
Syntactic Sugar

Kees van der Laan
Hunzeweg 57, 9893PB, Garnwerd, The Netherlands, 05941-1525

Internet: cgleri s c l . rug. nl

Abstract

A plea is made for being honest with TEX and not imposing alien structures upon
it, other than via compatible extensions, or via (non-TEX) user interfaces to suit the
publisher, the author, or the typist. This will facilitate the process of producing
(complex) publications effectively, and typographcally of hgh-quality.

Introduction

TEX is a formatter and also a programming language.
TEX is unlike traditional hgh-level programming lan-
guages. It is still powerful, in a class of its own,
unusual, and unfamiliar.

Because TEX is different, macro writers propose
harnessing it into a more farmliar system, by impos-
ing syntaxes borrowed from various successful high-
level programming languages. In doing so, injustice
to TEX'S nature might result, and users might be-
come intimidated, because of the difficult-at least
unusual-encoding used to acheve the aim. The
more so when functional equivalents are already
there, although perhaps hdden, and not tagged by
familiar names. T h s is demonstrated with examples
about the loop, the switch, array addressing, op-
tional and keyword parameters, and mouth versus
stomach processing.

Furthermore, TEX encodings are sometimes pe-
culiar, different from the familiar algorithms, pos-
sibly because macro writers are captivated by the
mouth processing capabilities of TEX. Users who
don't care so much about TEX'S programming power
but who are attracted by the typesetting quality
whch can be obtained with TEX as formatter, can
be led astray when, while searchng for a particu-
lar functionality, they stumble upon unusual encod-
ings. They might conclude that TEX is too difficult,
too error-prone and more things like that and flee
towards Wordwhatever, or embrace Desk Top Pub-
lishing systems.

The way out is education, next to the provi-
sion of compatible, well-documented and supported
user interfaces, whch don't act llke syntactic sugar,
by neglecting or hding the already avdable func-
tional equivalents. Neither the publication of encod-
ings nor the provision of encodings via file servers
or archves - although a nice supporting feature for
the T~Xies -is enough. The quality, compatibility

and the simplicity of the (generic) macros should be
warranted too.

It is not the aim of this paper to revitalize a pro-
gramming languages notation war, but to stimulate
awareness and exchange ideas.

First, 1'11 glance at the big collections, and after
that I'll dive into the details of macros from various
sources.

In the Large

Let me first look roughly at the big collections, and
refer for more details to papers on the issue.

In my opinion the math mark-up in Spivak's
AM-TEX is syntactic sugar. It claims to be essen-
tially simpler than plain's math mark-up, which it
is not. It is just different and does not provide
more facilities than plain. A proof? All the ex-
amples provided in "The Joy of TEX" can be format-
ted equally withn plain. In L%S-TEX the table part
and the commutative diagrams are substantial ex-
tensions of plain, next to the general symbolic refer-
ence scheme. For more details see my book review
of Spivak's CEuvre.

I consider amsppt . s t y and the llke an adapta-
tion by a publisher of manrnac for production, with
value added, if not for the user's guides and the
provided support. These latter things can't be over-
estimated for Ben Lee User1 in my opinion. For more
detail see my AMS BLUes.

Furthermore, I consider l Q X as syntactic sugar,
especially the math part. LATEX 2.x is even more dan-
gerous because it claims to be perfect, which it is
not. If I compare the mark-up in the spirit of The
T~Xbook with my mark-up obtained via LATEX, then
the latter is much more verbose and has not added
much. The extras llke the picture environment, sym-
bolic and cross-referencing, and the bibliography

' From The THbook fame, I like the nickname
BLU.

TUGboat, Volume 14 (1 993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

environment, can be added easily by independent
tools in a manrnac-llke basis, when neededm2 Multi-
column issues have in general their difficulties -
more llkely buses-and-weirdness effects will occur;
see Richard Southall's contribution about theseis-
sues at this conference - but if one is willing to ad-
apt proofs by hand now and then, it can be added
because the functionality is available as a separate
tool, nowadays.

If only manmac and Knuth's other example
formats had been appropriately documented
in (additional) user's guides, then the (LA)TEX
world would have looked much different
from what it is today.

In the Small

In the sequel I'll descend into detail and discuss:
loops, switches, array addressing, optional and
keyword parameters, mouth processing, sorting and
lexicographc comparison.

Loops. Knuth's loop, (The THbook, p. 219), imple-
ments the general flow

pretst

posttst

with (pseudo) syntax

\l oop(p re ts t) \ i f . . . (posttst) \ repeat.

