
TEX from \indent to \par

Marek Rytko
Wydawnictwo Do

ul. Filtrowa 1

00-61 1 Warszawa. Poland

Boguslaw Jackowslu
ul. Tatrzanska 6/1

80-331 Gdansk, Poland

Abstract

A proper answer to even apparently simple questions about TEX can only be

answered with a detailed formal specification of TEX'S mechanisms, which will

allow us to derive the behaviour of TEX in more complex situations.

Introduction What is appended to the main vertical list and

There are some seemingly simple questions about

TEX whch may be difficult to answer without precise

knowledge of TEX mechanisms.

In the following section we will ask three such

questions, encouraging the reader to answer them

without reading the explanation.

Actually, the explanation follows immediately

from a detailed specification of TEX'S action at the

beginning and at the end of a paragraph. We believe

that if such a specification of all TEX'S mechan-

isms existed, answers to most questions concerning

behaviour of TEX would be equally simple.

The pivotal sections are 'Switching from Ver-

tical to Horizontal Mode' and 'Switchmg from Hori-

zontal to Vertical Mode'. The section 'From Input

Characters to Commands' contains necessary intro-

ductory material.

Questions

In all questions we assume the normal meaning of

tokens of plain TEX.

Q1. What is the difference between:

(*) \everypar { \de f \ i nden t { l } }

\ i nden t 3 i s a pr ime number.

and

(* *) \everypar { \de f \v ru le { l } }

\ v r u l e 3 i s a pr ime number.

What is typeset in both cases and why?

Q2. Assuming that TEX is in vertical mode, what is

the difference between:

(c) \par i ndent=Omm \i ndent\par

and

(* *) \ no i ndent\par

why?

Q3. What is the difference between:

(*I \par
and

(* * I { \par}
What is the state of TEX after executing these

commands in both cases and why?

From Input Characters to Commands

Let us start with a closer look into TEX'S way

of processing input data. Three levels of the

processing can be distinguished:

L1. Reading characters from the input file and

transforming them into tokens (lexical analysis).

L2. Expanding tokens.

L3. Executing commands; at this level TEX creates

internal lists (horizontal, vertical and math

lists), transforms them into boxes and writes

some boxes to the D V I file (using the \ sh i pout

command).

Knuth talks about "eyes," "mouth" and "stomach"

of TEX, etc.; we prefer to speak about "levels."

Names and meanings o f tokens. In order to un-

derstand what happens at the beginning and at the

end of a paragraph it is essential to be aware of the

difference between names and meanings of tokens.

Following Knuth, we will denote by "\xyz the

meaning of the command \xyz at the beginning of

the TEX job. By jxyzl we will denote a token, the

name of which consists of the letters 'xyz'. Such

a token is created by TEX from the sequence of

letters 'xyz' preceded by a current escape character,

usually backslash.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 171

Marek Rycko and Boguslaw Jackowski

For example, the token jhboxl, the name of

whch consists of the letters 'hbox,' has initially the

meaning ':'\hbox. Saylng '\let\hbox=\par' a user

may change the meaning of jhboxj to the current

meaning of I, most likely to *\par. Incidentally,

TEX replaces every empty input line with the token

/par/ regardless of the meaning of this token. The

meaning of may be +'\par, but (par/ may be

also, for example, a macro expanding to a sequence

of tokens.

Transforming input characters into tokens. From

the point of view of TEX, the input file is a sequence

of characters organized into lines. TEX reads such

characters one by one and transforms them at

level 1 into so-called tokens, according to definite

rules. For example, the following sequence of 1 5

input characters:

\ e n s p a c e b D o n . . .
is transformed into a sequence of 7 tokens:

/enspacej~on. . .
The first one is a control sequence token and the

remaining are character tokens stored by TEX along

with their category codes.

