
TUGboat, Volume 22 (2001), No. 4 319

Three dimensional plots with pst-3dplot

Herbert Voß

Abstract

The well-known pstricks package [7] offers excellent

macros for creating more or less complex graphics which

could be inserted into the document without having it

exported to EPS or PDF. pstricks itself is the base

for several other additional packages, which are typically

named pst-xxxx, such as pst-3dplot.

There exist several packages for plotting three di-

mensional graphical objects. pst-3dplot handles three

dimensional objects, mathematical functions, and data

files similarly to pst-plot in two dimensions.

1 Introduction

The pstricks packages are available as usual from

any possible CTAN server. The base parts are lo-

cated at CTAN:graphics/pstricks/generic/ and

most of the additional packages at CTAN:graphics/

pstricks/contrib/ [7].

All \psgrid commands are only for a better view

of the examples, they are not really necessary for the 3D-

plots. They are always used with the globally defined

options

\psset{subgriddiv=0,griddots=5,%

gridlabels=7pt}

2 The parallel projection

Figure 1 shows a point P(x,y,z) in a three dimensional

cartesian coordinate system (x,y,z) with a transformation

into P∗(x∗,y∗), the point in the two dimensional system

(xE ,yE).

α: horizontal rotating angle

β : vertical rotating angle

z
✻

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✙ y

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥x

✲

xE

yE

α

α❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟✟

✉
P(x,y,z)
P∗(x∗,y∗)

x∗

y · sinα

x · cosα

α

y · cosαx · sinα

✻

y · sinα − x · cosα

y · cosα + x · sinα

Figure 1: Lengths in a three dimensional system

The angle α is the horizontal rotation with positive

values for anti-clockwise rotations of the 3D coordinates.

The angle β is the vertical rotation (orthogonal to the

paper plane). In figure 2 we have α = β = 0. The y-axis

comes perpendicularly out of the paper plane. Figure 3

shows the same for another angle with a view from the

side, where the x-axis shows into the paper plane and the

angle β is greater than 0 degrees.

z
✻

✛ x ✉♠y

Figure 2: Coordinate system for α = β = 0 (y-axis

comes out of the paper plane)

The two dimensional x coordinate x∗ is the differ-

ence of the two horizontal lengths y · sinα and x · cosα
(figure 1):

x∗ = −x · cosα + y · sinα (1)

The z-coordinate is unimportant, because the rota-

tion comes out of the paper plane, so we have only a

320 TUGboat, Volume 22 (2001), No. 4

different y∗ value for the two dimensional coordinate but

no other x∗ value. The β angle is well seen in figure 3

which derives from figure 2, if the coordinate system is

rotated by 90deg horizontally to the left and vertically

by β also to the left.

z

❆
❆

❆
❆

❆
❆❑

✟✟✟✟✟✟✙
y

♠��❅❅
x

β

β

z∗1 = z · cosβ

y · cosα + x · sinα
−(y · cosα + x · sinα) · sinβ

Figure 3: Coordinate system for α = 0 and β > 0

(x-axis goes into the paper plane)

The value of the perpendicular projected z coordi-

nate is z∗ = z · cosβ . With figure 3 we see that the point

P(x,y,z) runs on an elliptical curve when β is constant

and α changes continously. The vertical alteration of P

is the difference of the two “perpendicular” lines y ·cosα
and x · sinα . These lines are rotated by the angle β , so

we have to multiply them with sinβ to get the vertical

part. We get the following transformation equations:

xE = −xcosα + ysinα
yE = −(xsinα + ycosα) · sinβ + zcosβ

(2)

or the same written in matrix form:

(

xE

yE

)

=

(

−cosα sinα 0

−sinα sinβ −cosα sinβ cosβ

)

·

x

y

z

 (3)

3 Coordinate axes

The syntax for drawing the coordinate axes is

\pstThreeDCoor[<options>]

Without any options, we get the default view seen

in figure 4 with the predefined values:

xMin=-1,xMax=4,

yMin=-1,yMax=4,

zMin=-1,zMax=4,

Alpha=45,Beta=30

There are no restrictions for the angles and the max

and min values for the axes; all pstricks options are

possible as well. The following example (5) changes the

color and the width of the axes. The angles Alpha and

Beta are important to all macros and should always be

set with psset to make them global to all other macros.

