
Towards Interactivity for TEX

Joachim Schrod
Technical University of Darmstadt, WG Systems Programming
Alexanderstrde 10, D-64283 Darmstadt, Germany
schrod@iti. inforrnatik.th-darrnstadt.de

Abstract

Much work has been done to improve the level of interactivity avdable to TEX
users. This work is categorized, and probable reasons are discussed why it is
not really widespread. A more general view of "interactivity" may also lead to
other tools. A common prerequisite for all these tools is the need to know about
TEX'S functionality. The description of TEX should be formal, since the avdable
lnformal descriptions have not given satisfactory results.

After an abstract decomposition of TEX, an approach for the formal specifica-
tion of one subsystem (the macro language) is presented. This specification may
be interpreted by a Common Lisp system. The resulting Executable TEX Language
Specification (ETLS) can be used as the kernel of a TEX macro debugger.

Variations on A Theme of this principle is done in the Grif system (Roisin and
Vatton 1994), but this is not related to TEX.

"Interactive TEX is the oldest theme on TUG meet-
The need to work with the formatted document

ings: Morris (1980, P- 12) reports that D.E. Knuth
representation was and is particularly motivated by

started 'Is Opening remarks at the first TUG meeting
the error-proneness of creating TEX input. Simple er-

with it.
rors (e.g., forgetting a brace) occur very often and

[Elarly on he thought an interactive TEX would may lead to complaints in places that are far away
be useful, but finds now that T ~ X users in- from the error's source. In addition, the time lag be-
ternalize what TEX will do to such an extent tween the creation of the error and the notification
that they usually know what TEX is going to about it is too large for a smooth work flow. Direct
do about their input and so have no pressing
need to see it displayed on a screen immedi-
ately after the input is finished.

Already here a precedent is set for most future reflec-
tions on an interactive TEX: A user interface for an au-
thor is anticipated that gives feedback on the format-
ting of the document. Actually, many TEX users don't
agree with Knuth, they want to see their formatted
document displayed. With the arrival of WYSIWYG-
class desktop publishing systems, some of them even
want to get it displayed while they are editing, and
effectively to edit the formatted representation.

It is worth noting that early usage of the term
"interactive formatter" concerns mostly immehate
feedback, i. e., the ability to see the formatted repre-
sentation while the document is input (Chamberlin et
al. 1982). In the TEX domain this approach was pre-
sented first by Agostini et a1. (1985), still on an IBM
mainframe a t this time. Blue Sky Research invested
work in that direction, their product Textures is now
advertised a s an "Interactive TEX."

The most advanced approach in the connection
of TEX input with formatted output was explored by
the ~ T E X project (Chen and Harrison 1988). In prin-
ciple, it was possible to edit both the TEX source and
the formatted representation as the respective enti-
ties were linked to each other. A full implementation

manipulation (DMP) systems are environments that
couple actions with reactions of the system and pro-
vide immediate feedback (Shneiderman 1983). They
encourage one to create and change documents in
an ad-hoc manner, without the need for much pre-
planning of abstractions and structures. (One may
argue that this is a disadvantage for the task of writ-
ing; but this is not an argument I want to address in
this article.)

It is important to emphasize that two terms
mentioned above, WYSIWYG and DMP, concern com-
pletely different abstractions. A WYSIWYG system
allows one to manipulate the presentation of a doc-
ument; it concentrates on the task of creating and
changing t h s presentation, it focuses on formatting.
The term WYSIWYG is domain specific, it is tied to
software systems that do layout (in the broadest
sense, not only of documents). The category DMP
is much more general and such on a different ab-
straction level: It classifies a set of interfaces that
enables users to directly manipulate the objects they
are working with, and where immediate feedback is
given to them concerning these manipulations. DMP
interfaces are often realized by means of windows,
icons, menus, and pointing devices (e.g., mice); a
member of this subclass of DMP interfaces is also

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 309

Joachim Schrod

called a WIMP interface (Chignell and Waterworth
1991).

Since DMP interfaces have been shown to ease
learning (Svendsen 1991), some approaches to yield
interactivity for TEX document creation use separate
systems with a DMP interface for document editing.
They generate TEX input, to use the power of TEX'S
typesetting engine. These systems are pure front-
ends, it's not possible to read TEX source and edit it.
In early systems like Edimath (Andre et al. 1985) or
easyTEX (Crisanti et al. 1986) the eventual target-
the TEX language-is still visible. Newer systems
like VAX DOCUMENT (Wittbecker 1989) or Arbortext's
SGML Publisher hide t h s detail from the user. (It's
quite interesting that these systems don't use TEX
any more in the strict sense. Arbortext and Digital
have modified the program to enhance its capabili-
ties or to be able to integrate it better into the overall
environment.)

Quint et al. (1986) noted early that such sys-
tems are, in fact, not TEX specific. Something that
one can really call an interactive writer's front-end
to TEX must be able to read TEX source, to enable not
only the creation of documents but also their change.
They presented the usage of Grif in such a context,
but Grif is only able to understand a very limited
subset of TEX markup. Similarly, Arnon and Marnrak
(1991) presented the automatic generation of an edit-
ing environment for a fixed subset of plain TEX math,
by formal specification of this subset.

