
Object-Oriented Programming, Descriptive Markup, and TEX

Arthur Ogawa
TEX Consul tan ts , P.O. Box 51, Kaweah, CA 93237-0051, U.S.A.

ogawa@orion.arc.nasa.gov

Abstract

I describe a synthesis withn TEX of descriptive markup and object-oriented
programming. An underlying formatting system may use a number of different
collections of user-level markup, such as LATEX or SGML. I give an extension of
WX's markup scheme that more effectively addresses the needs of a production
environment. The implementation of such a system benefits from the use of
the model of object-oriented programming. LATEX environments can be thought
of as objects, and several environments may share functionality donated by a
common, more general object.

T h s article is a companion to William Baxter's "An Object-Oriented

Programming System in TEX."

I believe that the key to cost-effective production of
T$ documents in a commercial setting is descriptive
markup. That is, the document being processed
contains content organized by codes, the latter
describing the structure of the document, but not
directly mandating the format.

The formatting of such a document is embodied
in a separate module (usually a file of definitions of
formatting procedures) which represents the imple-
mentation of a typographc specification (typespec).
Thus, descriptive markup achieves the separation
of document instance from formatting engine.

At the same time, the key to cost-effective
generation of document formatters in TEX is found
in the paradigms of object-oriented programming
(OOP). Typographc elements are treated as objects,
with data and methods. The formatter is a collection
of code modules with well-defined boundaries and
communication pathways. The programmer can
take advantage of oop techniques such as object
encapsulation, data-hiding, and inheritance to create
robust, easy-to-maintain, powerful formatters.

For the purposes of this article, FQX and SGML

will be used as specific instances of descriptive cod-
ing schemes, but other methods that cleave to the
standards of descriptive markup are not excluded.
In particular, databases are very descriptive in na-
ture, and the processing engine described in t h s
and the next paper will process such data well.

The present article discusses issues of descrip-
tive markup and object-oriented programming as
relate to TEX and document processing. The next ar-
ticle gives implementation details of the processing
engine.

Commercial Typesetting with LATEX

Advantages of WX's Descriptive Markup. The de-
scriptive markup of LATEX bestows numerous advan-
tages on thls document processing system, malung
it the predominant TEX macro package.

TITLE -------+ 1 Pip
I

SECTION

Orgadling tbe OOP Formtier

To a n h e a usrful f M m g dIbL Cad% w -1

I))anti d b u : Mwtons. u d rppsndaga tcx
dcIpuw

I d a t pmwwc. vt W d d W;c 4c SYS1-m m
allow b b a w pms ~o be &god m&prht ly of
m b ohlr, and a h e arn porsmb So. tm m m a

1 me c u a I&W. vtae w n dspcndr an

TUGboat, Volume 15 (1 994), No. 3 - Proceedings of the 1994 Annual Meeting 325

Arthur Ogawa

Simple Syntax. LATEX'S environments and com- for such a use).

mands provide a simple system of user-level Software exists to help generate a valid LATEX
markup; there are only the environments (with document; the emacs JF&X mode and TCI's Scientific

content) and the commands (with argument). Word are two such. But neither can assert (as
Completeness. Q X ' s public styles are of suf- an SGML validator can) that the document has no

ficient richness to accommodate many of the struc- markup errors.

tures required for a typical book. Modest extensions
enable one to code fairly technical books.

Context-sensitive formatting. An enumerated

list may contain yet another list: the latter is
formatted differently than when it appears at the

topmost level. The same environment can be used

in numerous contexts, so there are fewer markup

codes for the author or typesetter to remember.
Authoring versus formatting. Even though us-

ing the same set of markup codes as the author, the
typesetter may employ a different set of formatting

procedures, allowing the author to concentrate on
content and structure while leaving the typesetter

to deal with the thorny production problems (e.g.,

float placement, line- and pagebreaks).

Limitations of LATNs Markup. Despite the afore-

mentioned advantages, LATEX has a number of prob-
lems.