Otherwise they are only local inside the macro to which

they are passed.

1 \begin{pspicture}(-2,-1)(1,2.25)

2 \psgrid

x y

z

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

Figure 4: The default 3D coordinate system

-2 -1 0 1

-1

0

1

2

x

y

z

Figure 5: Axes with a different view and color

3 \psset{ Alpha=-60,Beta=30}

4 \pstThreeDCoor[%

5 linewidth=1.5pt,linecolor=blue,%

6 xMin=-1,xMax=2,yMin=-1,yMax=2,%

7 zMin=-1,zMax=2]

8 \end{pspicture}

4 put command

The syntax is similar to the \rput macro from the

package pst-plot:

\pstThreeDPut[<options>]%

(x,y,z){<any material>}

-2 -1 0 1

-1

0

1

2

x

y

z

TUGboat
�

Figure 6: Example for the \pstThreeDPut macro

1 \begin{pspicture}(-2,-1)(1,2.25)

TUGboat, Volume 22 (2001), No. 4 321

x y

z

�

✁-1

0

1

2

Figure 7: 3D dots with marked coordinates

2 \psgrid

3 \psset{ Alpha=-60,Beta=-30}

4 \pstThreeDCoor[%

5 linecolor=blue,%

6 xMin=-1,xMax=2,

7 yMin=-1,yMax=2,%

8 zMin=-1,zMax=2]

9 \pstThreeDPut(1,0.5,2){\red\large TUGboat}

10 \pstThreeDDot[drawCoor=true](1,0.5,2)

11 \end{pspicture}

Internally, the \pstThreeDPut macro defines a

two dimensional node temp@pstNode and then uses the

default \rput macro from pstricks. Because of the

perspective from which the coordinate system is viewed,

the 3D dot will not be seen as the center of the printed

material when this is also a three dimensional one. This

does not happen for figure 6, because the text is only a

two dimensional object.

5 Nodes

The syntax is

\pstThreeDNode(x,y,z){<node name>}

This node is internally transformed into a two di-

mensional node, so it cannot be used as a replacement

for the parameters (x,y,z) of the 3D dot which is

possible with the macros from pst-plot. If A and B

are two nodes, then \psline{A}{B} draws a line from

A to B. Doing the same with pst-3dplot is not yet

implemented. On the other hand, it is not a problem

to define two 3D nodes C and D and then draw a two

dimensional line from C to D.

6 Dots

The syntax for a dot is

\pstThreeDDot[<options>](x,y,z)

Dots can be drawn with dashed lines for the three

coordinates, when the option drawCoor is set to true

(figure 7).

1 \begin{pspicture}(-2,-2)(2,2)

2 \psset{xMin=-2,xMax=2,yMin=-2,%

3 yMax=2,zMin=-1,zMax=2,Beta=25}

4 \pstThreeDCoor

5 \psset{dotstyle=*,dotscale=2,%

6 linecolor=red,%

7 drawCoor=true}

8 \pstThreeDDot(-1,1,1)

9 \pstThreeDDot(1.5,-1,-1)

10 \psgrid

11 \end{pspicture}

In the figure 8 the coordinates of the dots are

(a,a,a) where a is −3,−2,−1,0,1,2,3.

-4 -3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

x

y

z

�✁

✂✄

☎✆

✝✞

✟✠

✡☛

☞✌

Figure 8: Another demonstration for drawing dots

1 \begin{pspicture}(-4,-2)(3,3.25)

2 \psgrid

3 \psset{xMin=-3.5,xMax=3.5,yMin=-7,yMax=6,zMin

=-2,zMax=2.5,%

4 Alpha=20,Beta=15}

5 \pstThreeDCoor

6 \psset{dotstyle=square,dotsize=5pt,%

7 linecolor=blue,drawCoor=true}

8 \multido{\n=-3+1}{7}{%

9 \pstThreeDDot(\n,\n,\n)%

10 }

11 \end{pspicture}

7 Lines

The syntax for a three dimensional line is

\pstThreeDLine[<options>]%

(x1,y1,z1)(x2,y2,z2)

All options for lines from pst-plot are possible,

there are no special ones for a 3D line. The only differ-

ence in drawing a line or a vector is that the first one has

an arrow of type - and the second type -> (figure 9).