Special cases result when either (prets t) or
(posttst) is empty. The former is equivalent to, for
example, PASCAL'S while . . .do . . . , and the latter to
repeat.. .until. With t h s awareness, I consider the
variants as proposed by, for example, Pittman (1988)
and Spivak (1991) as syntactic sugar.

If \i f case . . . is used, then we have for
(posttst) several parallel paths, of whch one - de-
termined dynamically - will be traversed. Provide
and choose your path! What do you mean by tra-
versing the \ e l se-path?

With respect to the mark-up of the list of ref-
erences it is such a waste that every author should
supply the full mark-up. Why not just supply ref-
erences to the database of pre-formatted entries, in
possession of and maintained by the editors?

Why another loop? Kabelschacht (1987) and Spivak
(1989, 1991) favour a loop whch allows the use of
\ e l ~ e . ~ I have some objections to Kabelschacht's
claim that h s loop is a generalization of plain's loop.

First, it is not a generalization, just a clever,
but variant, implementation of the loop flow chart.
Second, it is not compatible with plain's loop. His
exit path is via the \ then branch (or via any of the
\or-s, when \i f case is used), and not via the \ e l se

branch.
The reason I can thnk of for introducing an-

other loop, while the most general form has been
implemented already, is the existence of commands
like \i f v o i d, and \i f eo f , and the absence of their
negatives \i fnonvoi d and \i fnoneof, respectively.
In those cases we like to continue the loop via
the \e l se branch. For the latter case this means
to continue the loop when the file is not ended.
This can be attained via modifying the loop, of
course, but I consider it simpler to use a \new i f

parameter, better known as 'boolean' or 'logical' in
other programming languages. With the \newi f

~ a r a m e t e r , ~ \ i f n e o f , the loop test for an end of
file-functionally l\i feof-can be obtained via

\i f e o f \ n e o f f a l se\ei se \neo f t r ue \ f i \i f n e o f

For an example of use, see the Sort It Out subsection.
Related to the above encoding of the logical 1, are
the encodings of the logical and, A, and or, v, via

'Recently, I encountered an application that
required a set of nested loops and local-
only assignments and definitions. TEX'S
\ loop. . . \ repeat construction proved to be
inadequate because of the requirement that
the inner loop be grouped.'

Functional code

-\ i f . . .

\ i f . . . ~ \ i f . . .

\ i f . . . v \ i f . . .

Their loops are equivalent to the general form
of the loop with the execution of an extra part after
the loop.

Be aware that the implementation of \newi f

does not allow for \g lobal .

TEX encoding
\ i f . . . \not fa1 se\el se

\ n o t t r u e \ f i \ i f n o t

\andt rue\ i f . . .\ i f . . .
\ e l se\andfal se

\el se \and fa l se \ f i \f i

\i fand

\ o r t r u e

\if.. . \ e l s e \ i f . . . \ e l se

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

I \ o r f a l s e \ f i \ f i \ i f o r

with the \newi f -s : \i f n o t , \i fand, and \i f o r .

Nesting of loops. Pittman (1988) argued that there
is a need for other loop encodings.

Kees van der Laan

If we take his (multiplication) table-I like to classify

these as deterministic tables, because the data as

such are not typed in-to be representative, then be-

low a variant encoding is given, which does not need
Pittman's double looping. The table is typograph-
ically a trifle, but it is all about how the determin-

istic data are encoded. My approach is to consider it

primanly as a table, which it is after all. Withn the

table the rows and columns are generated, via recur-

sion, and not via the \loop. Furthermore, I prefer
to treat rules, a frame, a header and row stubs as

separate items to be added to the table proper, (van
der Laan, 1992~) . The creation of local quantities is

a general TEX aspect. I too like the idea of a hidden
counter, and the next best TEX solution via the local

counter. The local versus global creation of coun-
ters is a matter of taste, although very convenient

now and then. The creation of local quantities is

tacitly discouraged by Knuth's implementation, be-
cause there is no explicit garbage collector imple-

mented and therefore no memory savings can be
gained. The only thing that remains is protection
against programming mistakes, which is indeed im-

portant.

Pittman's table, focused at the essential issue of

generating the elements, can be obtained via

$$\vbox{\halign{&\ \ h f i l # \ h f i l \ s t r u t \ c r

\rowsll$$
% with

\newcount\rcnt\newcount\ccnt\newcount\tnum

\newcount\mrow\newcount\mcol \mrow2 \mcol3

\def\rows{\gl obal \advance\rcntl

\global \ccntO \col s
\ i fnum\rcnt=\mrow\swor\fi

\rs\rows}

\ d e f \ s w o r # l \ r o w s { \ f i \ c r c r }

\def\col s{\gl obal \advance\ccntl

\tnum\rcnt \mu1 t i pl y\tnum\ccnt
\the\tnum

\ i fnum\ccnt=\mcol\sl oc \ f i

\cs\col s}
\def\s l oc#l\col s{\fi }

\def\rs{\cr}\def\cs{&}

The result is

2 4 6
The termination of the recursion is unusual. It is
similar to the mechanism used on p. 379 of The

Tflbook, in the macro \deleterightmost. The lat-

ter T~Xnique is elaborated in Fine (1992) and van der
Laan (1992d).