Inconsistencies. Some of LATEX'S codes intro-

duce syntax beyond the environment and command
mentioned above, e.g., the \verb command.

Architecture. LATEEX'S moving arguments and
fragile commands consititute annoying pitfalls.

That the \verb command must not appear within
the argument of another command has bitten nu-

merous unwary users.

Debasement with procedural markup. When
an author inevitably conceives of new markup ele-

ments, he or she will commonly be disinclined to
simply define new environments to go with them.

Instead the author is likely to introduce them in the

document instance itself with explicit formatting

Limitations of LATEX Styles. Separating core pro-

cessing functionality from design-speclfic format-
ting procedures is embodied in LATEX'S style (. s t y)

files. It is 2 useful idea, allowing the considerable
investment in LATEX'S kernel to be amortized over a

large body of documents, but it has Limitations.
Excessive skill requirements for style writers.

Because LATEX exposes TEX'S programming language
within the style files, only someone slulled in

programming TEX can create the style file for a

new document typespec. Less daunting is the task
of customizing an existing style, but this remains

out of the reach of professional designers as a

class. This situation stands in sharp contrast
to commercial applications such as Frame Maker,

which possess what I call a designer interface.
Designer-interface software. Some progress

has been made to supply software that wdl generate

the code of a LATEX style, notably TCI's Scientific
Word. One can thmk of a fill-in-the-blank approach

that allows one to specify the values of dmensions

that parametrize a typespec. But there is currently
no method of extending an existing body of styles

to accommodate new formatting procedures and
parametrizations.

Incomplete Implementation. Much work re-
mains to be done in separating style-specific code

from kernel code: LATEXZ'S core definitions as they
now stand make numerous decisions about docu-

ment structure and formatting metrics.

Commercial Typesetting with SGML
codes.

The awkward optional argument. Even though ~ e c a u s e a Standard Generalized Markup Language

many LATEX commands and environments have a (SGML) parser can verify the validity of the markup

variant (*-form) or an optional argument (within of a document, and because SGML markup is purely

brackets [I), not all do, and those that do not are descriptive (to first order), it supplies an effective

unable to parse a * or optional argument if one does ''front-end" to a TEX-based formatter. A number of

appear in the document. hi^ increases LAT~EX'~ syn- commercial systems have implemented this idea. At

tactic complexity. Furthermore, the existing scheme the Same time, SGML is not Prey to L#TEX's h t a t i o n s .

is inadequate to accommodate much demand for ~~~~~~t~ in Classes. In an SGML system, a doc-
options, because any one command may have at ument instance belongs to a class defined by a
most one *-form and one optional argument. Document Type Defmtion (DTD), which specifies

User-interface Using T ~ x the concretes of the markup scheme, the name of
a document is problematic because only TEX can each element, or tag (in LATEX: environment), its at-
"ahdate the document--and TEX does not per fom tributes (modifiers) and their allowable values, and
well as a document validator (nor Was it intended the content model. The latter specifies

326 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Object-Oriented Programming, Descriptive Markup, and TEX

what elements may or must appear within a given Face-Independent Procedures
element, and what order they must appear in. For
example, Separating Markup from Formatting Procedures.

<!ELEMENT theorem - - A core processor is somethmg that wdl serve equally
(t i t l e , paragraph*) well as a formatter for SGML, flT~X2, LATEX^ and
> beyond. It must, in fact, be able to parse user

<!ATTLIST theorem
i d I D #REQUIRED

markup defined by some external specification,

k i nd (theorem 1 1 emma 1 corol 1 ary) #IMPLIED what we call a face. At the same time, its style files

> must not at all determine the input syntax.

defmes the "theorem" element and specifies that
it has to be given a key called "id" (llke IREX'S

\label command) and may carry an attribute,
"kind", whose value, if specified, must be either
"theorem", "lemma", or "corollary". Its content
must have an element called "title", followed by any

Here, I describe the span of user markup that
must be parsed. Each one of these markup schemes
constitutes a different face of the core processor.