1 \psset{xMin=-2,xMax=2,yMin=-2,yMax=2,%

2 zMin=-2,zMax=2}

3 \begin{pspicture}(-2,-2.25)(2,2.25)

4 \pstThreeDCoor

5 \psset{dotstyle=*,linecolor=red,%

6 drawCoor=true}

7 \pstThreeDDot(-1,1,0.5)

8 \pstThreeDDot(1.5,-1,-1)

9 \pstThreeDLine[%

10 linewidth=3pt,%

11 linecolor=blue,

12 arrows=->%

13](-1,1,0.5)(1.5,-1,-1)

322 TUGboat, Volume 22 (2001), No. 4

x y

z

�

✁

-2 -1 0 1 2

-2

-1

0

1

2

Figure 9: Drawing a 3D vector

14 \psgrid

15 \end{pspicture}

8 Triangle

A triangle is given by its three points:

\pstThreeDTriangle[<options>](P1)(P2)(P3)

When the option fillstyle is set to value other

than none, the triangle is filled with the active color or

with the one which is set with the option fillcolor

(figure 10).

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

x y

z

�

✁

✂

Figure 10: Triangles with fill option

1 \begin{pspicture}(-3,-4)(4,3.25)

2 \psgrid

3 \pstThreeDCoor[xMin=-4,xMax=5,yMin=-3,zMin=-4,

zMax=3]

4 \pstThreeDTriangle[%

5 fillcolor=yellow,fillstyle=solid,%

6 linecolor=blue,%

7 linewidth=1.5pt](5,1,2)(3,4,-1)(-1,-2,2)

8 \pstThreeDTriangle[%

9 drawCoor=true,linecolor=black,%

10 linewidth=2pt](3,1,-2)(1,4,-1)(-3,2,0)

11 \end{pspicture}

For triangles especially, the option linejoin is

important. Its value is passed to the PostScript command

setlinejoin. The default value is 1, which gives

rounded edges (figure 11).

0 1 2 3

0

1

2

0 1 2 3 4

0

1

2

0 1 2 3

0

1

2

Figure 11: Meaning of the PostScript command

setlinejoin=0|1|2

9 Squares

The syntax for a 3D square is:

\pstThreeDSquare%

[<options>]

(<vector o>)%

(<vector u>)(<vector v>)

-1 0 1 2 3

-1

0

1

2

3

4

x

y

z

~o

~u~v

Figure 12: Drawing a square with three vectors

Squares are nothing more than a polygon with the

starting point Po given with the origin vector ~o and the

two direction vectors ~u and ~v, which build the sides of

the square as shown in figure 12. With the fillstyle

option the square can be filled with the in pst-plot

defined styles, for example solid like in figure 13. All

the options of pstricks are allowed for this macro.

1 \begin{pspicture}(-3,-2)(4,4)

2 \psgrid

3 \pstThreeDCoor[xMin=-3,xMax=3,yMin=-1,yMax=4,

zMin=-1,zMax=4]

4 \pstThreeDSquare[%

5 fillcolor=blue,%

6 fillstyle=solid,%

7 drawCoor=true,dotstyle=*](-2,2,3)(4,0,0)

(0,1,0)

8 \end{pspicture}

TUGboat, Volume 22 (2001), No. 4 323

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

z

�

✁

✂

✄

Figure 13: Drawing a filled square with the vectors

from figure 12

-2 -1 0 1 2

-1

0

1

2

3

4

x

y

z

�

~o

~u

~v
~w

Figure 14: Drawing a box with three vectors

10 Boxes

A box is a special case of a square and has the syntax

\pstThreeDBox%

[<options>]

(<vector o>%

(<vector u>)(<vector v>)(<vector w>)

All options from pstricks are possible here. The

other parameters are the origin vector ~o and the three

direction vectors ~u, ~v and ~w. The figure 14 shows a

box together with these four vectors. In this example the

three direction vectors are perpendicular to each other.