Each token created at this level is associated

with its current meaning which can be either a

primitive meaning (a meaning that is built into TEX)

or it can be a macro (a meaning that can be defined

by a user in terms of other meanings). Regarding

the meaning we can classify all tokens as follows:

(a) with respect to expandability as expandable

and unexpandable;

(b) with respect to primitivity as primitive and

macros.

The expandable tokens can be primitive, like

\ i f , \ the, \noexpand, \csname, or they can be

macros defined using \def or a;related assignment

(\edef, \gdef, \xdef).

All unexpandable tokens are primitive. T h s

group contains, among others: tokens like \hski p,

\hbox, etc.; letters and other characters; all tokens

defined by the \chardef assignment; some tokens

defined by \ l e t or \ fu tu re l e t .

Expanding tokens. Level 2 of TEX, i. e., the expansion

level, reads tokens from the input token list and

expands them. If the first token in the input token

list is expandable, level 2 of TEX expands it, that

is, replaces this token (possibly with some tokens

following it) with another sequence of tokens.

If - after the replacement - the first token is

still expandable, the expansion is repeated until the

list starts from an unexpandable token. Obviously,

this process may loop infinitely.

For example, the result of expansion of the first

token in the input token list:

IenspaceIDon. . .
is the sequence of tokens:

lkern -5emuDon. . .
because the first token enspace] is expandable

(it is a plain TEX macro) and its expansion is

' \kern. 5emu'. The token is unexpandable,

hence no further expansion takes place.

The input token list with an unexpandable

token at the beginning is submitted to level 3 of TEX.

Commands. By a command we mean an unexpand-

able (primitive) token at the beginning of the input

token list. If a command may or must have ar-

guments, only the first token is a command. For

example, in the input token list:

jkernj .5emuDon. . .
the token jkern] is the command and the tokens

' . 5em~' are arguments. They are being read as a

part of the process of executing the command.

In general, a command can read arguments

from an input list elther demanding expansion from

level 2 or not.

Level 3 of TEX-the level that executes com-

mands -is the central level. Every time t h s level

is about to execute the next command it "asks"

level 2 to prepare the input token list such that

at the beginning of the list there is a primitive

(unexpandable) token. In turn, level 2 "asks" level 1

for preparing necessary tokens.

Level 3 executes the command according to

its meaning, taking into account the current in-

ternal state of TEX, including the values of various

parameters, and, in particular, talung into account

current TEX'S mode.

One of the results of executing commands is

creation of various kinds of internal lists. The types

of lists include: horizontal, vertlcal and math lists.

At every moment TEX is in one of the follow-

ing six modes determining what type of list it is

currently constructing:

(a) vertical mode (v-mode)

(b) internal vertical mode (iv-mode)

(c) horizontal mode (h-mode)

(d) restricted horizontal mode (rh-mode)

(e) math mode

(f) display math mode

At the very beginning of a job TEX is in v-mode

and all the lists are empty. A list is constructed by

appending new elements to it. The process of list

construction can be briefly summarized as follows:

mathematical lists are converted into h-lists; an

h-list created in h-mode (material for a paragraph)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TEX from \indent to \par

is converted into a v-list and appended to a current

v-list; a vertical list created in v-mode is converted

to boxes by a page builder; eventually, boxes to

whch a command \shi pout is applied are written

to a DVI file.

Summary of Paragraph Construction

In the process of creating a paragraph by TEX there

are three distinct phases:

P1. Switchmg from v-mode to h-mode (opening a

new h-list - see the section 'Switching from

Vertical to Horizontal Mode').

P2. Creating the h-list. (We do not discuss t h s

phase in the paper. The notion of h-list is

explained in "The T~Xbook," pp. 94 - 95. The

systematic description of how the commands

processed in h-mode influence the state of

the h-list contain chapters 24 and 2 5 of "The

T~Xbook," pp. 267 - 287).

P3. Switchmg from h-mode to v-mode (converting

the h-list into a v-list and appending this vertical

list to the main v-list; this is discussed in the

section 'Switching from Horizontal to Vertical

Mode').