The above shows how to generate in TEX determ-
inistic tables, where the table entries in other pro-

gramming languages are generally generated via nes-

ted loops. One can apply t h s to other deterministic

math tables - trigonometric tables for example -

but then we need more advanced arithmetic facil-

ities in TEX (or inputting the data calculated by other
tools), not to mention the appropriate mapping of

tables which extend the page boundaries.

For a more complete encoding see my Table Di-

versions (van der Laan, 1992~) . The idea is that rules

and a frame be commanded via \rul ed, respectively

\framed. The header via an appropriate definition

of \header, x, the indication that we deal with a
multiplication table, in \ f i r s t , and the row stubs

via definition of the row stub list. All independent

and separate from the table proper part.

A better example of a nested loop is, for ex-
ample, the encoding of bubble sort as given in van

der Laan (1993a).

Loops and novices. Novice TEXles find Knuth's loop
unusual, so they sugar it into the more familiar
while, repeat, or for constructs, encouraged to do so

by exercises as part of courseware. From the func-

tionality viewpoint, there is no need for another loop
notation.

With respect to the for loop, I personally like the

idea of a hdden counter, see van der Laan (1992a) or

Pittman (1988). The hdden counter has beenused in

an additional way to plain's loop in, for example, van
der Laan (1992a1, (via \preloop and \postloop),

and will not be repeated here. This method is a
matter of taste, whch does not harm, nor hinder,
because it is a compatible extension.

And for the nesting of loops we need scope

braces, because of the parameter separator \repeat.

If braces are omitted, the first \ repeat is mistaken

for the outer one, with the result that the text of

the outer loop will not become the first \body. The
good way is, to make the inner \ repeat invisible at

the first loop level, by enclosing the inner loop in
braces.

With non-explicit nesting - for example, the in-

ner loop is the replacement text of a macro - we still

need scope braces, because otherwise the \body of

the outer loop will be silently redefined by the body

of the inner loop.

The point I would like to get across is that there
is no real need for another loop encoding. Syntactic

sugar? Yes!

Switches, is there a need? Apart from the

\ i fcase . . . construct, TEX seems to lack a multiple

branching facility with symbolic names. Fine (1992)
introduced therefore

\def\f rui t#l{\swi tch \ i f # l \ i s

a \apple

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

I have two, or rather three, remarks to the above.

First, the 'switch'-functionality is already there.

Second, Fine's implementation is based upon

'It is clear that \switch must go through the

alternatives one after another, reproducing

the test.. . '

Going through the alternatives one after another

is not necessary. Third, h s example, borrowed

from Schwarz (1987), can be solved more elegantly

without using a 'switch' or nested \ i f s at all, as

shown below.
The first two aspects are related. Fine's func-

tionality can be obtained via

\def\f rui t#l{\csname f rui t#l\endcsname}

% w i t h

\def\f rui ta{\appl e}

\def\fruitb{\banana} %et ce t e ra

With, for example, \def\appl e{{\bf appl el},

\ f r u i t a yields apple.

And what about the 'else' part? Thanks to

\csname, \ r e l ax will return when the control se-

quence has not yet been defined. So, if noth-
ing has to happen we are fine. In the other

situations one could define \def\frui t e l se{. . .},
and make the e l s e fruits refer to it, for example,

\def\frui ty{\frui te l se} ,
\def\f rui tz{\f rui t e l se}, etc. When the set is

really uncountable we are in trouble, but I don't

know of such situations. And, the five letters 'fruit'

are there only to enhance uniqueness of the names.
As example Fine gives the problem, treated by

Schwarz (1987), of printing vowels in bold face."

The problem can be split into two parts. First,

the general part of going character by character

through a string, and second, to decide whether the
character at hand is a vowel or not.

For the first part use, for example, \do1 i s t ,

(The TMbook, ex 11.5), or \ f i fo , (van der Laan,

1992d).