1 \begin{pspicture}(-2,-1)(3,4.25)

2 \psgrid

3 \setkeys{psset}{Alpha=30,Beta=30}

4 \pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,

zMin=-1,zMax=4]

5 \pstThreeDPut(-1,1,2){\pstThreeDBox(0,0,2)

(2,0,0)(0,1,0)}

6 \pstThreeDDot[drawCoor=true](-1,1,2)

7 \setkeys{psset}{arrows=->,arrowsize=0.2}

8 \uput[0](0.5,0.5){\vec{o}}

9 \uput[0](0.9,2.25){\vec{u}}

10 \uput[90](0.5,1.25){\vec{v}}

11 \uput[45](2,1.){\vec{w}}

12 \pstThreeDLine[linecolor=green](0,0,0)(-1,1,2)

13 \pstThreeDLine[linecolor=blue](-1,1,2)(-1,1,4)

14 \pstThreeDLine[linecolor=blue](-1,1,2)(1,1,2)

15 \pstThreeDLine[linecolor=blue](-1,1,2)(-1,2,2)

16 \end{pspicture}

11 Ellipses and circles

The equation for a two dimensional ellipse (figure 15) is:

e :
(x− xM)2

a2
+

(y− yM)2

b2
= 1 (4)

x

a a

a

b

M F2

F1 ee

r1 r2

Figure 15: Definition of an ellipse

(xm;ym) is the center, a and b the eccentricity. For

a = b = 1 in equation 4 we get the “one” for the circle,

which is nothing more than a special case of an ellipse.

The equation written in parametric form is

x = a · cosα

y = b · sinα
(5)

or the same with vectors to get an ellipse in a 3D system:

e :~x =~c+ cosα ·~u+ sinα ·~v

0 ≤ α ≤ 360 (6)

where~c is the center,~u and~v the directions vectors which

must be perpendicular to each other.

11.1 Options

In addition to all possible options from the package

pst-plot, we have two special ones for the drawing of

an arc (with predefined values for a full ellipse or circle):

beginAngle=0

endAngle=360

Using the parametricplotThreeD macro (de-

scribed in section 13.2, ellipses and circles are drawn

with a default setting of 50 points for the ellipse or circle.

11.2 Ellipse

In a 3D coordinate system, it is very difficult to see the

difference between an ellipse and a circle. Depending on

the point of view an ellipse may be seen as a circle and

vice versa (figure 16). The syntax of the ellipse macro

is:

324 TUGboat, Volume 22 (2001), No. 4

-2 -1 0 1 2

-2

-1

0

1

2

x y

z

�

Figure 16: Drawing ellipses

\pstThreeDEllipse%

[<options>]%

(cx,cy,cz)%

(ux,uy,uz)(vx,vy,vz)

where c is for center and u and v for the two direction

vectors (eq. 6).

1 \psset{xMin=-1,xMax=2,yMin=-1,yMax=2,zMin=-1,zMax

=2}

2 \begin{pspicture}(-2,-2)(2,2)

3 \psgrid

4 \pstThreeDCoor

5 \pstThreeDDot[%

6 linecolor=red,%

7 drawCoor=true](1,0.5,0.5)% the center

8 \pstThreeDEllipse[%

9 linecolor=blue, linewidth=1.5pt]%

10 (1,0.5,0.5)(-0.5,1,0.5)(1,-0.5,-1)

11 % settings for an arc

12 \pstThreeDEllipse[%

13 beginAngle=0,endAngle=270,%

14 linecolor=green]%

15 (1,0.5,0.5)(-0.5,0.5,0.5)(0.5,0.5,-1)

16 \end{pspicture}

11.3 Circle

The circle is a special case of an ellipse (eq. 6) with the

vectors ~u and ~v which are perpendicular to each other:

|~u| = |~v| = r. with ~u ·~v =~0
The macro \pstThreeDCircle is nothing more

than a synonym for \pstThreeDEllipse. In the fol-

lowing example the circle is drawn with only 20 plot-

points and the option showpoints=true.

1 \begin{pspicture}(-2,-1)(2,2)

2 \psgrid

3 \pstThreeDCoor[%

4 xMin=-1,xMax=2,yMin=-1,yMax=2,zMin=-1,zMax

=2,%

5 linecolor=black]

6 \pstThreeDCircle[%

7 linecolor=red,linewidth=2pt,%

8 plotpoints=20,showpoints=true]%

9 (1.6,+0.6,1.7)(0.8,0.4,0.8)(0.8,-0.8,-0.4)

10 \pstThreeDDot[drawCoor=true,linecolor=blue

](1.6,+0.6,1.7)

