
Real-Time Grid Fitting of Typographic Outlines

David Turner
david@freetype.org

Werner Lemberg
Kl. Beurhausstr. 1
D-44 137 Dortmund, Germany
wl@gnu.org

Abstract

This paper describes an auto-hinting algorithm to grid fit glyph outlines. Instead of generating
new hints for font files or font editors, the computations are done in real-time while rendering the
glyph, posing strong efficiency constraints.

A freely available implementation can be found in the FreeType font rendering library.

Résumé

Cet article décrit un algorithme d’auto-hinting pour des contours de glyphes définis sur une grille.
Au lieu de générer des nouveaux hints pour des fichiers de fonte ou des éditeurs de fonte, les calculs
sont effectués à la volée au moment de l’affichage du glyphe, ce qui pose des sérieuses contraintes
d’efficacité.

On trouvera une implémentation librement disponible de cet algorithme dans la bibliothèque
de sous-routines d’affichage de fonte FreeType.

Overview

The auto-hinting algorithm is roughly divided into two
distinct parts.

• A feature analysis phase to study each glyph outline
in order to detect interesting ‘features’ in them.

• A grid fitting phase to adjust the position of such fea-
tures to the device pixel grid, and to align the out-
line points to these.

In the following we directly reference files and
structures of the auto-hinter in the FreeType library,
version 2.1.4. This should help in understanding how
the algorithm is implemented.

Feature Analysis

To produce well-hinted glyphs it is not sufficient to im-
prove the shape of a glyph as much as possible. It is also
necessary to find font-wide parameters.

GlobalAnalysis The first step is to find global metrics. In
the following it is assumed that the font is Latin-based.
Font specific details regarding how to map an input char-
acter to an output glyph are omitted for simplicity.

• Compute the standard stem widths and heights of
the glyphs. This is done by loading the letter ‘o’ and
running the feature analysis on it to get the sizes of
its ‘stems’.

F. 1: The stem widths and heights of the glyph ‘o’.

• Compute the blue zones. Outlines of certain charac-
ters such as ‘Z’, ‘C’, etc., are loaded, comparing the
top-most and bottom-most coordinates to find the
small horizontal zones which envelop them.

All of this is done in the C source file ahglobals.c.
These global parameters are computed only once per
font, then stored for later use during the grid fitting pro-
cess.

Glyph Analysis An outline is the ordered set of all points
defining a glyph. It consists of one or more contours. A
contour is a closed curve; points can be control points or

430 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Real-Time Grid Fitting of Typographic Outlines

F. 2: Two blue zones relevant to the glyph ‘a’.
Vertical point coordinates of all glyphs within these
zones are aligned.

on the contour. For example, the outline of glyph ‘a’ in
figure 2 consists of two contours.

Each outline is decomposed into an AH_Point ar-
ray.

struct AH_Point

{

AH_Flags flags;

FT_Pos ox, oy;

FT_Pos fx, fy;

FT_Pos x, y;

FT_Pos u, v;

AH_Direction in_dir;

AH_Direction out_dir;

AH_Point next;

AH_Point prev;

}

The field flags specifies the type of the current point: a
point on the contour, a conic control point for a quadratic
Bézier curve as used in TrueType fonts, or a cubic con-
trol point for third-order Bézier curves as used in Type 1
fonts. ox and oy are the original scaled coordinates, fx
and fy the coordinates in font units, and x and y hold the
hinted coordinates (which we are really interested in).

in_dir and out_dir give the direction of the vec-
tors from the previous and to the next point in the current
contour. Finally, it is easy to guess now that the fields
next and prev hold pointers to the previous and next
contour point.

Both the global and the feature analysis are per-
formed twice: first vertically (modifying y coordinates
and horizontal stems), then horizontally (modifying x co-
ordinates and vertical stems). The results are indepen-
dent: It is easy to disable hinting in one dimension with-
out impacting the results of the other dimension.

