y

The Latest Developments in {2

John Plaice

Département d’informatique, Université Laval, Ste-Foy (Québec) Canada G1K 7P4

John.Plaice@ift.ulaval.ca

Yannis Haralambous

Atelier Fluxus Virus, 187, rue Nationale, F-59 800 Lille, France

Yannis.Haralambous@univ-lillel.fr

Abstract

The Q system has been available since early 1995, and has been used experimen-
tally in several sites around the world. We gather here some conclusions from
this experimenting and explain what aspects will be included in version 1.3 of (2,
which should be the first large-scale release of the system. Not only will the
portability and performance of 2 be improved substantially, but new features,
including smart fonts and multi-directional support, will be included.

When 2 was first conceived, the primary objectives
were to remove the 8-bit restrictions imposed by
the original design of TEX (number of characters,
fonts, registers of each kind, etc.), as well as to offer
the means necessary for multilingual typesetting, no
matter how complex the script.

The 8-bit restrictions were removed quite easily
by simply doubling the size of all data structures in
the TEX program and by introducing a variant of
the tfm file, called the xfm file, in which fonts of up
to 65,536 characters could be built.

For typesetting complex scripts, such as clas-
sical Arabic or Hebrew, a series of finite state au-
tomata, called Translation Processes (Q2TPs), can
be successively applied to the input character stream
to do arbitrarily complex manipulations. After each
application of an QTP, the macro-expansion facili-
ties of TEX are reinvoked, which means that the full
power of TEX is available every time an QTP is used.

Performance and portability

The current version of 0 currently resides on the
ftp.ens.fr server, and has been used experimen-
tally by several different groups in different coun-
tries. From their responses, we now understand
what must be done for Q to be a realistic replace-
ment for TEX.

First, Q is too big! A typical run of Q uses
about 14MB, which is just fine when you are sitting
in front of a 500MHz-machine with 512MB, but
certainly not on a typical portable. This tremen-
dous size comes from the TEX program structure,
in which static arrays are allocated to handle primi-

tives such as \catcode or \delcode, to store register
values and font information, etc. However, the
average user will never need 65,536 fonts of 65,536
characters each, nor 65,536 mu-registers, etc. Most
of these huge tables are full of zeros, and it seems
silly to have to go out and buy RAM and see your
system slow down just so you can have lots of empty
tables in your program.

This problem will be solved in the next ver-
sion through the introduction of several primitives
of the form \MaxActiveCharacter, \MaxRegister,
\MaxFont or \MaxWrite. These primitives corre-
spond to compile-time constants, which should be
over-ridable upon loading Q. By doing this, a single
binary can be used, whatever the resources needed.
According to Benjamin Bayart (Ecole Supérieure
d’Ingénieurs en Electrotechnique et Electronique in
Paris), these primitives also make it possible for
macro packages to determine whether the existing
system has the required resources or whether a new
run should be undertaken, with larger tables.

Second, Q does not run correctly on Little
Endian machines. This problem was solved by
Bayart and will be incorporated into version 1.3. As
a result, there should be working versions of Q for
Intel boxes running DOS, Windows and Linux.

Finally, performance is unsatisfactory for QTPs
that are being used for multilingual applications.
Because the macro-expansion facilities are applied
with every use of an QTP, the use of two successive
QTPs can slow Q2 down so that it runs only 40% as
fast as the original TEX. This may be acceptable
for limited applications where specialized effects are

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 181

John Plaice and Yannis Haralambous

wanted, but it is certainly unacceptable in a pro-
duction setting where thousands of pages are being
generated every day.

Support for complex scripts

It turns out, however, that for any given language,
very few TEX primitives are required for typesetting
high-quality output. As a result, we are looking for
more efficient techniques that can be used for the
standard cases.

In particular, Plaice has worked with Arbor-
Text, Inc. (Ann Arbor, Michigan), a supplier of
SGML authoring and composition software and ser-
vices, in developing typesetting support for ideo-
gram scripts from East Asia. ArborText uses a TEX-
based engine for printing SGML documents, and this
engine was modified so that it could output Japanese
text.

The fundamental understanding of a font in
TEX is that each character has width, height, depth
and italic correction. Characters are placed in order
on the baseline, and the exact choice of character
and the exact horizontal positioning can be adjusted
using the ligature/kerning table.

This technique is reasonable for laying out al-
phabetic scripts where the characters are printed
separately, as is the common case for Latin, Greek,
Cyrillic, Armenian, Georgian, among others. Nev-
ertheless, even for the Latin script, problems can
arise: the Unicode standard provides for more than
900 precomposed characters. Building a complete
ligature/kerning table for a font would require inor-
dinate amounts of memory. Furthermore, it would
be unlikely that, say, character 1EA9 (LATIN SMALL
LETTER A WITH CIRCUMFLEX AND HOOK ABOVE),
used in Vietnamese, would be found next to charac-
ter 01CF (LATIN CAPITAL LETTER D WITH SMALL
LETTER Z WITH CARON), which is a Croatian di-
graph: much of the table would be useless. In fact,
many of the characters have similar attributes: the
difference betwen ‘¢’ and ‘@’ is unlikely to influence
the ligature/kerning program, so there are many
opportunities for compressing it.

When we pass on to the ideogram scripts found
in East Asia, all the characters have the same dimen-
sion. There are no ligatures, nor kerning. However,
if a fixed grid is not chosen, then glue must be placed
betweeen successive characters. Furthermore, line
breaks cannot occur after left-bracket-like characters
or before right-bracket-like characters. To handle
such situations, penalties must be placed automati-
cally in the appropriate places.