11 \end{pspicture}

-2 -1 0 1 2

-1

0

1

2

x y

z

������ �
� � � � � � � � �����

✁✂

✂✄✄ ☎

☎

Figure 17: Drawing a circle with the option

showpoints

12 Spheres

Internally, pst-3dplot uses the macro from the pst-vue3d

package1 to draw spheres, and places it with the \rput

macro at the right place. The syntax for this macro is

\pstThreeDSphere[<options>](x,y,z){Radius}

(x,y,z) is the center of the sphere. For all the

other possible options or the possibility to draw demi-

spheres, refer to the documentation.[3]

-4 -3 -2 -1 0 1 2

-2

-1

0

1

2

3

4

x

y

z

×

Figure 18: Drawing a sphere with package

pst-vue3d

1 \begin{pspicture}(-4,-2)(2,4)

2 \psgrid

3 \pstThreeDCoor[xMin=-3,xMax=4,yMin=-1,yMax=2,

zMin=-1,zMax=4]

4 \pstThreeDSphere[linecolor=blue](1,-1,2){2}

5 \pstThreeDDot[dotstyle=x,linecolor=red,drawCoor

=true](1,-1,2)

6 \end{pspicture}

1 CTAN:graphics/pstricks/contrib/pst-vue3d, and from Manuel

Luque’s homepage[3]. The documentation is in French, but it is mostly

self-explanatory.

TUGboat, Volume 22 (2001), No. 4 325

13 Mathematical functions

There exist two macros for plotting mathematical func-

tions f (x,y), which work similarly to the one from

pst-plot.

13.1 Function f (x,y)

The macro for plotting functions does not have the same

syntax as the one from pst-plot[5], but it is used in the

same way:

\psplotThreeD[<options>]%

(xMin,xMax)(yMin,yMax)%

{<the function>}

The function has to be written in PostScript code

and the only valid variable names are x and y. For

example, {x dup mul y dup mul add sqrt} rep-

resents the math expression
√

x2 + y2. The macro

\psplotThreeD has the same plotstyle options as \psplot,

except the plotpoints-option which is split into one

for x and one for y (table 1).

Table 1: Options for the plot macros

Option name value

plotstyle dots

line

polygon

curve

ecurve

ccurve

none (default)

showpoints default is false

xPlotpoints default is 25

yPlotpoints default is 25

hiddenLine default is false

Equation 7 is plotted with the following parameters

and seen in figure 19.

z = 10
(

x3 + xy4 −
x

5

)

e−(x2+y2)+

+ e−((x−1.225)2+y2) (7)

1 \begin{pspicture}(-6,-4)(6,5)

2 \psgrid

3 \psset{Alpha=45,Beta=15}

4 \psplotThreeD[%

5 plotstyle=line,%

6 yPlotpoints=40,xPlotpoints=30,%

7 linewidth=1pt](-4,4)(-4,4){%

8 x 3 exp x y 4 exp mul add x 5 div sub

10 mul

9 2.729 x dup mul y dup mul add neg exp

mul

10 2.729 x 1.225 sub dup mul y dup mul add

neg exp add}

11 \pstThreeDCoor[xMin=-1,xMax=5,yMin=-1,yMax=5,

zMin=-1,zMax=5]

12 \end{pspicture}

The function is calculated within two loops:

for (float y=yMin; y<yMax; y+=dy)

for (float x=xMin; x<xMax; x+=dx)

z=f(x,y);

Because of the inner loop it is only possible to

get a closed curve in x direction. Therefore fewer

yPlotpoints are not a real problem, but too few

xPlotpoints results in a bad drawing of the mathemat-

ical function, especially for the plotstyle option line.

Drawing three dimensional mathematical functions

with curves which are transparent makes it difficult to see

if a point is before or behind another one. \psplotThreeD

has an option hiddenLine for a primitive hidden line

mode, which only works well when the y-interval is

defined such that y2 > y1. Then, every new curve is

plotted over the previous one and filled with the color

white. Figure 20 is the same as figure 19, only with the

option hiddenLine=true.

13.2 Parametric plots

Parametric plots are possible for drawing curves or areas.