But there are more usages of the term "inter-
activity". It is used often to characterize TEX shells,
too. Developers recognized that the task of writing a
document is more than editing and formatting; one
has to handle bibliographies, create index, draw fig-
ures, etc. Tools are available for many of these tasks,
but their existence and the respective handling (e. g.,
syntax of the command line options) has to be re-
membered. Environments that integrate these dif-
ferent tools into one coherent representation can re-
lease the author from that cognitive burden and can
help to concentrate on the real tasks (Starks 1992).
Sometimes such environments are labeled "interac-
tive", in particular, if they have a WIMP interface. Vis-
ible interface is a better attribute for such systems as
they do not provide a new level of interactivity-they
merely make the current possibilities visible. (This
terminology is due to Tognazzini (1992).)

As o u t h e d above, the past has seen many at-
tempts to increase the interactivity level of TEX sys-
tems for authors. Nevertheless the typical TEX user
still writes the complete text with a general-purpose
editor, not using any TEX-specific editing software.
Even the low level of an immediate preview (or an
early one, i. e., concurrently to T~Xing) is not common
in use.

The question must be posed why t h s happens.
In my opinion, several reasons may be given:

Some systems are very ambitious, actually they
want to provide new publishing systems that
replace TEX. Those systems that have been
completed are proprietary and not freely dis-
tributable. Since they are not targeted to the
mass market, they do not get the initial user
base that would make them as widespread as
TEX is today. The hypothesis that innovative
non-mass systems will not be widespread with-
out being freely distributable is backed up by
HOPL-II(1993), the similarity between program-
ming and authoring environments is assumed
to exist in t h s regard.

Those systems that restrict themselves to a cer-
tain subtask (e. g., editing of a formula) are often
not prepared to communicate with other tools
from the author's workbench. The developers
often place unreasonable demands on authors
(e. g., to place each formula in a separate file).

Developers underestimate the inertia of users
to stay with their known working environment.
They are proud of their "baby", and often don't
see that the benefit from their new system does
not outweigh the costs of learning it. As an
example, most UNIX users won't accept a TEX-
specific editor that is not as powerful, flex-
ible, and comfortable as Lucid (GNU) Emacs
with AUC-TEX (Thorub 1992)-and that's hard
to beat.

Developers are unaware that there is more to in-
teractivity than the creation of structured edit-
ing systems or full-blown WYSIWYG publishmg
systems. In particular, there exist more tasks
in the production of a publication and there are
lower levels of interactivity that are probably
easier to implement.

The TEX user interface (i. e. its markup language)
is reahzed as a monolithic Pascal program to-
gether with a bunch of non-modular macros. It
is not possible to incorporate parts of it (e.g.,
a hypothetical math typesetting module) into
an interactive system. Each system rebudds its
needed abstractions anew, often incompatible
with others and only approximating TEX'S be-
havior.

Let's sort these issues out in the rest of this article.
First, I will be more specific in the d e h t i o n of "inter-
activity" and categorize different forms of it, thereby
spotlighting interfaces that I think are needed and
possible to create. Then preconditions for an easy
realization of such systems wdl be shown, and the re-
sults of prehmmary work to illustrate these precon-
ditions wdl be presented.

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

On Interactivitv In addition, one must not restrict users too

Interactivity means (1) that a user may control at run
time what the system does, and (2) that feedback
to the user's actions happens as soon as possible.
If a user may just start a program and cannot con-
trol its progress, it is called a batch program. If a
user may trigger an action at any time, even if an-
other action is still running, the software system has
an asynchronous user interface, and is regarded as
hghly interactive. Such user interfaces are usually
WIMP-style, thls is the reason why command-line ori-
ented system are considered to have a lower level of
interactivity-the user may act only at specific points
in time, when asked by the system. Interactive sys-
tems are notoriously difficult to create, Myers (1994)
has shown that this difficulty is lnherent in the prob-
lem domain.

In the TEX area, we can identify at least the fol-
lowing forms of interaction that might be supported

or enabled by software systems, to increase the level
of interactivity available to users:

Full-fledged publishng systems; with DMP,
preferably WIMP-style, user interfaces

a Structural editing facilities for specific docu-
ment parts

Program visualization for educational purposes
(e. g. training)
Support for TEX macro development

This list is ordered by the additional abstraction level
these interfaces provide and the difficulty of produc-
ing them. (Of course, the correspondence is not by
chance.)