Bestowing Attributes on JNEX Environments.
An extension to the flT~X2 syntax which provides
flexible SGML-like attributes is:

number of paragraphs. The DTD is thus the basis
for SGML document vahdation. \kind(Corol l a r y }

\number{Z .1 }

Elements with attributes. SGML has just one syntax \prime{)

for its descriptive markup, namely the element. \ t i t le{OOPS, A Theorem)
\ labe l {oopsl}

An element instance may specify the values of its
attributes, or may accept a default; thls allows the
value to be determined effectively by the formatter,
or by inheritance from some containing element
(discussed in more detail below). A typical instance
of an SGML element in a document might be:

i theorem ID="oopsl" k i nd=Coroll ary>
<ti tl e>OOPS, A Theorem</ti tl e>
(content o f the theorem)
</theorem>

Note that in.SGML we really may not give the title
as an attribute, because an SGML attribute can not,
for instance, contain math. The practice is rather to
put the text of the title in an element of its own.

General and consistent markup. The advantages
of such a meager syntax cannot be overstated. An
author may generate a relatively complex document
with a fairly small set of markup. At the same time,
SGML application software may assist in selecting
and inserting the codes, thereby removing the onus
of verbose markup.

The document as database. It is a common school
of thought to treat an SGML document instance
as rather a collection of structured data than a
traditional book or article. This emphasizes the
desirability of descriptive markup and the undesir-
ability of procedural markup. Such a document can
be published on numerous different media (paper,
CD-ROM) and forms (demand publishing, custom
publishmg). The value of a document coded this
way cannot be overstated.

(content of the theorem)
\end{theorem}

This notafion is such that current fiT~x2 markup
simply coincides with default values for all at-
tributes.

SGML Markup. I gave an example of an SGML

element instance above. What corresponds to a
L ~ E X sectioning command might appear as:

<section ID="sgmlmarkup">
<title>&SGML; Markup Syntax< / t i t le>
<ti tle-short>&SCML; Markup</ti t le -shor t>
<title-contents>&SGML; Markup</tit le-contents>
(content o f the section)
</section>

Here, the elements < t i t l e - s h o r t > and < t i t l e -

contents> would be optional and would specify
a short title for the running head and table of
contents respectively. The syntax &SGML; is that
of a text entity, an SGML shorthand. Interestingly
enough, in a TEX-based processor for SGML markup,
it suffices for the two characters < and & to have
catcode active (13), with all others as letter (11) or
other (12).

Markup for a Successor to J!-T@2. For flTjX3
we propose the markup scheme:

\open\theorem{
\number{Z.l)

\prime{}
\ labe l {oopsl}

3
\open\ti tl e OOPS, A Theorem\cl ose \ t i tl e
(content o f the section)

\ c l ose\theorem

The options appear in a brace-delimited argument,

TLIGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 327

Arthur Ogawa

wWe the command name is simply a token. This Object-Oriented Programming Basics.

syntax replaces fiT~X2's envh"irnments and com- Data and procedures are encapsulated into

mands alike. objects. To paraphrase a famous formula:

Note here that the implementation of the \ti -

tl e element could in principle parse its entire con-

tent into a TEX macro parameter using the tokens

\ c l o s e \ t i tl e as a d e h i t e r . The same observation
also applies to SGML syntax (with < / t i t l e > as the

delimiter), but not to LATEXZ'S syntax, where the

end of the environment contains the brace charac-
ters. This observation was evidently not lost on

the creators of A+-TEX, who tend to close out
their elements with a control sequence name, llke

\endt i t 1 e.

The Defining Word. A system that is able to
encompass the above markup syntax may be readily

extended to other syntax. More important, though,

is that all commands defined by such a system
share a single, consistent syntax. LATEX^ would

Dossess t h s attribute if all environments were
defined by means of \newenvi ronment; anyone

who has looked inside LATEX'S core macro file or its

style files knows otherwise, though.
The \newenvi ronment command of LATEX'S

style files is an instance of what we may call a
defining word, to borrow a phrase from FORTH. We

shall see later the relationship between defining
words and the OOP concept of class creation.