The syntax for this plot macro is:

\parametricplotThreeD[<options>]%

(t1,t2)(u1,u2)%

{<three parametric functions x y z}

The only possible variables are t and u with t1,t2

and u1,u2 as the range for the parameters. The order

for the functions is not important and u may be optional

when having only a three dimensional curve and not an

area.

x = f (t,u)
y = f (t,u)
z = f (t,u)

(8)

To draw a spiral we have the parametric functions:

x = r cos t

y = r sin t

z = t/600

(9)

In the example, the t value is divided by 600 for the

z coordinate, because we have the values for t in degrees,

here with a range of 0◦ . . .2160◦. Drawing a curve in a

three dimensional coordinate system does only require

one parameter, which is by default t. In this case we do

not need all parameters, so that we can write

\parametricplotThreeD[<options>]%

(t1,t2)%

{<three parametric functions x y z}

which is the same as (0,0) for the parameter u. Figure

21 shows a three dimensional curve.

1 \begin{pspicture}(-3,-2)(3,5)

2 \psgrid

3 \parametricplotThreeD[%

4 xPlotpoints=200,%

5 linecolor=blue,%

326 TUGboat, Volume 22 (2001), No. 4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

x y

z

Figure 19: Plot of equation 7

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

5

x y

z

Figure 20: Plot of equation 7 with the hiddenLine=true option

TUGboat, Volume 22 (2001), No. 4 327

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

5

x y

z

Figure 21: Drawing a 3D curve

6 linewidth=1.5pt,

7 plotstyle=curve](0,2160){%

8 2.5 t cos mul

9 2.5 t sin mul

10 t 600 div%

11 }

12 \pstThreeDCoor[xMin=-1,xMax=4,yMin=-1,yMax=4,

zMin=-1,zMax=5]

13 \end{pspicture}

Instead of using the \pstThreeDSphere macro

(see section 12) it is also possible to use parametric

functions for a sphere. The macro plots continous lines

only for the t parameter, so a sphere plotted with the

longitudes needs the parametric equations as

x = cos t · sinu

y = cos t · cosu

z = sin t

(10)

The same is possible for a sphere drawn with the

latitudes:

x = cosu · sin t

y = cosu · cos t

z = sinu

(11)

and lastly, we can have both of these parametric func-

tions together in one pspicture environment (figure 22).

1 \begin{pspicture}(-1,-1)(1,1)

2 \psgrid

3 \parametricplotThreeD[%

4 plotstyle=curve,yPlotpoints=40](0,360)(0,360){%

5 t cos u sin mul

6 t cos u cos mul

7 t sin

8 }

9 \parametricplotThreeD[%

10 plotstyle=curve,yPlotpoints=40](0,360)(0,360){%

11 u cos t sin mul

12 u cos t cos mul

13 u sin

14 }

15 \end{pspicture}

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure 22: Different views of the same parametric

functions

14 Plotting data files

We have the same conventions for data files which hold

3D coordinates as for 2D. For example:

0.0000 1.0000 0.0000

-0.4207 0.9972 0.0191

....

0.0000, 1.0000, 0.0000

-0.4207, 0.9972, 0.0191

....

(0.0000,1.0000,0.0000)

(-0.4207,0.9972,0.0191)

....

{0.0000,1.0000,0.0000}

{-0.4207,0.9972,0.0191}

....

There are the same three plot functions:

\fileplotThreeD[<options>]{<datafile>}

\dataplotThreeD[<options>]{<data object>}

\listplotThreeD[<options>]{<data object>}

The data file used in the following examples has

446 entries like

6.26093349..., 2.55876582..., 8.131984...

328 TUGboat, Volume 22 (2001), No. 4

Using the listplotThreeDmacro with many data

entries may take considerable time on slow machines.

The possible options for the lines are the same as earlier,

given in table 1.

14.1 \fileplotThreeD

The syntax is straightforward:

\fileplotThreeD[<options>]{<datafile>}

If the data file is not in the same directory as the

document, use the file name with the full path. Figure 23

shows a file plot with the option linestyle=line.

x

y

z

Figure 23: Demonstration of \fileplotThreeD

with Alpha=30 and Beta=15

1 \begin{pspicture}(-7.5,-3)(6,10)

2 \psset{xunit=0.5cm,yunit=0.75cm,%

3 Alpha=30,Beta=30}% the global parameters

4 \pstThreeDCoor[%

5 xMin=-10,xMax=10,%

6 yMin=-10,yMax=10,%

7 zMin=-2,zMax=10]

8 \fileplotThreeD[plotstyle=polygon]{data3D.

