 TUGboat, Volume 26 (2005), No. 3

\clearpage or \newpage will then get to an even-
numbered page, but this is not so as you will find
that you can’t move on from a page with nothing on
it (excepting headers and footers). What is required
is something that appears to be a nothing or a null
but which is not, so far as TEX is concerned. For the
purposes at hand an empty box will do. TEX has a
\null command, which is shorthand for an empty
horizontal box, but we can use something with wider
applicability which I will name \nowt.2

\newcommand*{\nowt}{\leavevmode\hbox{}}

%% \nowt <==> \mbox{}

\newcommand{\cleartoevenpage}[1][\@empty]{%

\clearpage

\ifodd\c@page

\nowt\ifx\@empty#1\else #1\fi

\newpage

\fi}

This clears the current page and if the next is not
an odd one then the task is finished. Otherwise we
put (the invisible) \nowt on the odd page we have
reached and move on to the next one, which will be
even. The optional argument can be used to put
some text or illustration on the skipped over odd
page. For instance:
\cleartoevenpage[%

\vfill\centering THIS PAGE LEFT BLANK\vfill

\thispagestyle{empty}]

where the phrase ‘THIS PAGE LEFT BLANK’ will be
centered on the odd page, and there will be neither
a header nor a footer.

If you have ever tried something like this:
\begin{description}

\item[Nothing] \\

Also known as \ldots

...

then you probably got an error message saying:
There’s no line to end here.
This can be resolved by putting \nowt just before
the \\ newline command.

We may be in some degree whatever
character we choose.

London Journal, James Boswell

3 Picking characters

A texhax reader [4] wanted a macro that would en-
sure that the first letter of a string would be in up-
percase. Various answers were supplied and I’m pro-
viding a couple of my own. All the solutions depend

2 ‘Nowt’ is a Northern English dialect word meaning
naught or nothing as in “Y’ can’t get owt fer nowt” — You
can’t get something for nothing.

on the fact that a TEX macro takes as a single ar-
gument either braced text or a single token, where
a token is either a command name (the name of a
macro) or a single character. Further, when defin-
ing a TEX macro the argument list is ended by a
token, which is usually the initial opening brace of
the definition.

Here’s my first, long winded solution.
\def\gettwo#1#2\nowt{%

\gdef\istchar{#1}\gdef\restchars{#2}}

\def\splitoff#1{\gettwo#1\nowt}

\def\Upfirst#1{\splitoff{#1}%

\MakeUppercase{\istchar}\restchars}

\gettwo expects two arguments with the end of the
second denoted by ‘\nowt’ (I have chosen this on
the assumption that it will not be part of either
argument; any other command name that would
not be in the arguments would serve as well). The
macro \splitoff takes a single (string) argument
and passes it on to \gettwo, which then takes the
first character in the string as its first expected ar-
gument, and the rest of the string as its second argu-
ment. It globally defines \istchar and \restchars
as the two arguments. \Upfirst takes a string ar-
gument, calls \splitoff, and hence \gettwo, and
then ensures that \istchar is typeset in uppercase,
followed by the rest of the characters.

This does not work if the argument to \Upfirst
is a macro that is defined as a string (for exam-
ple \def\arg{string}). This can be resolved by
using TEX’s \expandafter command to make sure
that \Upfirst’s argument is expanded3 before be-
ing used by \splitoff:
\def\Upfirst#1{%

\expandafter\splitoff\expandafter{#1}%

\MakeUppercase{\istchar}\restchar}

The second version, below, is not as versatile as
the first as the string is consumed internally instead
of being made available in the form of the \istchar
and \restchars macros.
\def\upperfirst#1#2\nowt{%

\MakeUppercase{#1}\MakeLowercase{#2}}

\def\Upfirst#1{\expandafter\upperfirst#1\nowt}

The basic idea is the same as the first proposal. It
has the added function of ensuring that only the first
character in the string is uppercase (it lowercases the
remainder). Neither solution can handle the case
where the first character is a ligature (e.g., \oe) or
accented (e.g., \^{a}), or other commands.