Benefits in production. As the next talk will

also emphasize, the mere existence of a convenient
syntax for element attributes bears importantly on

production needs. The need is so longstanding that
the TEX Users Group-supplied macros for authoring

papers submitted to this conference have a syntax

for introducing multiple options, and LATEX users
from time immemorial have resorted to their own

techniques, e.g.,

{\ma1 1
\begi n{verbatim}
Your t ex t
On these l i n e s

to reduce the typesize of an environment.

Object-Oriented Programming and TEX

In a rather happy conjunction of requirements and

resources, we are now in a position to employ the

20-year old technology of Object-Oriented Program-
ming (OOP) to advance the 16-year old TEX. Here,
I introduce certain oop concepts and show their
relationship with the current work.

Fields + Methods = Object

That is, an object is a self-contained computing
entity with its own data and procedures. For

instance, we can have a object called "enumerated
list", one of whose attributes tells whether it is

an arabic, roman, or lettered list. Other instances
of enumerated list have their own value for this

attribute, determined by the context of the object,
or specified in the instance.

The object is an instance of its class. A

class abstracts an object. In the above example
of enumerated list, all enumerated list objects are
molded on the same form, the enumerated list class.

When the formatter encounters an enumerated list

withn the document, it creates an instance of the

class (say, object number 5) :

3 list5 e= enumerated list

We can look upon a document as a collection

of elements, each being an instance of the related

class. The paragraph you are reading falls within
a section w i t h a section within a section of an

article. Three section objects exist simultaneously,

yet distinctly. Each of these sections has a title, as
a section must. The title of a section is an attribute

whlch is always defined upon its appearance within
a document; there is no (non-trivial) default value

determined by the class.
An object's fields are private. Encapsulation

refers to the practice of disallowing other objects

from directly altering a class's fields; instead, ob-
jects pass each other messages. An object may
alter one of its own fields in response to another

object's message. In a numbered list, for example,
the counter is "owned" by the list itself, not by the

list item; when the latter is instantiated, it sends a

message to the list object to increment the counter.
A derived class inherits from its base class.

In what is possibly the most powerful paradigm of

OOP, a new class of objects can be created (derived)
from an existing (base) class by the addition of new

fields and methods. The new, or child, class inherits
all the fields and methods of the generating, or

parent, class. Some of the added methods may
supersede, or override those that would otherwise

be inherited from the parent.

For instance, we may create an enumerated
list class from a basic list class by appending a

field which determines whether the list device is an
number or letter and by overriding the procedure

that formats the list device so that it uses this field

TUGboat, Volume 15 (1994), No. 3 - Proceedings of the 1994 Annual Meeting

Object-Oriented Programming, Descriptive Markup, and TEX

appropriately. All other aspects of the list format ease of modification and extension, and ease of

are determined by the parent class: comprehension.

V enumerated list e list 3 {counter + device} In descriptive markup, the OOP approach makes
particular sense because of the close correspon-

A derived 'lass may from more than
dence between element and class, and between

one parent. In a system with multiple inheritance,
element instance and object instance.

a new class can be created that inherits simulta-
The modularity of objects implies a decoupling

neously from two or more exising classes. T h s is
between them, allows the methods of one object

sometimes referred to as mix-in classes.
to be maintained, changed, and extended without

For instance' we may have created a 'lass
affecting other objects, and allows one to learn

that numbers its instances, applying this to, say,
a particular class hierarchy by first understandmg

equations and theorems, but the enumerated list
each of its elements separately, then in relation to

class mentioned above should also be a ch ld of this
each other.

numbering class. In fact, the enumerated list class
inherits from both the list class and the numbering
class. Organizing the OOP Formatter

V enumerated list e list + counting 3 {device}

The structure of the interrelated classes, in-
cluding descendents is called the class hierarchy.

The object has a context in its document.