It seems that full-fledged publishng systems are
the dream of many developers. But they tend to ne-
glect two facts of life: Such systems have to be much
better than existing ones, and their development will
not succeed in the first attempt. Systems of the size
one has to expect will never be written at once, they
have to be developed incrementally. This is the case
with all successful middle-sized software systems;
it's worth to note that TEX is not an exception to that
rule. (The current TEX is the thwd completely rewrit-
ten version, not counting TEX~, according to Knuth
(19891.1

To improve on an existing system, one has to
address at least the full production cycle. To be
concerned only with the demands of authors is not
enough any more; document designers, ehtors, su-
pervisors, e t ~ . work with documents as well. For
instance, more appropriate help for designers can
be supplied by better layout description facilities
(Briiggemann-Klein and Wood 1992). Such facilities
need better input methods as well, as designers are
usually not trained to work with formal description
methods. Myers (1991) shows convincingly that the
paradigm of programming by demonstration may
help here.

much, contrary to the belief of many software de-
velopers they are not unintelligent. That means that
the straitjacket of pure structural editors, where ev-
erything must be done via menu and mouse, is not
necessarily the right model to use. Research in pro-
gramming environments (where such straitjacket in-
terfaces did not succeed either) shows that it is pos-
sible to bmld hybrid editors that combine support
for structured editing with free-format input, provid-
ing immediate feedback by incremental compilation
(Bahlke and Snelting 1986).

Last, but not least, one should not forget to scru-
tinize persuasions we've grown fond of. For example,
the concept of markup itself might be questioned, as
shown by Raymond et al. (1993). Let's look outside
the goldfish bowls we are swimming in, and build
new ones.

If one does not have the facilities to produce
a new publishing system, one might at least create
tools that help users with specific tasks. Even on the
author's task domain, one still needs editing facilities
that fully understand arbitrary TEX math material or
tables, and provide appropriate actions on them that
are beyond the realm of a text-oriented editor.

Such tools must be able to communicate with
other tools, preferably they should provide flexible
means to adapt to hfferent protocols. It's in the re-
sponsibility of the developer to provide the user with
configurations for other tools to access this new one;
the best tool will be tossed away if its advantages are
too difficult to recognize.

In theory, tools for subtasks can also be used as
building blocks of a complete system. In practice,
t h s approach needs further study before one can
rely on it. Good starting points for the management
of such a tool integration approach are the ECMA
standards PCTE and PCTE+ (Boudie et al. 1988).

Development of subtask tools is a hazard; it may

be that one constructs a tool that will not be used
because it does not enhance productivity enough.
Therefore one should make provisions, so that the
time spent for development should not be thrown
away. The target should be a collection of modules
that may be reused for further development projects.
Ths must be taken into account very early, reusabil-
ity is a design issue and cannot be handled on the
implementation level alone (Biggerstaff and Richter
1989).

TEX is here to stay and will be used for a long
time. Even the construction of a system that is ulti-
mately better will not change this fact.l Experienced
users must not forget the Mficulties they had in

It may be argued that TEX d l be the FORTRAN
or C of document markup languages-not the best
tool available, but widely used forever.

TUGboat, Volume 15 (1994), No. 3 --Proceedings of the 1994 Annual Meeting

Joachim Schrod

learning TEX, even though they might by now have in-
ternalized how to prevent typical problems-as pre-
dicted by Donald Knuth. A topic of research might
be the creation of systems that help to explore the
functionality of TEX for novice users. For instance,
the comprehension of the way TEX works may be
made easier by program visualization (Bocker et al.
1986). A tool that visualizes the state of TEX'S type-
setting engine, allows one to trigger arbitrary actions
interactively, and gives immediate feedback on state
changes would enhance the understanding consider-
ably. Similarly, advanced TEX courses wiVbe able to
make good use of a tool that visualizes the data enti-
ties of TEX'S macro processor and allows the interac-
tive, visible, manipulation of such entities. Such vi-
suahzation tools may even be the kernel of a whole
TEX macro programming environment (Ambler and
Burnett 1989).

Let's not forget the poor souls in TEX country:
those who develop macro packages and have to work
in a development environment that seems to come
from the stone age. T h s is not necessarily meant as
a critique of Donald Knuth's program or language de-
sign, as it is reported that he did not anticipate the
usage of TEX in the form it's done today. In fact, cre-
ating macro packages is programming; programming
with a batch compiler.

But even for command-line based batch compil-
ers (e. g., classic compilers for imperative languages)
we're used to have a debugger that allows us to in-
teract with the program while it is running. Each pro-
gramming language defines an abstract machme, the
state of t h s machme can be inspected and changed
by the debugger. Execution of a program can be con-
trolled by breakpoints, single stepping, etc. The de-
bugging support available in the TEX macro inter-
preter is minimal. A first improvement would be an
interpreter for the TEX macro language without the
typesetting engine, since many errors already hap-
pen on the language semantics level.

Preconditions for Realizations

All presented aspects to increase interactivity have
one need in common: they rely on access to informa-
tion that one usually considers internal to TEX. Ac-
cess to intermediate states of the typesetting pro-
cess, values of the macro processor, etc., is crucial
to build maintainable interactive systems. Since the
production of reusable modules is also an aim, the
access should not be by ad-hoc methods or heuris-
tic inverse computations. Instead, well defined in-
terfaces are preferred. Actually, before we may de-
fine interfaces we need a precise description what
TEX "does" at all. In t h s context, precise explicitly
means formal. Informal descriptions are not an ad-
equate tool, after all we want to create a base of un-
derstanding, to be used as the underlying model and
the terminology of module interface defmtions.

