A style option for rotated objects in LATEX

Sebastian Rahtz and Leonor Barroca

Contents

1	History	156
2	Usage	156
3	Driver-specific macros	156
4	Rotation environments 4.1 Sideways	159 159 159 160
5	Rotated tables and figures 5.1 Rotated captions only	163 165
6	Trigonometry macros	166
7	Examples	169

List of Figures

1	Working out the position of a box	
	by considering x, y coordinates of five	
	vertices	161
2	Rotation of paragraphs between 0	
	and -320°	171
3	Rotation of paragraphs between 0	
	and 320°	172
4	Turned, normal, and sideways, pic-	
	tures within a figure	176
5	Figures rotated with 'psfig'	176
6	A pathetically squashed rotated	
	pussycat	180

List of Tables

1	This is a narrow table, which should
	be centred vertically on the final page. 177
2	Grooved Ware and Beaker Features.

Abstract

This article documents a LATEX style option, 'rotating.sty', which perform all the different sorts of rotation one might like, including complete figures, within the context of a PostScript driver.

1 History

Sebastian Rahtz first wrote rotation macros in 1988, and has been fighting with them since. The original trigonometry macros came from Jim Walker (Dept Mathematics, University of South Carolina); we later borrowed the trigonometry macros in psfig 1.8. This set of macros is a complete overhaul of the practice of rotated IATEX boxes destined for a PostScript driver.

We finally decided to clean these macros up and document them to bare-bones 'doc' standard in order to avoid doing some real work in January 1992. We must thank Frank Mittelbach and Rainer Schöpf for promoting this style of literate macro writing, and inspiring the rest of us to patch up our sorry efforts. We apologize for the fact that we have not attempted to make these macros compatible with 'plain'. Life is just too short.

A modification was supplied 9/2/92 by A. Mason to handle the *Textures* driver, chosen with the \rotdriver{TEXTURES} option. The 'sidewaysfigure' environment was fixed on 17/3/92 after suggestions by Rainer Schöpf.

2 Usage

This style option provides three ${\rm L}\!\!\!^{\rm A}T_{\rm E}\!X$ environments:

- sideways prints the contents turned through 90 degrees counterclockwise;
- turn prints the contents turned through an arbitrary angle;
- rotate prints the contents turned through an arbitrary angle; but does *not* leave any space for the result.

A full set of examples are given in section 7. But now we present the documented code.

3 Driver-specific macros

We try to make this style driver-independent (!) by isolating all the usage of **\special** into one case statement later, so first we declare dummy values for the two macros which vary according to the driver, in case **\rotdriver** is never called, or produces no results.

```
\def\rot@start{}
\def\rot@end{}
```

This style option (potentially!) supports a variety of dvi drivers; the user must declare the one to be used. \rotdriver The user can select the specials that should be used by calling the command \rotdriver{drivername}. Possible choices are:

- DVItoLN03
- DVItoPS
- DVIps
- $\bullet emT_EX$
- Textures

This command can only be used in the preamble of the document. The list of drivers was created for compatibility with the 'changebar' macros (version 3.0 of November 1991 by Johannes Braams), but the code only exists in this style option for 'dvips' and 'dvitops'.

The argument should be case-insensitive, so it is turned into a string containing all uppercase characters. To keep some definitions local, everything is done within a group.

```
\def\rotdriver#1{%
  \bgroup\edef\next{\def\noexpand\tempa{#1}}%
  \uppercase\expandafter{\next}%
  \def\LN{DVITOLN03}%
  \def\DVIToPS{DVITOPS}%
  \def\DVIPS{DVIPS}%
  \def\emTeX{EMTEX}%
  \def\Textures{TEXTURES}%
```

The choice has to be communicated to the macros later on that will be called from within \document. For this purpose the control sequence \rot@driversetup is used. It receives a numeric value using \chardef.

```
\global\chardef\rot@driversetup=0
\ifx\tempa\LN
    \global\chardef\rot@driversetup=0\fi
\ifx\tempa\DVItoPS
    \global\chardef\rot@driversetup=1\fi
\ifx\tempa\DVIPS
    \global\chardef\rot@driversetup=2\fi
\ifx\tempa\emTeX
    \global\chardef\rot@driversetup=3\fi
\ifx\tempa\Textures
    \global\chardef\rot@driversetup=4\fi
\egroup
```

We use a case statement to define the macros appropriate for each driver. We will define two commands, \rot@start and \rot@end, which assume that the macro \rot@angle produces the angle of rotation.