For vowelized Arabic, the requirements are dif-
ferent yet again. Not only must the correct pre-

sentation form —isolated, initial, medial or final —
of each consonant be chosen, but the diacritics, in-
cluding vowels and hamza, must be properly placed
with respect to the consonants. To do this re-
quires additional parameters about each character,
designating the horizontal and vertical placement
required to place the different diacritics. Finally,
keshidehs (straight lines or Bézier curves) must be
placed between consonants to fill out lines.

For the Arabic script in Nastaliq style, as is nor-
mally used for Farsi or Urdu, typesetting becomes
even more complicated, since successive characters
are not placed on the baseline. Rather, the charac-
ters within a word are placed in a sort of staircase
situation. The first character, to the right, is placed
highest. The lowest is the last character, to the left.
Once again, extra character parameters are required
so that the successive characters can be displaced
vertically by the correct amount.

The work undertaken with ArborText implied
designing another extension to the font metric files
so that an arbitrary number of different kinds of
parameters could be defined for the font as a whole
or for each individual character. Currently, five sorts
of parameters can be defined: integer, fixword, rule,
glue and penalty. In addition, the ligature/kerning
program has been modified to allow the automatic
insertion of glue and penalties between characters,
as is required for East Asian ideogram fonts. In
addition to changes to the TEX driver, the pltotf
and tftopl both had to be modified.

Under an agreement with ArborText, we will
be incorporating these ideas into . In fact, Q
will support a generalization of these ideas: the
ligature/kerning table will allow two-dimensional
capabilities, thereby solving all of the difficulties in
typesetting calligraphic scripts such as Arabic.

Multiple directions

Multilingual typesetting requires printing in several
directions. Scripts currently in use today can be
categorized into four groups.

1. The most common group includes most of the
world’s scripts (Europe, Caucasus, India and
South-East Asia). Lines are read from left to
right and pages are read from top to bottom.
When diacritics are used, in most cases, they
are placed above characters in a line.

2. The next group includes several scripts that
originate in West Asia, such as Arabic and
Hebrew. Lines are read from right to left and
pages are read from top to bottom. Diacritics

182 TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting

are placed both above and below characters in
a line.

3. The third group includes the scripts found in
East Asia. When the traditional scripts are
used, lines are read from top to bottom and
pages are read from right to left. It is standard
for technical documents to be printed in the
same manner as the first group. When the
traditional means are used for printing and, say,
English text is inserted, then it will be rotated
90° clockwise, and one can read the English
insertion as if the text were in landscape mode.

4. The final group consists of Mongolian and other
languages in the Uighur region of China and in
Mongolia. In these languages, lines are read
from top to bottom and pages are read from
left to right. One way to perceive such texts is
that they are similar to Arabic or Syriac, but
rotated 90° counterclockwise.

It should be understood that the writing direc-
tion affects the entire page. An Arabic text will in-
dent from the right, and successive entries in a table
will be placed from right to left. Similarly, headers
in traditional ideogram typesetting are found at the
right-hand side of the page. Nevertheless, some
aspects remain constant across the different groups.
No matter what group is being typeset, mathematics
will remain as if it were part of the first group.

In Q, a writing direction is defined using two pa-
rameters: the primary direction corresponds to the
direction in which successive lines follow each other
on a page and the secondary direction corresponds
to the direction in which successive characters follow
each other on a line. The above four groups can be
summarized as follows:

primary secondary
1. top-down left-right
2. top-down right-left
3. right-left top-down
4. left-right top-down

In TEX parlance, the primary direction corre-
sponds to ‘vertical’ displacement and the secondary
direction to ‘horizontal’ displacement. For example,
an \hspace command in Mongolian would actually
mean a downwards displacement on the page, along
the baseline.

Different writing directions can interact on the
same page, possibly even in the same paragraph,
for quotations, insertion of mathematics, etc. The
common interactions are 1-2, 1-3, 1-4 and 3-4.
The first two have been the subject of TUGboat
articles (Knuth and MacKay 1987, Hamano 1990),

The latest developments in 2

and will use similar techniques to effect the proper
changes.

The writing direction can even change when
printing the same script. This was a technique used
in boustropheidon, for ancient Greek texts: it com-
bined the first two writing directions, alternating
from line to line, with the characters mirrored as
the text changed directions. In addition, ancient
Egyptian texts would freely intermix the first two
writing directions as well. We are looking at means
to support these different techniques.

Conclusion

The coming releases of €2, as outlined here, will
ensure that Q will truly become a multilingual suc-
cessor to TEX.

References

[1] Hamano, Hisato, “Vertical typesetting with
TEX”, TUGboat 11,3 (1990), pages 346 —352.

[2] Knuth, Donald, and Pierre Mackay, “Mixing
right-to-left texts with left-to-right texts”, TUG-
boat 8,1 (1987), pages 14-25.

[3] International Organization for Standardization/
International Electrotechnical ~Commission,
“Information technology — Universal Multiple-
Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane”,
(ISO/IEC 10646-1), 1993.

[4] The Unicode Consortium, “The Unicode Stan-
dard: Worldwide Character Encoding”, Version
1.0, Volume 1, Addison-Wesley, 1991.

TUGboat, 17, Number 2— Proceedings of the 1996 Annual Meeting 183