The formal description must classify and cate-
gorize subsystems of TEX. It's important to take a
system point of view in such a classification. Infor-
mal specifications that describe the functionality of
TEX from a user's point of view exist-but they have
not been of much use for the construction of further
TEX tools. The target group of a formal description is
different: it is not intended to be understood (or even
read) by authors, software professionals will use it.

A System View on TEX

The classification of our formal description will be
guided by a general model of TEX: It may be con-
sidered as an abstract machine. The v. Neumann
model-processing unit, data storage, and control
unit-is suited also as a model for TEX.

Here the processing unit is the typesetter en-
gine, the parts of TEX that break paragraphs and
pages, hyphenate, do box arrangements, transform
math materials into boxes, etc.

The data storage unit is a set of registers that
can save values (glues, boxes, etc.) for later usage.
The storage and the processing unit work both with
a set of abstract classes. These classes are basic ele-
ments of a "TEX base machne" abstraction, their in-
stances are the things that are passed to the process-
ing unit to parameterize its actions. We can see them
as the primitive, assembler-level data types of the TEX
computer.

The control unit allows us to access the registers
and to trigger operations of the typesetter engine. In
TEX, this control unit is hidden beneath a macro lan-
guage. It is important to be aware of the fact that
the macro language is not identical with the control
unit, it is even not on the same semantic level. In par-
ticular, primitive types like boxes or even numbers
don't exist in the macro language. (Numbers may be
represented by token lists; i. e., the macro language
handles only representations-sequences of digits-
not number entities.) Furthermore, often the macro
language only permits us to trigger many typesetting
operations at once. These are typical signs of a high-
level language.

In terms of our demand for a system-view spec-
ification of TEX t h s is important: We don't have ac-
cess to the assembler level of the TEX computer. That
implies that this level is not described informally in
avadable documents; it must be deduced from frag-
mentary remarks in the T~Xbook and there might
even be more than one "correct" model of that level.

Eventually, we have a coarse categorization, a
decomposition of TEX that is presented in figure 1.
The typesetting engine and the storage unit are con-
sidered as a component, together with basic object
classes. This TEX base machine is the basis of the
system; in other environments such a component is
called a toolkit. It is accessible through the control

312 TUCboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

I macro language

I control unit I
r - - - - - - - 1 7 - - - - - - - 7

I typesetter I I storage unit I
I I I I

I engine I I (registers) I
L - - - - - - - 4 L - - - - - - - >

? - - - - - - - - -

I basic I

I I

I object classes I
L - - - - - - - - - L

I TEX base machine (toolkit) I
Figure 1: Subsystems of TEX

unit, the subsystem that allows the definition and
evaluation of macro language primitives.

Actually, it might be of interest to compare the
result of t h s data-driven analysis with the TEX mod-
ularization. (At least for the SAIL version a system
structure is reported by Morris (1980).) Since Knuth
used the method of structured programming, his
modularization is algorithm-driven. The data-driven
approach is preferred here since it will allow an eas-
ier isolation of subsystems.

Further work will have to analyze the subsys-
tems, to identify modules thereof. The collection of
module specifications will provide us with the formal
description of the respective subsystem. The rest of
t h s article will face only one subsystem: the macro
language. A formal definition of it is useful if we
want to export and import TEX documents into other
tools.

Basic Terminology

Before the approach used to specify the macro lan-
guage is presented, we must settle on a precise ter-
minology that is needed for this presentation. While
T~Xnicd jargon and anthropomorphic terms like
"mouth" and "stomach" might make for some light
and enjoying reading hour, I would llke to use the
dull terminology of computer science and introduce
a few definitions:

Characters are read by TEX from a file. They are
transformed to TEX-chars. With the transfor-
mation, a character disappears from the input
stream and cannot be accessed further on.

Characters are not accessible at the macro
language level.

A TEX-char is a pair (category, code). The code of
a TEX-char is the xch r code of the read charac-
ter (wlog. ASCII). The category is determined by
the catcode mapping on codes. Sequences of
TEX-chars are transformed to tokens; most of-

ten such a sequence is of length 1. If a TEX-char
is transformed, it disappears and cannot be ac-
cessed further on.

TEX-chars are not accessible at the macro lan-
guage level.

A token is a pair (type, name). A name is either an
ASCII string or a character; strings of length 1

and characters are distinguished. A token is im-
mutable, neither its type nor its name can be
changed.

Token types are not TEX-char categories, even
if they are often presented as such. The type
of a token constructed from exactly one TEX-
char is analogous to the category of this TEX-
char. But there are categories that have no cor-
responding types and there is also one type
that has no corresponding category. (This token
type is symbol, a canonical term for the entities
usually called control sequences or active char-
acters.) Since we need to distinguish these two
entities, we cannot use the same term for both
(as done, for example, in the T~Xbook).

In this document, we use the typographic con-
vention (type. name) for token types.

An action is a tuple of the form (semantic function,
param-spec list, primitive,expandable,value) . It
is a basic operation of the TEX macro language,
the computational unit a programmer may use,
the smallest syntactical unit of a program.