\ifcase\rot@driversetup

The first case (0) is for 'dvitoln03', for compatibility with 'changebar.sty'; we don't have access to this, so pass by on the other side.

```
% case 0
\typeout{WARNING! ****
no specials for LN03 rotation}
\or
```

First real case, James Clark's 'dvitops'. This has not been well tested with dvitops; the figures of rotated paragraphs come out oddly. Dvitops has some unusual ways of

dealing with PostScript \special commands; they are kept in a list and dealt with all together. Each time you use an effect, you number it as a block.

```
\rot@count=1
\def\rot@start{\special{dvitops: origin
    rot\the\rot@count}%
\special{dvitops: begin rot\the\rot@count}}%
\def\rot@end{\special{dvitops: end}%
\special{dvitops: rotate rot\the\rot@count \space
    \the\rot@angle}%
\global\advance\rot@count by1}%
\or
```

Case 2, Rokicki's dvips (this code works with version 5.47). We simply emit some literal PostScript (code copied from Rokicki's 'rotate.sty').

```
\def\rot@start{\special{ps:gsave currentpoint
currentpoint translate \the\rot@angle\space
rotate neg exch neg exch translate}}%
\def\rot@end{\special{ps:currentpoint
grestore moveto}}%
```

To be consistent, lets allow for emTEX one day performing here as well.

```
\or % case 3, emTeX
\typeout{WARNING! ***
emTeX does no rotation at this time}
```

Lastly sofar, one for a Mac TEX. The *Textures* PostScript code has been modified from code provided by:

Charles Karney	Phone: +1 609 243 2607
Plasma Physics Laboratory	Fax: +1 609 243 2662
Princeton University	MFEnet: Karney@PPC.MFEnet
PO Box 451	Internet: Karney@Princeton.edu
Princeton, NJ 08543-0451	Bitnet: KarneyPPC.MFEnet@ANLVMS.Bitnet

The following assumptions are made about the PostScript that *Textures* generates:

- 1. A single transform is used for all *Textures* output.
- 2. The PostScript \special is bracketed by gsave ... grestore.
- 3. Immediately after the gave, the coordinate system is translated so the origin is at the current point; and the y axis is flipped. (The y-axis isn't flipped any more...rotations are clockwise. A.M.)
- 4. *Textures* doesn't leave anything on the stack for long periods. (This simplifies restoring the default coordinate system.)

\or	
\typeout{Textures rotation}	
\def\rot@start{postscr	ript
0 0 transform	% Get current location in device
	% coordinates.
grestore	% Undoes Textures gsave.
matrix currentmatrix	% Save current transform on stack for use
	% by \Cunrotate.
3 1 roll	% Put transform at back of current location.
itransform	% Current location in Textures coords
dup 3 -1 roll	% Duplicate the location; x y ==> x y x y
dup 4 1 roll exch	
translate	% Translate origin to current location
% 1 -1 scale	% Flip y coordinate
\the\rot@angle\space rotate	% Rotate by \@rotation

```
% 1 -1 scale
                                 % Unflip y coordinate
 neg exch neg exch translate
                                % Translate origin back
                                % To match grestore
  gsave}}
\def\rot@end{\special{postscript
  grestore
                                % Undoes Textures gsave
                                % Set current transform to value saved on
  setmatrix
                                % stack. (Hopefully, it's still there.)
  gsave}}
                                % To match grestore
\else
\typeout{WARNING! ***
unknown driver - no rotation}
\fi
}
```

Finaly, we will need boxes to take copies of what we are rotating, and will need some registers to store sizes and angles.

```
\newsavebox{\rot@box}%
\newsavebox{\rot@tempbox}%
\newdimen\rot@temp
\newdimen\rot@width
\newdimen\rot@height
\newdimen\rot@depth
\newdimen\rot@right
\newdimen\rot@left
\newcount\rot@count
\newcount\rot@count
\newcount\rot@circle
```

4 Rotation environments

The basic idea is to put the contents of the environment into a box, change the depth, width and height of that box (as known to $T_{E}X$) if necessary, and then rotate it.