\def \ f i fo#l{\ i fx \of i f# l \o f i f \ f i

\processC#l}\fi fo}

\def\ofi f # l \ f i fo{\fi }

% w i t h t o be defined by the user

\def\process#l{. . .}
For the second part, combine the vowels into a
string, aeiou, and the problem is reduced to the

A somewhat misplaced example because the ac-
tions in the branches don't differ, except for the non-

vowel part.

question (cha r) E aei ou? Earlier, I used the latter
approach when searchmg for a card in a bridge hand

(van der Laan, 1990).~ That was well-hdden under
several piles of cards, I presume? Recently, I have

used the same method for recognizing accents and

control sequences in a word, (van der Laan, 1993a).

Anyway, searchmg for a letter in a string can be

based upon \ a t e s t , (The T~Xbook, p. 3751, or one
might benefit from \ismember, on p. 379. I com-

posed the following

\def\l oc#l#Z{%l ocate #1 i n #2

\def\locate##l#l##2\end{\ifx\empty##2%

\empty\foundfal se\el se\foundt rue\fi}

\l ocate#2. #l\end} \newif\i ffound

Then \ f i f o Audaci ous\ofi f
yields Audacious, with

\def\process#l{\uppercase{\loc#l}%
{AEIOU}\iffound{\bf#l}\else#l\fi}

Note that en passant we also accounted for upper-
case vowels. By the way, did you figure out why a
period - a free symbol - was inserted between the

arguments for \ locate? It is not needed in tlvs

e ~ a m p l e . ~ Due to the period one can test for sub-

strings: s t r i ng l E str ing?? Because, {str ingl E

s t r ing2} A {str ing2 E s t r ingl] 3 {str ingl =

s t r ing2}, it is also possibile to test for equality of

strings, via \l oc. Happily, there exists the following
straightforward, and TEX-specific, way of testing for

equality of strings

\def\eq#1#2{\def\st{#l}\def\nd{#2}

\i fx\st\nd\eqtrue\el se\eqfal s e \ f i }

For lexicographic comparison, see van der Laan

(1992d, 1993a) or Raichle (1992).
Knuth's switches. Knuth needed switches in h s

manrnac macros-\syntaxswitch, \xrefswitch
and the likeP(The T~Xbook, p. 424). He has im-

plemented the functionality via nested \ i fs. My ap-

proach can be used there too, but with some care
with respect to the {-token in \next (read: some

catcode adaptations). For example:

\ea\def\csname sw[\endcsname{[-branch}

\ea\def\csname swl\endcsname{bar-branche}

\def\next{[}\csname sw\next\endcsname, and

\def\next{l}\csname sw\next\endcsname

ylelds: [-branch, and bar-branche.
For manmac see The Tgbook, p. 412-425, and

the discussion in van der Laan (1993~).

The macro there was called \ s t r i p .
' If omitted the search for 'bb' in 'ab' goes wrong:

abbb vs. ab.bb, will be searched.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Array addressing. Related to the switch, or the old
computed goto as it was called in FORTRAN, is ar-
ray addressing. In TEX t h s can be done via the use
of \csname. An array element, for example, ele-
ments identified among others in PASCAL by a[1]
or a [appl e l , can be denoted in TEX via the control
sequences

\csname al\endcsname
\csname aappl e\endcsname

For practical purposes this accessing, or should we
say 'reading', has to be augmented with macros for
writing, as given in Greene (1989) and Hendrickson
(1990). Writing to an array element can be done via

\def\a#l#2{\ea\def\csname a#l%
\endcsname{#2}}\a{l}{Contents}

Typesetting (reading) via \csname al\endcsname
yields Contents, after the above.

The point I would like to make is that 'array
addressing' -also called table look-up by some au-
thors -is already there, although unusual and a bit
hidden. However, we are used to things like strong
type-checlung, aren't we? Once we can do array ad-
dressing we can encode all kind of algorithms, whch
make use of the array data structure. What about
sorting? See the Sort It Out subsection, for a glimpse,
and the in-depth treatment in van der Laan (1993a),
with O(n log n) algorithms, and application to gloss-
ary and index sorting.

Keyword parameters. In TEX literature the func-
tionality of keyword parameters is heavily used.
Some authors impose the syntax known from com-
mand languages upon TEX: for examples see Appelt
(1987) or Siebenmann (1992). In my opinion this is
syntactic sugar, because of the following rhetorical
question. What is essentially the difference between

\ r e f
\key W\by A . Weil
\paper Sur . . .
. . .
\endref

as detailed in Siebenmann (1992) and, for example,

{\def\key{W}\def\by{A. Wei 1)
\def\paper{Sur . . . I . . .
\ t ypese t1

The typesetting is done in the cited case by
\ r e f . . . \endref , and in the alternative case by
\ typese t . The values for the keys are the back-
ground defaults and those temporarily redefined.
Note that in both cases the order of the specifica-
tions is free and that defaults (empty) are used, for
not explicitly specified values.