An action may be evaluated to trigger the re-
spective semantic function. The evaluation of
an expandable action results in a list of tokens.

An action has an associated parameters spec-
ification, the param-spec list, Each param-spec
denotes a token list that conforms to some pat-
tern. If an action is evaluated, an argument is
constructed for each param-spec, in general by
reading tokens from the input stream. These ar-
guments are passed to the primitive.

In addition, an action may yield a value. The
computation of the value may need arguments
as well, the corresponding param-spec is con-
sidered part of the value tuple element.

Users can create new actions by means of
macro definitions, the primitive tuple element
is used to distinguish builtin (aka primitive) ac-
tions and user-defined ones.

In t h s document, we use the typographic con-
vention action for actions.

A binding is a mapping token - action; every token
has an associated action. The action bound to a
token that is not of type symbol is fixed, it can-
not be changed by the programmer. The macro
language defines a set of bindings for symbol to-
kens, each token not in thls set is bound to the
action undefined.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 3 13

Joachim Schrod

These definitions allow a precise description how TEX
processes its input:

1. A token is taken from the input stream.

2. The action bound to this token is determined.

3. The arguments for the action are constructed,
as defined in the action's param-spec list. More
tokens might be read from the input stream for
this purpose.

4. The action is evaluated.

5. If the action was expandable, the result of
the evaluation is pushed on front of the input
stream. I. e., the next token taken from the in-
put stream will be the first token of the result's
list.

These steps are repeated until the action end is eval-
uated. The semantic function of this action will ter-
minate the process.

A very good, and longer, explanation of the way
TEX processes its input, may be found in a tutorial
by Eijkhout (1991). In contrast to the explanations
above, this tutorial takes a process-oriented view,
whereas my analysis is data-centered.

Formal Language Specification

The TEX macro language (TML) has neither a com-
mon syntactic structure nor a "standard semantics",
l ~ k e those found in imperative or functional program-
ming languages. The formal specification of such a
language is not to be taken as an easy task; we are
warned by Knuth (1990, p. 9):

In 1977 I began to work on a language for
computer typesetting called TEX, and you
might ask why I didn't use an attribute gram-
mar to define the semantics of TEX. Good
question. The truth is, I haven't been able to
figure out any good way to define TEX pre-
cisely, except by ehb i t i ng its lengthy imple-
mentation in Pascal. I think that the program
for TEX is as readable as any program of its
size, yet a computer program is surely an un-
satisfying way to define semantics.

Of course, one is well advised to take his statement
seriously and to be specifically cautious in applying
the attribute grammar framework. T h s difficulty is
primarily caused by the inadequacy of context free
grammars to describe the TML syntax in an elegant
way, see below. Besides attribute grammars (Knuth
19681, other methods for formal language specifica-
tion are the operational approach, axiomatic specifi-
cation, and denotational semantics.

In the operational approach (Ollongren 1974), a
transformation of language constructs to a prototyp-
ical computer model is done, i.e., the language se-
mantics are explicated by construction. That is the
earliest approach to define formal language seman-
tics, it was used in the definition of PL/I. The method

is particularly suited for languages that are to be
compiled.

Axiomatic specifications, usually used for cor-
rectness proofs of algorithms, are also applicable to
formal language defmtion; Hoare (1969) mentioned
that already in his seminal paper. Thls approach has
not been used often, due to the very complicated de-
scriptions that result. Even Hoare and Wirth (1973)
ignored hairy parts when they specified Pascal.

The denotational semantics method specifies a

language by d e h n g mappings of its syntactic con-
structs into their abstract "meaning" in an appropri-
ate mathematical model (Stoy 1977). (Typically, that
model is based on the lambda calculus.) The map-
ping is called the syntax construct's semantic func-
tion.

Since TML is not compiled, we wdl use a speci-
fication method that belongs to the denotational se-
mantics category. First, we have to identify the syn-
tactic elements of TML. The previous section ex-
plained that the computational model of TML is that
of evaluation of actions, expanding macros as a side-
effect. That implies that we can regard actions as
top-level syntactic elements, there is no element that
is created by combining several actions. Therefore
we have to supply exact syntactic definitions for each
action, supply the appropriate semantic function,
and will get a full TML definition this way.

In previous work, the TML syntax was formu-
lated partially by a context free grammar (in partic-
ular, in BNF format). Of course, the first approach
is the incomplete specification given in the summary
chapters of the T~Xbook (Knuth 1986). Later, Appelt
(1988, in German) tried to complete this grammar.
Both show the same problems:

The construction of a token may be configured
by the programmer, via the catcode mapping.
T h s is neglected in both grammars, they use
exemplary notations for tokens. Whde this is
described exactly by Knuth, Appelt somewhat
vaguely introduces the notion of a concrete ref-
erence syntax for plain TEX (actually, the SGML

term is meant) that he uses in his grammar.

A rather large set of terminal syntactic cate-
gories is described by prose (36 in Appelt's
grammar, even more in the T~Xbook). Some-
times it's even not clear why these syntactical
categories are terminal at all, e. g., a BNF rule for
(balanced text) is easy to define and not more
complicated to read than other defmtions that
are given.