4.1 Sideways

The 'sideways' environment simply turns the box through 90° , so no trigonometry is necessary.

```
\sideways \def\sideways{\savebox{\rot@box}\bgroup}
```

```
\endsideways \def\endsideways{\egroup%
```

```
\rot@angle-90
\rot@width\ht\rot@box
\advance\rot@width by\dp\rot@box
\rot@height\wd\rot@box
\wd\rot@boxOpt%
\dp\rot@boxOpt%
\rule{\rot@boxOpt%
\rule{\rot@boxOpt%
\rule{\rot@boxOpt%
\rule{\rot@boxOpt}}%
\rot@start\usebox{\rot@height}}%
}
```

4.2 Rotate

In the case of the rotate environment, we are just going to turn the box without working out the space for it, so again no trigonometry.

```
\rotate \def\rotate#1{%
```

```
\global\rot@angle=#1
\savebox{\rot@box}\bgroup}
```

\endrotate \def\endrotate{\egroup% \rot@start% \dp\rot@box=0pt\wd\rot@box=0pt\ht\rot@box=0pt% \usebox{\rot@box}% \rot@end% }%

4.3 Turn

This is the tricky one. We rotate the box, and work out how much space to leave for it on the page. We deal with the box as a whole, i.e. both depth and height are joined to make a single height. After working out the space taken up this box after rotation, we can worry about placing it correctly in relation to the baseline.

The original philosophy was that given a box with width W and height H, then its height after rotation by R is $W \times \sin(R) + H \times \cos(R)$, and it extends $W \times \cos(R)$ to the right and $H \times \sin(R)$ to the left of the original bottom left corner (formula courtesy of Nico Poppelier). This works fine in the 'top right' quadrant, but causes problems in the other quadrants, so we adopted a rather more brute-force scheme. We consider three vertices of the original unrotated box (A, B and C in Figure 1), and calculate their x, y co-ordinates after rotation by R degrees. This deals with the *top half* of the box only, that which comes above the baseline; for the lower half (below the baseline), we deal with vertices D and E. Given original dimensions of the box as width W height H, and depth D, the formulae for calculating new positions are:

> Ax= $W \times \cos(R)$ $W \times \sin(R)$ Ay= $(W \times \cos(R)) - (H \times \sin(R))$ Bx= $(W \times \sin(R)) + (H \times \cos(R))$ By= $= H \times \cos(R + 90)$ CxCy $= H \times \sin(R + 90)$ $Dx = D \times \cos(R + 270)$ Dy $= D \times \sin(R + 270)$ $= (D \times \cos(R + 270)) - (W \times \sin(R + 270))$ Ex $= (D \times \sin(R + 270)) + (W \times \cos(R + 270))$ Ey

We could work out how far the rotated box extends to the right of the 'starting point' (S in Figure 1) by taking the largest of (Bx, Cx, Dx, Ex); how far it extends to the left by taking the smallest of (Bx, Cx, Dx, Ex); how far above the baseline with the largest of (By, Cy, Dy, Ey); and how far below the baseline with the smallest of (By, Cy, Dy, Ey); But that would be a bit slow, so we simplify matters by working out first which quadrant we are in, and then picking just the right values.

\endturn \def\endturn{%

\egroup%

Because PostScript works clockwise, and because we conceptualize the trigonometry in a counter-clockwise way, we temporarily reverse the direction of the angle:

\multiply\rot@angle by-1

We are going to need to know the sines and cosines of three angles: R, R + 90 and R + 270. Simplest to calculate all these now; in fact we can work it out from just two calculations.