We will focus our attention on the moment of

switching from v-mode or iv-mode to h-mode and

back again.

For the sake of simplicity we confine ourselves

to the case where display math is not used inside a

paragraph.

Switching from Vertical to Horizontal

Mode

In t h s section we describe when and how level 3 of

TEX accomplishes the change of modes from v-mode

or iv-mode to h-mode.

First we say "when", i.e., we list the commands

that -if executed in one of v-modes - switch TEX'S

state to h-mode.

Then we say "how", that is, we list the actions

that TEX performs during the mode change.

Switching from vertical to horizontal mode: when.

Some commands will be called here vh-switches,

because if encountered in v-mode or in iv-mode

they switch TEY to h-mode. They can be classified

into two groups:

(a) explicit vh-si+ltches:

- "'\indent;

- *\noi ndent;

(b) implicit vh-switches (called by Knuth horizontal

commands):

- letter: any character token of category 11

(also implicit; for example, control se-

quence \d after executing the assignment

' \ l et\d=A1; the assignment associates the

token with a meaning that is primitive

in TEX);

- other character: any character token of cat-

egory 12 (also implicit; for example, control

sequence \one after executing the assign-

ment ' \ l et\one=l');

- '\char;

- a "chardef" token, i. e., a control sequence or

an active character whch has been assigned

a meaning by the command \chardef (for

example, control sequence \ae after the

assignment '\chardef\ae=" 1A'; once again,

the assignment associates the token

with a meaning that is primitive in TEX);

- "\noboundary (a new primitive that ap-

peared in TEX 3.0);

- *\unhbox, "'\unhcopy (independently of the

contents of the box being an argument);

- "\valign;

- "\vrule;

- "\hskip;

- "\hfi 1, "\hfi 11, "\hss, "<\hfi 1 neg (these - - ~ ~ -

tokens are primitive, not macros, even

though the effects they cause could be

acheved using 'k\hskip with appropriate

parameters);

- *\accent;

- "\discret ionary, '"\-;

- "\u (control space *\u is a primitive com-

mand and if used in v-mode switches

the mode to horizontal; note that nor-

mal space U, in general any space token, is

ignored in v-mode);

- $ (also the first $ of the pair $$ starting the

displayed math formula).

It should be stressed that commands "\hbox,

"\vbox and "\vtop are not switches. Such com-

mands encountered in v-mode do not change the

mode. The box (preceded by proper glue) is appen-

ded to the current v-list.

Switching from vertical to horizontal mode: how.

Assume that TEX is in either v-mode or iv-mode.

When level 3 encounters a vh-switch at the beginning

of the input token list it performs in turn the

following actions:

(a) Optionally, a vertical glue \parskip is appen-

ded to the vertical list:

- if TEX is in iv-mode and the list is empty, the

glue is not appended,

TUGboat, Volume 14 (19931, No. 3 -Proceedings of the 1993 Annual Meeting

Marek Rytko and Boguslaw Jackowslu

- if TEX is in iv-mode and the list is not empty,

the glue is appended,

- if TEX is in v-mode the glue is always appen-

ded to the part called "recent contributions"

of the main v-list.

(b) If TEX is in v-mode (not iv-mode) the page

builder is exercised, that is TEX runs the al-

gorithm that moves elements of the v-list from

the part of "recent contributions" to the part

"current page". In particular it may cause page

brealung (running the \output routine).

(c) Switching from v-mode or iv-mode to h-mode

occurs.

(d) Variables \spacefactor and \prevgraf are

assigned values 1000 and 0, respectively (these

assignments are called by Knuth "global intim-

ate assignments" and work in a rather peculiar

way).
(e) A new h-list is initialised in the following way:

- if the vh-switch that caused the mode change

was "\noi ndent, the newly created h-list is

empty;
- if the vh-switch that caused the mode change

was anything else ("\indent or any hori-

zontal command), an empty box of width

*\pari ndent is put at the beginning of the

h-list.