Note that the AH_Point structure holds two fields,
u and v, which are used to store coordinates whose mean-
ing changes depending on the context. See the function

p1

p12

p21

p2

F. 3: A cubic Bézier curve with two control
points. The ‘out’ direction of p1 is AH_DIR_LEFT; all
other directions are of type AH_DIR_NONE.

ah_set_uv in file ahglyph.c for details. The following
‘modes’ are supported:

AH_UV_FXY: (u, v) contains the original (x, y) point co-
ordinates expressed in font units.

AH_UV_FYX: Same as above, except that ‘rotated’ coor-
dinates (y, x) are used instead.

AH_UV_OXY: The pair (u, v) contains linearly scaled
(ox, oy) point coordinates in 26.6 fixed-point for-
mat—not modified by grid fitting. ‘26.6’ means
that of a 32-bit integer, 26 bits are used for the inte-
ger part and 6 bits for the fractional part, providing
a granularity of 1

64
units.

AH_UV_OYX: Same as above, with ‘rotated’ (oy, ox) lin-
ear coordinates.

AH_UV_OX: A special case used during grid fitting. u cor-
responds to hinted coordinates x, and v to linear
ones ox. This is used to perform light interpolation
in the horizontal dimension.

AH_UV_OY: Same as above, but uses y and oy instead.
AH_UV_XY: (u, v) contains the scaled and hinted point

coordinates (x, y). This is currently unused.
AH_UV_YX: Same as above, with ‘rotated’ (y, x) coordi-

nates (also currently unused).

Directions are identified by with the following con-
stants.

#define AH_DIR_NONE 4

#define AH_DIR_RIGHT 1

#define AH_DIR_LEFT -1

#define AH_DIR_UP 2

#define AH_DIR_DOWN -2

These values are carefully chosen so that dir1 + dir2 =
0 only if dir1 and dir2 correspond to opposite direc-
tions. This is useful in speeding up certain compar-
isons. In any case, these values should not be changed,
since other sub-algorithms depend on them (for ex-
ample, ah_outline_compute_segments assumes that
AH_DIR_RIGHT is positive).

More details on the glyph analysis, like weak point
flags, and major and minor directions will be explained
later.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 431

David Turner and Werner Lemberg

A

BC

D E

FG

H

F. 4: A serif. Contour and control points are
represented by squares and circles, respectively.
The bottom ‘line’ DE is approximately aligned
along the horizontal axis, thus it forms a segment of
7 points. Two other horizontal segments are BC and
FG, while AB, CD, EF , and GH form vertical
segments.

F. 5: The three segments marked with thick lines
form an edge.

Segments ah_outline_compute_segments is the func-
tion used to find segments in an outline. A segment is a se-
ries of consecutive points that are approximately aligned
along a coordinate axis. The allowed maximum devia-
tion from a straight line is arctan 1

12
≈ 4.7◦ (this is a

heuristic value).
A segment must have at least two points, except in

the case of ‘fake’ segments that are generated to hint met-
rics appropriately, and which consist of a single point.

Each segment has a coordinate in the dimension’s
‘main’ direction (field pos in the AH_Segment structure)
and coordinates in the ‘other’ dimension which specifies
its extrema (fields min_coord and max_coord).

As soon as segments are defined, the auto-hinter
groups them into edges (figure 5). An edge corresponds
to a single position on the main dimension that collects
one or more segments (allowing for a small threshold).

The auto-hinter first tries to grid fit edges, then to
align segments on the edges unless it detects that they
form a serif (see figure 4).

Segments need to be ‘linked’ to other ones in order
to detect stems. A stem is made of two segments that
face each other in opposite directions and that are suf-
ficiently close to each other. Using vocabulary from the
TrueType specification, stem segments form a black dis-

F. 6: The outline orientation of a glyph in a
Type 1 font. TrueType fonts use the opposite
direction.

tance. For vertical stems we have the following two cases
(horizontal stems use the y axis instead for hinting):

• In TrueType fonts, the leftmost segment points up-
wards, and the rightmost points downwards.

• In Type 1 fonts, the reverse convention is used, i.e.,
the leftmost segment points downwards, and the
rightmost points upwards.