The difference between tokens and actions is
not explained. Many syntactic structures don't
look at specific tokens at all, they care only for
the action that is bound to a token.

Most prominently, that happens with the
definition of actions (commands in T~Xbook

314 TIIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

terminology) itself. If a terminal token IIke
\parshape appears in the grammar, that does
not denote the token (symbol. "parshapew)-
an arbitrary token with the bound action
parshape is meant instead.

Knuth start the presentation of h s grammar
fragments with a general explanation of this
fact. In addition, every exception-when really
a token was meant t h s time-is mentioned ex-
plicitly in the accompanying explanation. He
even introduces the notion of implicit charac-
ters only for that explanation. (An implicit char-
acter is a token with type symbol where the
bound action is an element of the set of ac-
tions bound to non-symbol tokens. By the way,
the incompleteness of Knuth's prose defimtion
clearly shows the advantage of formal defm-
tions.)

Appelt even ignores that distinction: He uses
token notations like '1' both for the description
of a token of type begin-group and of an arbi-
trary token with the bound action start-group.
If arguments for an action are constructed, they
may be either expanded or unexpanded (the to-
kens that are collected will have been expanded
or not). In fact, that is an attribute of a param-
spec.

Knuth notes only in the prose explanation
which param-spec category is used for an argu-
ment; in addition, t h s explanation is scattered
over the whole T~Xbook. Appelt doesn't note
t h s difference at all, e.g., in his grammar def
and edef have the same syntax.

These examples should also show the value of a full
formal language specification; discussions about the
"structure" of a TML construct should not be neces-
sary any more.

ETLS: The Executable TEX Language

Specification

ETLS is a denotational semantics style language spec-
ification of TML. The mathematical model to whch
actions (the TML syntactic constructs) are mapped, is
a subset of Common Lisp (CL). A set of appropriate
class definitions for object classes from the TEX base
m a c h e is used as well. The computational aspect
of the used CL subset (no continuation semantics or
other imperative-style features) is well described and
close enough to the lambda calculus to be used as a
target model even in the usual sense of denotational
semantics.

An action syntax is specified by a param-spec
description for each argument. A param-spec is a
pair (ezpanded, pattern). If a param-spec has the at-
tribute expanded, all tokens that are used to con-
struct an argument are fully expanded first. A pat-
tern is either an identifier from a fixed set, or an al-
ternative of a set of patterns, or an optional pattern.

Pattern identifiers either denote a predicate function
or an expression on token lists. The actual token list
used as the argument wdl be checked by the pre&-
cate or matched by the expression.

Patterns defined by expressions on token lists
(e. g. numbers) are specified by context free gram-
mars. Of course, the specification of these parts
must not ignore the problematic issues outlined in
the previous section: Tokens are explicated as pairs,
thereby providing a clear defmtion for grammar ter-
minals. A special notation for "arbitrary token with a
specific action bound to" is introduced. It can be ig-
nored whether the token lists for the argument shall
be expanded or unexpanded, though; this is men-
tioned already in the param-spec description.

A CLOS-style syntax is used for a full action
specification. The param-spec list is given like a
class slot list. The semantic function is the definition
body. The additional attributes (primitive, expand-
able, and the value function) are put in between, like
class attributes.

As an example, consider the specification of the
action expandafter:

(defi ne-acti on expandafter
(:expanded-args

(skip :token)
(to-expand :token))

(:primitive t

: expandabl e-acti on t

:value n i l)
"Expands the next-after-next token

in the i n p u t stream."
(cons skip (expand to-expand)))

Since this action is expandable, it has to return a List
of tokens. That list is the replacement for the token
this action was bound to and for the two argument
tokens. We create it by prepending the first argument
to the top-level expansion of the second argument. A
value element of n i 1 specifies that this action does
not have any value semantics. (E. g., it is of no use as
an argument to the action the.)

Action definitions like above may be embedded
in a Common Lisp interpreter. That way we can in-
terpret them directly and test if they have the same
semantics as in the TEX processor. But it should be
noted that these defimtions do not trigger the same
error handhg as TEX-in case of an error condition
they just signal an exception and the surrounding
system must supply appropriate handlers.

Application of ETLS

Many people regard the formal defmtion of a pro-
gramming language as an exotic goal pursued only
by ivory-towered academics. But such work is prac-
tical and can even lead to immediate results.

As an example, consider the need for a TEX
macro debugger. I. e., a tool that provides break-
points with associated actions, stepwise execution,

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Joachim Schrod

tracing of particular macros and argument gathering,
full access (read & write) to the state of the macro
processor, etc. Everybody who has developed TEX
macros at some time wdl have missed it.

The ETLS already realizes a large part of such a
debugger. Since it is embedded in a Common Lisp
system, the CL debugger can be fully applied to TEX
macro processing. (In some of the better CL systems,
even a GUI for the debugger is available.) If the result
of an operation from the TEX base machme is needed,
the ETLS limits are reached, though. But the imple-
mentation of some modules from t h s level (most
prominently, the data storage unit with the basic ob-
ject classes) allows us already to debug many typical
error-prone macros. Of course, if typesetting prob-
lems have to be checked, one needs modules that do
not yet exist.