\Sine{\rot@angle}% \let\sineA\sine

Figure 1: Working out the position of a box by considering x, y coordinates of five vertices

```
\advance\rot@angle by90%
\Sine{\rot@angle}%
\let\sineB\sine
\def\sineC{-\sine}%
\def\cosineA{-\sineC}%
\def\cosineB{-\sineA}%
\let\cosineC\sineA
\advance\rot@angle by-90%
```

Now we can calculate the co-ordinates of the relevant vertices. To make the coding easier, we define the formulae given above as TFX macros (just the ones we ever use).

```
\def\rot@Ex{\rot@temp\cosineA\wd\rot@box
   \advance\rot@temp by -\sineA\ht\rot@box}%
\def\rot@Ey{\rot@temp\sineA\wd\rot@box}%
\def\rot@Cx{\rot@temp\cosineB\ht\rot@box}%
\def\rot@Cy{\rot@temp\sineB\ht\rot@box}%
\def\rot@Dx{\rot@temp\sineB\ht\rot@box}%
\def\rot@Dy{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\cosineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
\def\rot@Ex{\rot@temp\sineC\dp\rot@box}%
```

Now a straightforward 'if' condition to see which quadrant we are operating in; but if the angle is negative, first add 360.

First quadrant: Height = By, Right = Ex, Left = Cx, Depth = Dy

```
\rot@By\rot@height\rot@temp
\rot@Ex\rot@right\rot@temp
\rot@Cx\rot@left\rot@temp
\rot@Dy\rot@depth\rot@temp
\else
```

\ifnum\rot@circle<180

Second quadrant: Height = Ey, Right = Dx, Left = Bx, Depth = Cy

```
\rot@Ey\rot@height\rot@temp
\rot@Dx\rot@right\rot@temp
\rot@Bx\rot@left\rot@temp
\rot@Cy\rot@depth\rot@temp
\else
```

```
\ifnum\rot@circle<270
```

Third quadrant: Height = Dy, Right = Cx, Left = Ex, Depth = By

```
\rot@Dy\rot@height\rot@temp
\rot@Cx\rot@right\rot@temp
\rot@Ex\rot@left\rot@temp
\rot@By\rot@depth\rot@temp
\else
```

Fourth quadrant: Height = Cy, Right = Bx, Left = Dx, Depth = Ey

\rot@Cy\rot@height\rot@temp
\rot@Bx\rot@right\rot@temp
\rot@Dx\rot@left\rot@temp

\fi

```
\rot@Ey\rot@depth\rot@temp
\fi
\fi
```

Put the angle back to what it was before, to pass to PostScript

\multiply\rot@angle by-1

At the end of all that nonsense, $\rot@height$ contains the amount *above* the baseline we need to leave for the rotated box we are dealing with, and $\rot@depth$ the amount *below* the baseline. $\rot@left$ and $\rot@right$ are offsets to left and right which we need to take into account. We are going to set the size of the box we are dealing with to 0 all round, and put in some struts to force T_EX to leave space. We will position ourselves at the point where the bottom left-hand corner of the top half of box *would* have been, then swing the box round by that corner. Thinking about this drives you mad.

\wd\rot@box=0pt\ht\rot@box=0pt%

The left adjustment comes out negative, so be careful:

```
\ifdim\rot@left<Opt
    \rule{-\rot@left}{0pt}%
\fi</pre>
```

Put in struts (not advancing forward at all), for the height and depth.

```
\ifdim\rot@height>Opt
    \rlap{\rule{0pt}{\rot@height}}%
\fi
\ifdim\rot@depth<0pt
    \rlap{\rule[\rot@depth]{0pt}{-\rot@depth}}%
\fi</pre>
```

Finally emit the PostScript code to start rotation, output the box, end the rotation, and leave some space at the right if needed.

5 Rotated tables and figures

Now we present some macros adapted from those by James Dolter

(jdolter@sawtooth.eecs.umich.edu) which provide a complete environment for sideways figures and tables. We define two environments sidewaysfigure and sidewaystable that fit in with the normal table and figure floats. These are 'fixed' environments that just do 90 degree rotation, but it would be easy to parameterize this to do other rotations if needed (the mind boggles...).