Unfortunately, some fonts do not respect the fill
convention of their own format, and others even contain
a mixture of both conventions. To know precisely how to
form black distances we thus need to analyze the glyphs,
via the auxiliary function ah_get_orientation. It
tries to guess the correct convention using the orientation
of the points that make the glyph outline’s bounding box.

This function is called from another function, ah_
outline_load, which also sets two fields in the AH_

Outline structure, namely vert_major_dir and horz_
major_dir. They correspond to the direction of the
leftmost or bottommost stem segments along the vertical
and horizontal axis, respectively.

The algorithm to link segments is ‘greedy’ (that is,
it will link as many segments as possible) and tries to find
the ‘closest’ segment in the opposite direction for each
candidate. Here, ‘closest’ means that the segments are
sufficiently aligned in the ‘other’ dimension, and close in
the ‘main’ one. The current code to determine this is as
follows.

FT_Pos min = seg1->min_coord;

FT_Pos max = seg1->max_coord;

FT_Pos len, dist, score;

if (min < seg2->min_coord)

min = seg2->min_coord;

if (max > seg2->max_coord)

max = seg2->max_coord;

len = max - min;

if (len >= 8)

{

dist = seg2->pos - seg1->pos;

432 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Real-Time Grid Fitting of Typographic Outlines

if (dist < 0)

dist = -dist;

score = dist + 3000 / len;

if (score < best_score)

{

best_score = score;

best_segment = seg2;

}

}

Each segment has at most one ‘best’ candidate to
form a black distance, or no candidate at all. Notice
that two distinct segments can have the same candidate,
which frequently means a serif, as in figure 4. The best
candidate for both AB and CD is GH, while the best
candidate for GH is AB. Similarly, the best candidate
for EF and GH is AB, while the best candidate for AB

is GH.
A stem is recognized by the following condition:

segment1best
= segment2 ∧

segment2best
= segment1

On the other hand, a serif has

segment1best = segment2 ∧

segment2best 6= segment1
where segment1 corresponds to the serif segment (CD

and EF in figure 4).
Stem segments store their best candidate in the

link field of the structure AH_Segment, while serif seg-
ments use the field serif (their link field is set to zero).

Segments are also round or flat, depending on the se-
ries of points that define them. A segment is round if the
next and previous point of an extremum (which can be ei-
ther a single point or sequence of points) are both (conic
or cubic) control points. Otherwise, a segment with an
extremum is flat. In figure 4, the segment DE is flat be-
cause the previous point C and the next point F are both
on the contour (and thus they aren’t control points). In
figures 1 and 2, the top segments are round.

Round and flat segments are collected for selected
glyphs, then the average is taken to define blue zones and
overshoot values (see figure 7).

Edges As mentioned earlier, edges are used to col-
lect segments along coordinates in the ‘main’ dimension.
There are three types of edges.

• Free edges which are not linked to other ones.
• Stem edges which contain at least one stem segment.
• Serif edges, which only contain one or more serif
segments.

Edges can be flat (if they contain at least one flat seg-
ment) or round (if they contain only round segments).

Finally, edges can be linked to blue zones, depend-
ing on their position and the orientation of the segments
they contain.

F. 7: The difference between the height
of a glyph with a flat top segment and a glyph
with a round top segment is called top overshoot.
Analogously, the difference in depth is called bottom
overshoot. Glyphs from the string ‘xzroesc’ are used
compute the blue zone and overshoot value of the top
and bottom of lowercase letters.

Grid Fitting

The collected data so far is now used to move the glyph’s
outline points to positions which improve the overall
shape for a specific output device resolution. This com-
plex process can be divided into the following steps.

Globals Each time the x or y scale changes, the globals
are rescaled and fitted globally. This allows us to deac-
tivate certain blue zones when they become too small or
too big.

Edge Grid Fitting First of all, the edges are fitted to the
pixel grid, in the following order.

1. In the vertical dimension, all edges linked to blue
zones are aligned to the zone’s position (we call
them blue edges). This assures consistent glyph
heights.

2. Stem edges are fitted to the pixel grid. The stem
width and position are computed more or less inde-
pendently.

If a stem edge is linked to a blue edge, its position
is directly computed. Otherwise, subtle alignments
may occur, beyond our scope here.