In my bordered table macro (van der Laan,
1992c), I could have introduced keyword parameters
obeying the command languages syntax. Happily, I

refrained from that. I needed several parameters.
A parameter for framing, with functionalities non-
framed, framed, and dotfrarned. A parameter for
ruling, with functionalities nonruled, ruled, hruled,
vruled, and dotruled. And a parameter for position-
ing of the elements, with functionalities centered,
flushed left, and flushed right. (The first element of
each enumerated list of values, acting as the default
value.)

Furthermore, I decided to provide the user
the possibility of optionally specifying a caption, a
header, a rowstub list, or a footer. If any of these is
not explicitly specified, then the item wdl be absent
in print too.8 This resembles optional parameter be-
haviour, but has been realized by Knuth's parameter
mechanism.

In following Knuth's approach, I succeeded in
keeping the encoding compact, and transparent. I

find it as simple, direct, and serving the purpose
extremely well.9

Optional parameters. Among others, in LATEX, (Lam-
port, 1986), the mechanism of optional parameters
is used. Optional parameters are a special case of
keyword parameters. Knuth used optionalfieyword
parameters abundantly, and called them just para-
meters, as opposed to arguments of macros. (Thnk
for example of his various parameters and his
\every. . . s.) So it is already there, although in an
unusual way.

Another example whch illustrates the arbit-
rariness of the syntax choice with respect to op-
tional/keyword parameters vs. Knuth's parameters
is TUGboat's \twocol vs. Q X ' s twocol umn style op-
tion.

Intriguing optional parameter conventions
are the general and the systematic encoding
of an/lS-T~X's \nof r i 11 s , and TUGboatsty's
\@checkopti ons.1°
Salomon's plain Makeindex. At NTG's '92 spring
meeting David Salomon reported about adapting
MakeIndex to work with plain. He used optional

Another difficulty was to provide a default tem-
plate, whch can be overridden by the user. T h s was
solved by the same approach.

Earlier, I had a similar experience (van der Laan,
1990).

l0 More about these issues in AMS BLUes (van der
Laan, 1993d) and TUGboat BLUes, (van der Laan,
1993e) respectively.

314 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

parameters, with the function as given in the fol-
lowing table

Typeset
Source

document index

A [abc] abc abc

A [x ~ z l {abc} abc xyzabc
A 1 abc 1 abc abc

Al \abc l \abc \abc

A{\abc} replacement same
text of \abc

A [1 \abc 1 ! xyz] { } nothing \abc,
xyz

and combinations thereof.
The same functionality can be obtained via

Knuth's parameter mechanism. Only one parameter
is needed. Let us call this the token variable \p. The
idea is that the contents of \p have to be inserted
before the index-entry in the index, and not in the
text. Some symbols can be given a special meaning,
like Salomon did, for example with
subentry).

Salomon's Source Alternative

A [abc] A{abc}

" [xyz l Cabc3 ({ \ P { X Y Z I A

Al \abc l A (I \abc I 3
A{\abc} A{\abc}

A [l \abc l ! x y z l 0 {'\PI l \abc l

(to denote a

In the above I denotes manmac's verbatim delim-
iter. The macro for A has to be adapted accordingly.
It is beyond the scope of t h s paper to work that
out in detail.ll The point I like to make is that the
specification can be done equally well, if not sim-
pler, via Knuth's parameter mechanism. In manmac,

Knuth provides simple mark-up facilities for writing
index reminders to a file, except for comments and
see. . . , and see a1 so. . . parts. The latter can be
accounted for. I have touched upon these issues in
Manmac BLUes (van der Laan, 1993~) .

Mouth vs. stomach. When one starts with macro
writing in TEX one can't get around awareness of
TEX'S digestive processing. Mouth processing is un-
usual. For the moment, I consider it as a spe-
cial kmd of built-in pre-processing, an unusual but

l1 The preparation of an index via TEX has gotten a
new dimension since my encodings of sorting withm
TEX. Also the writing of general index reminders to a
file has been elaborated upon. For the first, see van
der Laan (1993a), and for the latter, see van der Laan
(1993~) .

powerful generalization of the elimination of 'dead
branches.'12

Now and then encoding is published in TUG-

boat, and other sources as well, which looks diffi-
cult, and which does not seem to reflect the familiar
algorithms. Sometimes, it has become difficult, be-
cause of the sought-after processing in the mouth,
see for example, Jeffrey (1990) and Maus (1991).13
The latter author agrees more or less with what is
stated above '. . . although the macros are hard to
read.. . '.

What puzzles me are the following questions.