The handling of syntax or static semantic errors
is a further point where work is to be done. In case of
an error, one is not greeted by the well-known "gen-
tle" error messages of TEX, but is confronted with the
Lisp fallback handler for a signaled exception. Then
one can issue all kinds of Lisp commands (including
the continuation of one's macro code). Of course,
a better error handling, on the semantic level of a
macro writer, can be easily imagined. (Traditional-
ists may want to have the TEX error loop available as
well.)

Conclusion

Often the wish for interactive tools for TEX is men-
tioned. T h s covers author tools that can be used
with arbitrary TEX documents, or developer tools that
help to program in TEX and to understand the way
TEX works. A precise description of TEX is a prereq-
uisite for building such tools.

I have presented an abstract decomposition of
TEX that sets an agenda for the specification of sub-
systems. In particular, one subsystem (the macro
language) was further analyzed and an approach for
its formal specification was presented. The result-
ing Executable TEX Language Specification (ETLS) is
embedded in a Common Lisp interpreter and may be
used to parse and partially interpret TEX source code.
The immediate applicability of such an executable
specification has been described as well, minimal ef-
fort is needed to enhance it to a TEX macro debugger.

Further work has to be done to add the (prefer-
ably formal) description of more subsystems. A iirst
aim would be an analysis of the respective subsys-
tems and the documentation of a modularization re-
sulting from that analysis.

In addition, the uhlity of ETLS should be ex-
plored further. The TEX debugger needs the ad&-
tion of error handlers to be of pragmatic use; a better
user interface would be valuable as well. The seman-
tic recognition of some substructures (e. g., the con-

tents of haligns and formulas) is minimal and should
be improved.

The work presented here is only a first step, but
it may be used as the starting point to enhance in-
teractivity for TEX users; though much remains to be
done.

Technical Details & Administrivia. CLISP, a freely
distributable Common Lisp implementation from the
Karlsruhe University, was used for the actual realiza-
tion of ETLS. CLISP has been ported to many plat-
forms, Unix workstations, and PC-class microcom-
puters. No other Lisp system has been used until
now.

Both systems are available by anonymous ftp
from f t p . th-darmstadt . de. You find CLISP in the
directory /pub/programmi ng/l anguages/l i sp/
c1 i sp (executables are there as well). ETLS is placed
in the directory /pub/tex/src/etl s.

Acknowledgments. CHRISTINE DETIG provided in-
valuable comments and helped to improve the doc-
ument's structure.

References

Agostini, M., Matano, V., Schaerf, M., and Vascotto,
M. "An Interactive User-Friendly TEX in VM/CMS
Environment". In (EuroT~X85 1985), pages 11 7-
132.

Ambler, Allen L. and Burnett, Margaret M. "Influence
of Visual Technology on the Evolution of Lan-
guage Environments". IEEE Computer 22(10), 9-
22, 1989.

Andre, Jacques, Grundt, Yann, and Quint, Vincent.
"Towards an Interactive Math Mode in TEX". In
(EuroT~X85 1985), pages 79-92.

Appelt, Wolfgang. TEX fur Forfgeschrittene, Anhang
"TEX-Syntax", pages 149-171. Addison Wesley,
1988.

Arnon, Dennis S. and Mamrak, Sandra A. "On the
Logical Structure of Mathematical Notation". In
Proceedings o f the TUG 12th Annual Meeting,
pages 479-484, Dedham, MA. TEX Users Group,
Providence, RI, 1991. Published as TUGboat 12(3)
and 12(4).

Bahlke, Robert and Snelting, Gregor. "The PSG Sys-
tem: From Formal Language Definitions to Inter-
active Programming Environments". ACM Trans-
actions on Programming Languages and Systems
8(4), 547-576, 1986.

Biggerstaff, Ted J. and Richter, Charles. "Reusabil-
ity Framework, Assessment, and Directions". In
Software Reusability, edited by T. Biggerstaff and
A. Perlis, volume I (Concepts and Models), pages
1-18. ACM Press, 1989.

Bocker, Heinz-Dieter, Fischer, Gerhard, and Nieper,
Helga. "The Enhancement of Understanding
through Visual Representations". In Proceedings

316 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Towards Interactivity for TEX

of CHI '86 Human Factors in Computing Systems,
pages 44-50, Boston, MA. ACM SIG on Computer
& Human Interaction, 1986.

Boudie, G., Gallo, F., Minot, R., and Thomas, I. "An
Overview of PCTE and PCTE+ll. In Proceedings

of the 3rd Software Engineering Symposium on
Practical Software Development Environments,

pages 248-257, Boston, MA. ACM SIG on Soft-
ware Engineering, 1988. Published as Software
Engineering Notes 13(5), 1988.

Briiggemann-Klein, Anne and Wood, Derick. "Elec-
tronic Style Sheets". Bericht 45, Universitat
Freiburg, Institut fiir Informatik, 1992. Also pub-
lished as technical report 350 at University of
Western Ontario, Computer Science Department.