First a generalised 'rotfloat' environment. We have to take a copy of IATEX's float macros, in order to change the assumed width of a float being \columnwidth. We want it to work on a width of \textheight so that when we rotate the float, it comes out the right height. This is not actually very satisfactory, since what we *really* want is for rotated floats to occupy the space they actually *use*. The captions are a problem — since they can precede the figure or table, we cannot set them in a box of the right width (i.e. the *height* of the forthcoming object), because it has not happened yet. The result of these difficulties is that rotated figures always end up as full page figures.

\def\@rotfloat#1{\@ifnextchar[{\@xrotfloat{#1}}{%

\edef\@tempa{\noexpand\@xrotfloat{#1}[\csname fps@#1\endcsname]}\@tempa}}

```
\def\@xrotfloat#1[#2]{\ifhmode \@bsphack\@floatpenalty -\@Mii\else
\@floatpenalty-\@Miii\fi\def\@captype{#1}\ifinner
\@parmoderr\@floatpenalty\z@
\else\@next\@currbox\@freelist{\@tempcnta\csname ftype@#1\endcsname
\multiply\@tempcnta\@xxxii\advance\@tempcnta\sixt@@n
\@tfor \@tempa :=#2\do
{\if\@tempa h\advance\@tempcnta \@ne\fi
\if\@tempa t\advance\@tempcnta \tw@\fi
```

\if\@tempa b\advance\@tempcnta 4\relax\fi

```
\if\@tempa p\advance\@tempcnta 8\relax\fi
```

}\global\count\@currbox\@tempcnta}\@fltovf\fi

\global\setbox\@currbox\vbox\bgroup

The only part changed is the setting of \hsize within the \vbox to be \textheight instead of \columnwidth.

\hsize\textheight \@parboxrestore

}

We copy the '\end@float' macro and emend it to rotate the box we produce in a float.

```
\def\end@rotfloat{\par\vskip\z@\egroup%
   \ifnum\@floatpenalty <\z@
   \global\setbox\rot@tempbox\box\@currbox
    \global\setbox\@currbox\vbox{\centerline{\begin{turn}{-90}}%
    \box\rot@tempbox\end{turn}}}%
     \@cons\@currlist\@currbox
    \typeout{Adding sideways figure to list,
       \the\ht\@currbox\space by \the\wd\@currbox}%
    \ifdim \ht\@currbox >\textheight
       \@warning{Float larger than \string\textheight}%
       \ht\@currbox\textheight \fi
    \ifnum\@floatpenalty <-\@Mii
       \penalty -\@Miv
       \@tempdima\prevdepth
       \vbox{}%
       \prevdepth \@tempdima
       \penalty\@floatpenalty
    \else \vadjust{\penalty -\@Miv
       \vbox{}\penalty\@floatpenalty}\@esphack
    fi fi
```

The following definitions set up two environments, sideways table and sidewaysfigure, which uses this type of float. Naturally, users may need to change these to suit their local style. Both contribute to the normal lists of figures and tables.

```
\let\l@sidewaysfigure\l@figure
\let\c@sidewaysfigure\c@figure
\let\p@sidewaysfigure\p@figure
\let\thesidewaysfigure\thefigure
\def\fps@sidewaysfigure{tbp}
\def\frype@sidewaysfigure{1}
\def\ext@sidewaysfigure{lof}
\def\fnum@sidewaysfigure{Figure \thefigure}
\def\sidewaysfigure{\let\make@caption\make@rcaption
\@rotfloat{sidewaysfigure}}
%
\let\endsidewaysfigure\end@rotfloat
%
\let\l@sidewaystable\l@table
\let\c@sidewaystable\c@table
```

```
\let\p@sidewaystable\p@table
\let\thesidewaystable\thetable
\def\fps@sidewaystable{tbp}
\def\ftype@sidewaystable{2}
\def\ext@sidewaystable{lot}
\def\fnum@sidewaystable{Table \thetable}
\def\sidewaystable{\let\make@caption\make@rcaption
\@rotfloat{sidewaystable}}
\let\endsidewaystable\end@rotfloat
```