Roessler}

9 \end{pspicture}

14.2 \dataplotThreeD

The syntax is:

\dataplotThreeD[<options>]{<data object>}

In contrast to \fileplotThreeD, the second macro

\dataplotThreeD reads the data entries from another

macro. Using \readdata, external data can be read

from a file and saved in a macro, to be passed to

\dataThreeD [1].

\readdata{<data object>}{<datafile>}

x

y

z

Figure 24: Demonstration of \dataplotThreeD

with Alpha=-30 and Beta=30

1 \readdata{\dataThreeD}{data3D.Roessler} [...]

2 \begin{pspicture}(-6,-2.25)(6,11)

3 \psset{xunit=0.5cm,yunit=0.75cm,%

4 Alpha=-30}

5 \pstThreeDCoor[%

6 xMin=-10,xMax=10,%

7 yMin=-10,yMax=10,%

8 zMin=-2,zMax=10]

9 \dataplotThreeD[plotstyle=line]{\dataThreeD}

10 \end{pspicture}

14.3 \listplotThreeD

The syntax is:

\listplotThreeD[<options>]{<data object>}

There is no essential difference between the ma-

cros \istplotThreeD and \dataplotThreeD. With

\listplotThreeD, one can pass additional PostScript

code, which is appended to the data object. For example:

TUGboat, Volume 22 (2001), No. 4 329

1 \dataread{\data}{data3D.Roessler}

2 \newcommand{\dataThreeDDraft}{%

3 \data\space

4 gsave % save graphic state

5 /Helvetica findfont 40 scalefont setfont

6 45 rotate % rotate 45 degrees

7 0.9 setgray % 1 ist white

8 -60 30 moveto (DRAFT) show

9 grestore

10 }

x

y

z

D
R
A
F
T

Figure 25: Demonstration of \listplotThreeD

with a view from above (Alpha=0 and Beta=90)

and some additional PostScript code

Figure 25 shows what happens with this additional

PostScript code. Another example can be found in [5],

where ScalePoints is redefined. For pst-3dplot,

the equivalent macro is named ScalePointsThreeD.

1 \begin{pspicture}(-5,-4)(5,4.5)

2 \psset{xunit=0.5cm,yunit=0.5cm,%

3 Alpha=0,Beta=90}

4 \pstThreeDCoor[%

5 xMin=-10,xMax=10,%

6 yMin=-10,yMax=7.5,%

7 zMin=-2,zMax=10]

8 \listplotThreeD[plotstyle=line]{\

dataThreeDDraft}

9 \end{pspicture}

15 PDF output

pst-3dplot is based on the popular pstricks pack-

age and writes pure PostScript code[2], so it is not possi-

ble to run TEX files with pdfLATEX when there are pstricks

macros in the document. If you need PDF output, there

are the following possibilities:

• the package pdftricks.sty [6]

• the free (for Linux only) program VTEX/Lnx (http:

//www.micropress-inc.com/linux/

• the ps2pdf (dvi→ps→pdf) or dvipdfm utilities

• the ps4pdf package [4].

If you need package graphicx.sty, load it be-

fore any pstricks package. You do not need to load

pstricks.sty, as this will be done by pst-3dplot.

References

[1] Laura E. Jackson and Herbert Voß. Die Plot-

Funktionen von pst-plot. Die TEXnische

Komödie, 2/02:27–34, June 2002.

[2] Nikolai G. Kollock. PostScript richtig eingesetzt:

vom Konzept zum praktischen Einsatz. IWT, Vater-

stetten, 1989.

[3] Manuel Luque. Vue en 3D. http://members.

aol.com/Mluque5130/vue3d16112002.zip,

2002.

[4] Rolf Niepraschk. ps4pdf. CTAN:/macros/latex/

contrib/ps4pdf/, 2003.

[5] Herbert Voß. Die mathematischen Funktionen von

PostScript. Die TEXnische Komödie, 1/02:40–47,

March 2002.

[6] Herbert Voß. PSTricks Support for pdf.

http://www.educat.hu-berlin.de/~voss/

lyx/pdf/pdftricks.phtml, 2002.

[7] Timothy van Zandt. PSTricks - PostScript

macros for Generic TEX. http://www.tug.org/

application/PSTricks, 1993.

⋄ Herbert Voß

Wasgenstr. 21

14129 Berlin GERMANY

voss@perce.de

http://www.perce.de