Why don't authors provide the straightfor-
ward TEX encoding, not restricted to mouth
processing, as well?
Why don't they make clear the need for
mouth processing, or should I say mouth op-
timization?
If so, why don't they start with the straight-
forward encoding and explain the adaptation
steps?

Faced with the above questions myself, I would an-
swer that it is apparently too difficult to do so.14
Furthermore, I read and worked on the math parts,
the alignment parts, the macro chapter, a substan-
tial part of the dirty tricks Appendix D and of the
example formats Appendix E of The T~Xbook, and
until now found only a comment about the capabil-

ity of TEX'S mouth processing along with the macro
\de l e t e r i ghtmost. I know of the argument that
there is a need for it within an \edef, a \ w r i t e . . . ,
and the like. I have heard that, but from an applic-
ation point of view, my obvious answer is: Isn't it

Knuth might forgive me my ignorance at t h s
point. My brows are raised when I see published
code, restricted to mouth processing, which looks
so verbose and unintelligible. I definitely turn my
back on it when the straightforward alternative en-
coding is familiar, compact, elegant and generic, des-
pite the rumour that TEX'S mouth has the program-
ming power of the Turing machme. As it is, in my
opinion, that is somethng different from, let us say,
literate programming, to indicate a broad stream of
readable programs.

l3 By the way, when do we know that somethmg is
completely processed in the mouth? Is there a check
on it? Or, is it just an abstract part of the T~Xnigma?

l%d what about the efficiencies? From the view-
point of the machine and with respect to human
understanding? I have not seen the common and
mouth versions of an algorithm published simultan-
eously, let alone have them compared with respect
to timing.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Kees van der Laan

possible to do the thmgs outside those constructs,

equally well, and pass through the results?

If authors don't help me out with the above,

I consider the encoding as I'art pour I'art.

Nothing wrong with that, on the contrary.

The only thmg against that is that it will

spread a negative image about TEX encoding,

certamly not under the theoretical computer

scientists, but under the day-to-day BLUe-
type programmers, if not the authors who

just use (LA)TEX to get their work out, beau-

tifully.

Agreed, Maus referred to The T~Xbook, but Jeffrey

could have provided a more intelligible solution, and

should have refrained from burying hls method un-

der a sort of program correctness math. At the mo-
ment, it is easier to start from scratch. I experienced
that already with the encoding of: the Tower of

Hanoi, typesetting crosswords, generating n-copies,
lexicographic comparison, and sorting. The pub-

lished encodings inspired me to develop alternat-

ives, sure, but that should not be the aim, should it?

Furthermore, I wonder how many users have been

discouraged by those 'difficult to read' codes, espe-
cially when the familiar codes are straightforward?

n-capies. I needed Maus' functionality - avant la

lettre-in typesetting a fill-in form, where a num-

ber of rows had to be repeated. Of course, my editor
can do it - statically - and that served the purpose.
It is easy for sure, but it does not look elegant. A

straightforward use of tail recursion satisfied me

better, because of the simplicity, the compactness
and the elegance, at the expense of a negligible effi-

ciency loss. See the example about the bridge form

in Table Diversions (van der Laan, 1 9 9 2 ~) . ~ ~ The tail

recursion determines the number of copies dynamic-
ally, as do the other solutions given by Knuth, for ex-

ample the nice solution via the use of \a f tergroup,

(The TNbook, p. 374).16
Sort it out. Jeffrey's problem is: given an unsorted

list of (positive) integers via symbolic names, type-

set the ordered 1ist.l; In order to concentrate on the

main issues, assume that h s list adheres to Knuth's

The complexity is of order O(n), instead of

O(1og n), whchis not important, because of the small

number of copies involved.
l6 Knuth in h s chart macro - for typesetting font

tables - uses also the straightforward approach of

supplying all the lines in \normal char t . He could

have used recursion sirmlar to the way I did it in the

multiplication table of Pittman.
I have also worked on t h s problem, taking care

of the range notation aspects (van der Laan, 1993b).

list structure (The THbook, p. 378). As example con-

sider the list l8

The sorted numbers 1, 27, 314, are obtained via

\ de f \ \ # l { \ i fnum#l<\mi n \ l et \mi n = # l \ f i)

\def\first#l{\def\lop\\##l##2\pol{%
\l et \mi n=##l} \ea\ l op#l \po l)

\newi f\i f noe

\l oop\ i fx \empty\ l s t \ noe fa l se\el se

\noet r u e \ f i

\ i f n o e \f i r s t \ l s t \ I s t \min,

{ \ de f \ \ ## l { \ i f x## l \m i n \e l se\noexpand\\%

\noexpand##l\fi}\xdef\lst(\lst}}%

\ repeat

The encoding implements the looping of the basic

steps

find minimum (via \I s t , and suitable definition

of the active list separator \\)

typeset minimum (via \ m i n)

delete minimum from the list (again via

an(other) appropriate definition of the active

list separator).