(f) The following elements are appended to the

beginning of the input token list:

- the contents of the token register \every-

par (normally this register is empty),

- the vh-switch, provided it is a horizontal

command; thus the explicit vh-switches

"\indent and *\noi ndent are not put back

into the input token list.

The rest of the input token list remains un-

changed.

(g) Execution of the commands from the input

token list starts. The commands are supplied

by level 2 of TEX.

Answer to the Question Q1

Let us recall the question Q1 of the first section. We

have asked about the difference between

(*) \everypar{\def\i ndent(1))

\ indent 3 i s a prime number.

and

(* C) \everypar{ \def \vru le{ l]]

\ v ru l e 3 i s a prime number.

From the point (f) of the list of actions per-

formed by TEX at the beginning of a paragraph (see

subsection 'Switchmg from vertical to horizontal

mode: how') we can draw the following conch-

sions: if a paragraph has started from the \indent

command, the token 1-1 is not put back into

the input token list, therefore after executing the

actions (a) - (f) the input token lists differ in both

cases.

In the case (*) the list is: '/defl JindentI(ll3

u i suauprimeunumber.'; in the case (**I the list

contains one more token: ' jdefl /vrulel {l} /vrule/
3ui suauprimeunumber .'.

Since redefirvng -1 has nothing to do

with the remainder of the list, the typesetting result

in the case (*) will be "3 is a prime number."

In the case (**I the token m] is first

defined as a macro expanding to the token 1 and

then the newly defined macro 1-1 is expanded

to 1. Therefore in t h s case the result will be "13 is

a prime number."

T h s example shows some of consequences of

the rule that the explicit vh-switches (Jindentj and

-1) are not put back into the input token

list after switching to h-mode.

Switching from Horizontal to Vertical

Mode

When level 3 of TEX executes commands in h-mode,

some commands cause closing the h-list and per-

forming some actions that lead to switchng from

h-mode to v-mode.

In the following subsection we say when TEX

switches from h-mode to v-mode, i.e., we list the

commands that cause switching. Then we explain

how this mode change is performed.

Switching from horizontal to vertical mode: when.

The commands listed below are called hv-switches,

because if executed in h-mode they usually cause

TEX to complete the h-mode and switch back to the

enclosing v-mode or iv-mode. Similarly to the case

of vh-switches, there are two groups of switches:

(a) explicit hv-switches:

- +\par (any token the current meaning of

which is the same as the meaning of the token /par/
when TEX starts a job);

(b) implicit hv-switches (called by Knuth vertical

commands):

- *\unvbox;

- "\unvcopy;

- *\ha1 i gn;

- *\hrul e;

- '"\vski p;

- "\vf i 1 ;

- * \ v f i l l ;

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

TEX from \indent to \par

- *\vss;

- "\vfi 1 neg;

- "\end;

- ':'\dump.

Switching from horizontal to vertical mode: how.

The behaviour of TEX when it reads a hv-switch

heavily depends on the type of the switch. If the

switch is a vertical command (implicit hv-switch),

TEX proceeds as follows:

- it inserts a token /parl at the beginning of the

input token list (before the hv-switch token),

regardless of the meaning of the Ipar/ token;

- it starts executing commands from the input

list (possibly expanding /parj if currently it is a

macro).

It should be emphasized that TEX does not

change the mode before reading the token /par/ and

that the expanded meaning of /par/ may redefine

the token that triggered the action (please note the

danger of looping).

If the switch is explicit ("\par), TEX "truly"

finishes the paragraph, performing all or some of

the actions (a) - (h) listed below.

TEX'S behaviour depends on whether the h-list

is empty or not at the moment. If the h-list contains

at least one element, all of the actions (a) - (h) are

performed. If the h-list is emply, only the actions

marked with an asterisk are executed, i.e., (e), (g)

and (h).