Since the abovementioned sections are nested, each
section has a different lxerarchical position within
the document. T h s affects their respective for-
matting (intentionally so, in order to reveal the
document's structure). This nesting of elements
in the document instance is called the document

hierarchy.

Note that class hierarchy is independent of
any particular document instance, while document
hierarchy is not a priori related to the class hierar-
chy. Thus, any two enumerated list objects within
a document are instantiated identically (they are
"created equal"), regardless of where they might
appear. Likewise, withn a document, a list item
must always appear within a list, but in the class
hierarchy discussed in the next paper, the item class
is a subclass of a run-in head.

Environments, Elements, and Objects. There
seems a fairly straightforward connection between
@TEX environments and SGML elements. But where
do classes and objects fit in? We can think of a
class as an abstract environment or element, and
an object a s a specific instance thereof within a
document.

The distinction between class and object is
important, because an instance of a class within

a document is allowed to have instance options:
these must not affect the fields' values in the class
itself, which remain unaltered whle the document
is processed.

Advantages of the OOP approach. In other
venues, OOP is said to have the advantages of good
organization, robustness of code, reuse of code,

To achieve a useful factoring of the code, we want
a kernel of object extensions, with appendages
defining

the class library, whose structure depends on
that of our documents,
the formatting procedures, appropriately pa-
rametrized, whose details depend on the type-

spec,
the values of the parameters of those for-
matting procedures, also determined by the

typespec,
the element set (a list of element names), each
bound to a particular formatting procedure.
In an SGML formatter, this could be derived
automatically from the DTD or some other
resource.
the user markup (the face), implementing
LATG2's \begin and \end, the alternative \open

and \close, SGML notation, or other syntax.

The figure shows these modules in relationship to
each other. The last aspect to be applied, the face,
is seen to be truly a very small module placed on
top of the entire stack.

Modularity and Late Binding. Insofar as possible,
we would like these parts to be independent of each
other, and late changes should be permitted. So, for
instance, we should be able to switch easily between
the LATG2 markup syntax and that of SGML, say just
before the \article command starts the actual

The Face

Element Set

Formatting Procedures & Parameters

Class Hierarchy

Object Extensions

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Arthur Ogawa

document. Or, we would like to alter the name of
an element; in principle, a \chapter command by

any other name would still format a chapter opener.
Equally well, we may wish to revise the detads of

a formatting procedure or the value of one of its

parameters to reflect an alteration to the typespec.

All of these changes are incremental. In fact, we

shall be able to do all these thmgs principally
because TEX is an interpreter, not a compiler.

Maintaining the Fonnatter. There tends to be
an additional relationship, an example of whch

is indicated, in which an element, a formatting

procedure, and a class are connected. In this
case, the abstract class RunInHead is subclassed to

provide what will be known as the Item element. In
the process, a procedure Device is donated, whch

takes care of the formatting of the list device.

This vertical connection is natural and, to the
programmer, compelling. But when developing a
document formatter, the distinctions between class,

formatting procedure, and element name must
nonetheless be preserved for ease of maintenance.

Extensive Use of Defining Words. In order to
acheve the greatest of uniformity in the code, we

will use defining words exclusively to create the

class hierarchy, and to bind the user-level markup
codes to their respective procedures. When a new

class is derived from another, a defining word is
invoked. A user-level code will invoke a different

defining word to instantiate an object of a class.

Elsewhere, d e h n g words are used to allocate
counters and dimensions (as does WX's \new-

counter or Plain TEXS \newdimen), as well as other,

more complex constructs.

Bibliography

Baxter, William E. "An Object-Oriented Programming
System in TEX." These proceedings.

Lamport, Leslie. BTEX-A Document Preparation

System-User's Guide and Reference Manual. Read-

ing, Mass.: Addison-Wesley, 1985.
Goldfarb, Charles F. The SGML Handbook. Clarendon

Press, 1990.

Wang, Paul S. C++ with Object Oriented Program-

ming. Boston: PWS Publishng, 1994.

TZTGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