For removing a typesetted element, I was inspired

by \ remequival en t (The T~Xbook, p. 380).19
The above is effective for short lists, as was the

case in Jeffrey's a p p l i ~ a t i o n . ~ ~ For longer (and ran-

dom) lists, techmques of order O(n1ogn) are more

appropriate. For plain TEX encodings for the latter

see van der Laan (1993a). There it has been applied

to lexicographc sorting, too.
Lexicographic comparison. Eijkhout has provided

macros - focused at mouth processing -for lexico-

graphic ordering (1991). His \ i f a l l chars . . . \ a r e

. . . \be fo re made ample use of \expandafter, and
is not easily accessible for somebody with say two

years of TEX e x p e r i e n ~ e . ~ ~
Hackers might go into ecstasy, but application-

oriented users become discouraged. For a straight-

forward alternative, not restricted to mouth pro-

cessing, see van der Laan (1992d). The point I'd like

Is Equally-well, the comma could have been used

as an active list separator, which looks more natural.

I decided to adhere to Knuth's notation.
l9 I was not able to apply the parameter separator

techmque to locate the element to be removed.
20 Remember that sorting based on linear search

has complexity 0 (n2) .
21 Moreover it had a flaw, as pointed out by

Bernd Raichle (1992), who presented an alternative

with less \expandaf tem and an intriguing use of
\csname.

316 TUGboat, Volume 11 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

to make is that I would have welcomed the familiar

solution and the transformation steps as well.

Conclusions

It is hoped that authors who can't resist the chal-

lenge to impose syntaxes from successful program-

ming languages upon TEX also encode the desired

functionality in TEX'S peculiar way, and contrast this

with their proposed improvements. The novice, the

layman and hls peers will benefit from it.

The difficulties caused by TEX'S unusual encod-
ing mechanisms can best be solved via education,

and not via imposing structures from other lan-

guages. The latter will entail confusion, because of
all those varieties. Furthermore, it is opposed to the

Reduced Instruction Set idea, which I like. For me
it is similar to the axioms-and-theorems structure in

math, with a minimal number of axioms, all mutually

orthogonal.

Publishing houses, user groups, and macro
writers are encouraged to develop and maintain user

interfacesz2 whch do justice to TEX'S nature, and

don't increase the complexity of TEX'S components.

Good examples are: TUGboat's sty files, AmS-LATEX,
AmS-TEX, and LW-TEX, and not to forget good old

manmac! Macro-TEX and the LATEX3 project are prom-
ising.

File servers and archives are welcomed, but the
compatibility, the simplicity and in general the qual-

ity, must be warranted too. Not to mention pleasant

documentation and up-to-date-ness.

My wishful thmkmg is to have intelligent
 archive^,'^ whch have in store what is locally gener-

ally needed, and know about what is available else-

where. The delivery should be transparent, and inde-

pendent of whether it comes from elsewhere or was

in store. For corrections and certifications I would
welcome a similar approach as ACM's loose-leaf col-

lection of algorithms

Any thrd-rank engineer can make a com-

plicated apparatus more complicated, but it

takes a touch of genius to find one's way back

to the basic principles, whch are normally

fairly simple.

E.F. Schumacher, Small is beautiful.

I'm happy to include the following synopsis of the

TUG ' 93 proceedings referee

'The point he is trying to make is that TEX

macros are software and the really difficult

22 And user's guides.
23 Essentially the trickle approach, see the Earn

Network Resource Guide (1993) , from the fileserver.

lessons of software engineering should be
used by TEX macro writers as well. Those of

us who try in software engineering are not

overly successful in keeping thmgs simple

and it is not surprising that little of the right

way of doing software has been included in

the construction of TEX macros.'

Acknowledgements

Wlodek Bzyl and Nelson Beebe are lundly acknow-

ledged for their help in clearing up the contents and
correcting my use of English, respectively.

Bibliography

Appelt, W. "Macros with Keyword Parameters". TUG-

boat , 8 (2) , 182 - 184, 1987.

Appelt, W. "TEX fiir Fortgeschrittene - Programmier-

t e c h k e n und Makropakete". Addison-Wesley,

1988.

Beebe, N.H.F. "The TUGlib Server". MAPS91.2, 11 7 -

123, 1991. (Also in T~Xline 11.)

Beeton, B.N, R.F Whitney. "TUGboat Author's Guide".