All possible actions are:

(a) discarding the final element of the h-list,

provided it is glue or leaders;

(b) appending to the end of the h-list the following

three elements:

- \penal ty10000 (forbid break),

- glue of the size \par f i 11 s k i p,

- \penal ty-10000 (force break);

(c) fwng the line-breaking parameters to be used

in the next step,

(d) breaking h-list into lines and transforming

this list into a v-list being the sequence of

boxes, glue, penalty items and possibly other

elements;

"(el switching from h-mode back to the enclosing

v-mode o r iv-mode;

(f) appending the v-list created in step (d) to the

enclosing v-list;

"(g) restoring the basic values of the parameters:

- \parshape=O, \hangi ndent=Opt,

\hangaf ter=l (influencing the shape of a

paragraph),
- \ l ooseness=O (influencing the number of

lines of a paragraph);

exercising the page builder if the current mode

is the v-mode (but not iv-mode), i.e., initiating

the process of moving elements from the recent

contribution part of the vertical list to the

current page.

Answer to the Question Q2

The question was:

What is the difference between:

(*) \parindent=Omm \i ndent\par

and

(C *) \noi ndent\par

Recall that we start in v-mode. The assignment

of (*) ' \pari ndent=0mrn1 is just an assignment and

does not append anything to the v-list. In both

cases the command switchng to h-mode (\indent

or \noindent) causes appending the vertical glue

of the size \parski p to the vertical list.

The command \par works differently in both

cases (see subsection 'Switchng from horizontal to

vertical mode: how') because h-lists constructed are

different:

(*) h-list at the moment of executing of the \par

command contains a box of width Omm,

(* *) h-list at the moment of executing of the \par

command is empty (the \noi ndent command

does not append anything to the h-list).

So, according to what has been said in subsection

'Switching from horizontal to vertical mode: how',

points (a) and (b), in the case (*) TEX 'breaks into

lines' a list containing:

- the empty box,

- \penal ty10000,

- \ pa r f i 1 ski p glue,

- \penal ty-10000.

The result is a one-line paragraph that is appended

to the v-list as a single box preceded by a \parski p

glue and an interline glue.

In the case (* *) only the \parskip glue is

appended to the vertical list, since the h-list is

empty at the time the \par command is executed.

Answer to the Question Q3

We have asked what was the state of TEX after (*)

executing \par and after (a *) executing {\par}.

As we already know, TEX reacts to the command

*\par performing the sequence of actions listed in

subsection 'Switchmg from horizontal to vertical

mode: how'. The results of most of the actions

do not depend on the current level of grouping.

However, the assignments mentioned in (g) are local

within the current group.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Marek Ryeko and Boguslaw Jackowski

Normally, at the end of each paragraph, Conclusions
TEX sets the values of \parshape, \hangindent,

\hangafter and \looseness to 0, Opt, 1 and 0

respectively. But if a paragraph ends with {\par}

instead of \par these values are assigned locally

within the group surrounding \par. After closing

the group TEX restores the values that the paramet-

ers had before the group started.

So, if the parameters mentioned above had
standard values before \par or {\par}, their values

do not change in both cases. If at least one of

these parameters had a nonstandard value before

\par or {\par}, executing just the \par command

would result in restoring the standard value of t h s

We would like to emphasize that it is not the

questions and answers mentioned in this paper that

are important.

Our goal was to convince the reader that having

a detailed (or, even better, formal) specification

of TEXS mechanisms one could easily deduce the

behaviour of TEX in all situations.

We have described here a small fragment of

TEX'S machmery. Although the description is only

partial and not fully precise, we believe that it makes

a lot of mysterious reactions of TEX understandable

and straightforward.

parameter, while in the case of {\par} the value of

t h s parameter would be the same as before. Acknowledgements

 or example, by redefining \par as {\endgraf} Tom& Przechlewski and Piotr Pianowski: thank
and separating paragraphs with blank lines one can you,
conveniently retain the same \parshape for several

consecutive paragraphs.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