3. Finally, serif edges are aligned.

The function ah_hinter_hint_edges_3 in the
file ahhint.c should be consulted for more details.

Computing the position and size of stems is very
sensitive to tuning, containing a lot of heuristic constants.
Most of the patches to the auto-hinter were refinements
to the involved routines.

Segment Grid Fitting After aligning all edges the corre-
sponding segments are fitted to the same position. This
forces all points on these segments to adopt the edge’s
position. The auxiliary function ah_hinter_align_

edge_points has more details.
Each point has a flag AH_FLAG_DONE which is set

when it is aligned to a specific location. This is used for

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 433

David Turner and Werner Lemberg

F. 8: An angle point (left) and an inflection point
(right).

the two distinct interpolation algorithms described be-
low.

Strong Points Experience has shown that points which
are not part of an edge need to be interpolated linearly
between their two closest edges, even if these are not
part of the contour of those particular points. Typical
candidates for this are

• angle points (i.e., points where the ‘in’ and ‘out’ di-
rection differ greatly);

• inflection points (i.e., where the ‘in’ and ‘out’ angles
are the same, but the curvature changes sign).

ah_hinter_align_strong_points is the func-
tion which takes care of such situations; it is equivalent
to the TrueType ‘IP’ hinting instruction.

Weak Points Other points in the outline must be in-
terpolated using the coordinates of their previous and
next unfitted contour neighbours. These are called weak
points and are touched by the function ah_hinter_

align_weak_points, equivalent to theTrueType ‘IUP’
hinting instruction. Typical candidates are control points
and points on the contour without a major direction.

The major effect is to reduce possible distortion
caused by alignment of edges and strong points, thus weak
points are processed after strong points.

Hinting Metrics To properly hint the advance widths of
glyphs, ah_outline_compute_segments creates two
‘fake’ segments corresponding to the position of the left-
most and rightmost points in the outline (for the horizon-
tal position only).

These segments are grid fitted, and the resulting
distance between them is used to correct the scaled ad-
vance width.

See file ahhint.c for details; the code looks like
this:

FT_Pos old_advance, old_rsb, old_lsb,

new_lsb;

/* leftmost edge */

AH_Edge edge1 =

outline->vert_edges;

/* rightmost edge */

AH_Edge edge2 =

edge1 + outline->num_vedges - 1;

old_advance = hinter->pp2.x;

old_rsb = old_advance - edge2->opos;

old_lsb = edge1->opos;

new_lsb = edge1->pos;

/* round result to the

nearest integer pixel */

hinter->pp1.x =

((new_lsb - old_lsb) + 32) & -64;

hinter->pp2.x =

((edge2->pos + old_rsb) + 32) & -64;

where rsb and lsb represent the right and left side bear-
ing, respectively. pp1 and pp2 are the auxiliary points
which control the advance width. All computing is done
with 26.6 fixed-point numbers.

Conclusion

The general design of FreeType’s auto-hinter has been
proven to be very stable; as mentioned above, only small
changes have been applied, most of them to refine the
computations of the position and width of stems, not the
basic segment linking architecture.

In the future, we will implement additional con-
straints to compute more sophisticated global parameters.
Here is a list of improvements which we will likely im-
plement in the near future.

• Use more glyphs than the letter ‘o’ to find default
stem widths and heights. This is a script dependent
feature.

• Assure that the advance widths of normal digits
have the same value.

• Extend blue zones to cover non-Latin languages such
as Arabic. This is, select character groups for this
feature dependent on the script.

• Autohinting ofCJK characters needs additional anal-
ysis steps to assure constant whitespace between
multiple parallel stems. Currently, only stems in
‘m’-like glyphs are handled this way.

References

[1] Adobe Systems, Inc. Adobe Type 1 Font Format.
Addison-Wesley, 3rd edition, 1993.

[2] Microsoft Corporation. OpenType specification
version 1.4. Available from http://www.

microsoft.com/typography, 2002.

[3] David Turner, Werner Lemberg, and Robert
Wilhelm. The freetype 2 font rendering library.
Available from http://www.freetype.org,
2003.

434 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