TUGboat, 10 (3) , 378 - 385, 1989. (Not com-

pletely up-to-date.)

EARN Association "Guide to Network Resource

Tools", 1993.

Eijkhout, V. "TEX by Topic". Addison-Wesley, 1992.

Fine, J. "Some basic control macros for TEX". TUG-

b o a t l 3 (1) , 75 - 83 , 1992.

Greene, A.M. "T~Xreation-Playmg games with TEX'S

mind". TUGboat, 10 (4) , 691 - 705 , 1989.

Hendrickson, A. "MacroT~X". 1989.

Hendrickson, A. "Getting T~Xnical: Insights into TEX

Macro Writing Techques". TUGboat, 11(3) ,

359 - 370, 1990. (Also M S 9 0 . 2 .)

Jeffrey, A. "Lists in TEX'S mouth". TUGboat, 11(2) ,

237 - 244 , 1990 .

Jensen, K., and N. Wirth. "PASCAL user manual and

report". Springer-Verlag, 1975.

Kabelschacht, A. "\expandafter vs. \ l e t and \def

in Conditionals and a Generalization of plain's

\loopw. TUGboat, 8 (2) , 184 - 185, 1987.

Knuth, D.E. "The T~Xbook". Addison-Wesley, 1984.

Laan, C.G van der. "Typesetting Bridge via TEX. TUG-

boat , 11(2) , 265 - 276, 1990.

Laan, C.G van der. "Math into BLUes". Part I: Mourn-

ing. Proceedings TUG ' 91 , TUGboat, 12(4) , 485 -

501, 1991.

Part 11: Sing Your Song. Proceedings EuroTEX ' 9 1 ,

GUTenberg Cahiers, 10&11, 147 - 170, 1991.

TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting 3 17

Kees van der Laan

Laan, C.G van der. "Tower of Hanoi, Revisited". TUG-

boat, 13(1) , 91 - 9 4 , 1992.

Laan, C.G van der. "FIFO & LIFO Incognito". EuroTEX

' 92 , 225 - 234,1992. (Also in MAPS92.1. Anelab-

orated version is FIFO & LIFO Sing the BLUes.)

Laan, C.G van der. "Table Diversions". EuroTEX ' 9 2 ,

191 - 211, 1992. (A little adapted in MAPS92.2.)

Laan, C.G van der. "FIFO &LIFO Sing the BLUes". TUG-
boat, 14(1) , 54 - 6 0 , 1993. (Also in MAPS92.2,

139 - 144, 1992.)

Laan, C.G van der. "Spivak's Euvre". W S 9 2 . 1 , 1 3 9 -

142, 1992.

Laan, C.G van der. "Sorting in BLUe". These Proceed-
ings. (The complete article is in MAPS93.1, 149 -

170. Heap sort encoding has been released in

MAPS92.2.)

Laan, C.G van der. "Typesetting number sequences".

MAPS93.1, 145 - 148, 1993.

Laan, C.G van der. "Manmac BLUes - Or how to type-

set a book via TEX". MtZPS93.1, 171 - 191, 1993.

(To be submitted TUG ' 9 4)

Laan, C.G van der. "AMS BLUes -professionals at
work". MAPS93.1, 192 - 212, 1993.

Laan, C.G van der. "TUGboat BLUes -how TEXies do
it". W S 9 3 . 2 (In progress).

Larnport, L. "LATEX, user's guide & reference manual".

Addison-Wesley, 1986.

Maus, S. "An expansion power lemma". TUGboat,

12 (2) , 277, 1991.

Pittman, J.E. "Loopy.T~X". TUGboat9(3), 289 - 291,

1988.

Raichle, B. In: V. Eijkhout. "Oral TEX: Erratum". TUG-

boat, 13(1) , p. 7 5 , 1992.

Salomon, D. "NTG's Advanced TEX course: Insights

& Hindsights". MAPS92 Special, 1992. Revised - 500p.

Schwarz, N. "Einfuhrung in TEX". Addison-Wesley,

1987.

Siebenmann, L. "Elementary Text Processing and
Parsing in TEX-The Appreciation of Tokens".

TUGboat, 13(1) , 62 - 7 3 , 1992.

Spivak, M.D. "3m.S-TEX - The Joy of TEX". American

Mathematical Society, 1986.

Spivak, M.D. "L9.5-TEX-The Synthesis". TEX-

plorators, 1989.

Spivak, M.D. "L%S-TEX Wizard's manual". TEX-

plorators, 1991.

Youngen, R.E. "TEX-based production at AMS".

MAPS92.2, 6 3 - 6 8 , 1992.

318 TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