Chamberlin, D. D., Betrand, 0 . P., Goodfellow, M. J.,
King, J. C., Slutz, D. R., Todd, S. J. P., and Wade,
B. W. "JANUS: An interactive document formatter
based on declarative tags". IBM Systems Journal
21(3), 250-271, 1982.

Chen, Pehong and Harrison, Michael A. "Multiple
Representation Document Development". IEEE

Computer 21(1), 15-31, 1988.

Chignell, Mark H. and Waterworth, John A. "WIMPS
and NERDS: An Extended View of the User Inter-
face". SIGCHI Bulletin 23(2), 15-21, 1991.

Crisanti, Ester, Formigoni, Alberto, and La Bruna,
Paco. "EasyTEX: Towards Interactive Formulae
Input for Scientific Documents Input with TEX".
In (EuroT~X86 1986), pages 55-64.

Eijkhout, Victor. "The structure of the TEX proces-
sor". TUGboat 12(2), 253-256, 1991.

EuroT~X8 5. TEX for Scientific Documentation. Pro-
ceedings of the 1st European TEX Conference,

Como, Italy. Addison Wesley, 1985.

EuroT~X86. TEX for Scientific Documentation. Pro-
ceedings of the 2nd European TEX Conference,

number 236 in Lecture Notes in Computer Sci-
ence, Strasbourg, FRA. Springer, 1986.

Hoare, C. A. R. "An Axiomatic Basis for Computer
Programming". Communications of the ACM
12(10), 576-580, 1969.

Hoare, C. A. R. and Wirth, Niklaus. "An Axiomatic
Definition of the Programming Language PAS-
CAL". Acta Informatica 2, 335-355, 1973.

HOPL2. Proceedings of the 2nd History of Program-
ming Languages Conference (HOPL-II), Cam-
bridge, MA. ACM SIG on Programming Lan-

guages, 1993. Preprint published as SIGPLAN
Notices 28(3).

Knuth, Donald E. "Semantics of Context-Free Lan-
guages". Mathematical Systems Theory2(2), 127-
145,1968.

Knuth, Donald E. The T~Xbook, volume A of Comput-
ers and Typesetting. Addson Wesley, 1986.

Knuth, Donald E. "The Errors of TEX". Software:

Practice and Experience 19(7), 607-685, 1989.

Knuth, Donald E. "The Genesis of Attribute Gram-
mars". In Attribute Grammars and Their Applica-
tions, number 461 in Lecture Notes in Computer
Science, pages 1-12, Paris, FRA. INRIA, Springer,
1990.

Morris, Robert. "Minutes of the First TUG Meeting".
TUGboat 1(1), 12-15, 1980.

Myers, Brad A. "Text Formatting by Demonstration".
In Proceedings of CHI '91 Human Factors in Com-

puting Systems, pages 25 1-256, New Orleans.
ACM SIG on Computer & Human Interaction,
1991.

Myers, Brad A. "Challenges of HCI Design and Imple-
mentation". interactions 1(1), 73-83, 1994.

Ollongren, Alexander. Definition of Programming
Languages by Interpreting Automata. Academic
Press, 1974.

Quint, Vincent, Vatton, Irene, and Bedor, Hassan.
"Grif: An Interactive Environment for TEX". In
(EuroT~X86 1986), pages 145-158.

Raymond, Darrell R., Tompa, Frank Wm., and Wood,
Derick. "Markup Reconsidered". Technical Re-
port 356, University of Western Ontario, Com-
puter Science Department, London, Canada,
1993. Submitted for publication.

Roisin, Cecile and Vatton, Irene. "Merging logical and
physical structures in documents". In Proceed-
ings of the 5th International Conference on Elec-
tronic Publishing, Document Manipulation and

Typography, pages 327-337, Darmstadt, FRG.
John Wiley, 1994.

Shneiderman, Ben. "Direct Manipulation: A Step Be-
yond Programming Languages". IEEE Computer

16(8), 57-69, 1983.

Starks, Anthony J. "Dotex-Integrating TEX into the
X Window System". In (TUG92 1992), pages 295-
303. Published as TUGboat 13(3).

Stoy, Joseph E. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. MIT Press, 1977.

Svendsen, Gunnvald B. "The Influence of Interface
Style on Problem Solving". International Journal
of Man Machine Studies 35(3), 379-397, 1991.

Thorub, Kresten Krab. "GNU Emacs as a Front End
to LATEX". In (TUG92 1992), pages 304-308. Pub-
lished as TUGboat 13(3).

Tognazzini, Bruce. Tog On Interface. Addison Wes-
ley, 1992.

TUG92. Proceedings of the TEX Users Group Thir-
teenth Annual Meeting, Portland, OR. TEX Users
Group, Providence, RI, 1992. Published as TUG-
boat 13(3).

Wittbecker, Alan E. "TEX Enslaved. In Proceedings

of the TUG 10th Annual Meeting, pages 603-606,
Stanford, CA. TEX Users Group, Providence, RI,
1989. Published as TUGboat lO(4).

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