Uwe Lück [3] provided a more complete but
more complex solution.
\DeclareRobustCommand{\Upfirst}[1]{%

3 To one level only.



TUGboat, Volume 26 (2005), No. 3 255

\protected@edef\upfirst@rg{#1}%

\expandafter\upit\upfirst@rg\nowt}

Using \DeclareRobustCommand instead of \def or
\newcommand ensures that \Upfirst can be used in
a moving argument without having to be protected.
The \protected@edef is used to expand the argu-
ment while maintaining any \protects. In order
to handle an accented initial character the string
has to be split into three parts: the first element
(which may be a character or an accent command),
the second (which may be the argument to an ac-
cent command), and the third is the remainder of
the string. The string, by the way, must have at
least two characters.
\def\upit#1#2#3\nowt{%

\let\@uptokone#1%

\let\@xuptoktwo\@empty

\def\@yuptoktwo{#2}%

\expandafter\test@ccent\@ccentlist\@sentinel

\MakeUppercase{#1\@xuptoktwo}%

\MakeLowercase{\@yuptoktwo#3}}

The \upit macro takes three arguments, which are
then the three portions of the initial string, and
stores the first two in \@uptokone and \@yuptoktwo
respectively. The macro \test@accent determines
if the first token is an accent, changing \@xuptoktwo
and \@yuptoktwo if it is.
\def\@ccentlist{‘>\"\‘\’\b\c}% plus the rest

\def\test@ccent#1{%

\ifx#1\@sentinel\else

\ifx\@uptokone#1

\let\@xuptoktwo\@yuptoktwo

\let\@yuptoktwo\@empty

\fi

\expandafter\test@ccent

\fi}

\@ccentlist is a list of the accent commands; if a
string is likely to start with an analphabetic charac-
ter, such as an opening quote (‘), then these charac-
ters should also be included in the list.

The \test@ccent macro iterates through the
list of accent commands and characters supplied as
its argument and if there is a match with \@uptokone
then it swaps the \@xuptoktwo and \@yuptoktwo
values. The end result is that if the initial string
starts with an accent then \@xuptoktwo has the ac-
cented character and \@yuptoktwo is empty, other-
wise \@xuptoktwo is empty and \@yuptoktwo has
the second character in the string.

Following are some examples using the last def-
inition of \Upfirst.

low UP \& \Upfirst{low UP} ->
low UP & Low up
\def\stuff{rAnDoM 26 sTuFf}
\stuff{} \& \Upfirst{\stuff} ->
rAnDoM 26 sTuFf & Random 26 stuff
\oe{}rstead \& \Upfirst{\oe{}rstead} ->
œrstead & Œrstead
\c{c}edilla \& \Upfirst{\c{c}edilla} ->
çedilla & Çedilla
\emph{strong} \& \emph{\Upfirst{strong}} ->
strong & Strong
‘quote’ \& \Upfirst{‘quote’} ->
‘quote’ & ‘Quote’
>que? \& \Upfirst{>que?} ->
¿que? & ¿Que?

As always, if you are doing things with macros
that include @ in their name, either put the code
into a package (.sty) file or enclose the code in a
\makeatletter ... \makeatother pair.

Perhaps next time I’ll take a look at traversing
a string character by character and other kinds of
looping macros but on the other hand, perhaps not.

References

[1] Susan Dittmar. Variant of \cleardoublepage
starting on even page numbers. Post to texhax
mailing list, 18 August 2005.

[2] Adam Fenn. Empty arguments. Post to texhax
mailing list, 17 August 2005.

[3] Uwe Lück. Re: [texhax] read and process single
characters. Post to texhax mailing list, 24 June
2005.

[4] Torsten Wagner. Read and process single char-
acters. Post to texhax mailing list, 24 June 2005.

[5] Peter Wilson. Glisterings. TUGboat, 22(4):339–
341, December 2001.

[6] Peter Wilson. Glisterings. TUGboat, 25(2):201–
202, 2004.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries.press (at) earthlink.net