We need to copy a standard \@makecaption to set the caption on a width of the *height* of the float (i.e. the text height). This macro is normally defined in IATEX style files, so style file writers who change that will also need to redefine \r@caption.

```
\long\def\@makercaption#1#2{%
    \vskip 10\p@
    \setbox\@tempboxa\hbox{#1: #2}%
    \ifdim \wd\@tempboxa >\vsize
        #1: #2\par
    \else
        \hbox to\vsize{\hfil\box\@tempboxa\hfil}%
    \fi}%
```

5.1 Rotated captions only

Sometimes you may find that the rotation of complete figures does not give quite the right result, since they always take up the whole page. You may prefer to rotate the caption and the float contents separately within a conventional figure. Here we offer a suggestion for a *\rotcaption* command, which inserts the caption rotated by 90° . It is essentially a copy of the normal captioning code. Styles which define the *\@makecaption* command may also need to define *\@makerotcaption*.

```
\def\rotcaption{\refstepcounter\@captype\@dblarg{\@rotcaption\@captype}}
\long\def\@rotcaption#1[#2]#3{%
\addcontentsline{\csname ext@#1\endcsname}{#1}{%
 \protect\numberline{\csname the#1\endcsname}{\ignorespaces #2}}%
  \par
  \begingroup
    \@parboxrestore
    \normalsize
    \Qmakerotcaption{\csname fnumQ#1\endcsname}{#3}%
  \endgroup}
\long\def\@makerotcaption#1#2{%
 \setbox\@tempboxa\hbox{#1: #2}%
 \ifdim \wd\Ctempboxa > .8\vsize
    \begin{rotate}{-90}%
    \begin{minipage}[b]{.8\textheight}#1 #2\end{minipage}%
    \end{rotate}\par
 \else%
    \mbox{\begin{rotate}{-90}\box\@tempboxa\end{rotate}}%
 \fi
 \hspace{12pt}%
}
```

While we are doing useful new environments, why not add landscape slides?

```
\newenvironment{landscapeslide}[1]{\begin{sideways}%
\vbox\bgroup\begin{slide}{#1}}%
{\end{slide}\egroup\end{sideways}}
```

6 Trigonometry macros

Now the trigonometry macros which are borrowed from psfig1.8; the original author is not credited there, so we cannot do so either. All we have done is remove some spurious spaces which were creeping into my output (and causing havoc!), and put the comments in 'doc' style.

```
\chardef\letter = 11
\chardef\other = 12
```

Turn me on to see TEX hard at work ...

\newif\ifdebug%

don't need to compute some values

\newif\ifc@mpute%

but assume that we do

```
\c@mputetrue%
\let\then =\relax
\def\r@dian{pt }%
\let\r@dians =\r@dian
\let\dimensionless@nit =\r@dian
\let\dimensionless@nits =\dimensionless@nit
\def\internal@nit{sp }%
\let\internal@nits =\internal@nit
\newif\ifstillc@nverging
\def\Mess@ge #1{\ifdebug\then\message {#1}\fi}%
```

Things that need abnormal catcodes

```
{%
\catcode '\@ =\letter
\gdef\nodimen {\expandafter\n@dimen\the\dimen}%
\gdef\term #1 #2 #3%
```

freeze parameter 1 (count, by value)

{\edef\t0 {\the #1}%

freeze parameter 2 (dimen, by value)

```
\edef\t@@ {\expandafter\n@dimen\the #2\r@dian}%
\t@rm {\t@} {\t@@} {#3}%
}%
\gdef\t@rm #1 #2 #3%
{{%
\subset 0 = 0
\dimen 0 = 1\dimensionless@nit
\dim 2 = #2 relax
\Mess@ge {Calculating term #1 of\nodimen 2}%
\loop
\ifnum\count 0 < #1
\then\advance\count 0 by 1
\Mess@ge {Iteration\the\count 0\space}%
\Multiply\dimen 0 by {\dimen 2}%
\Mess@ge {After multiplication, term =\nodimen 0}%
\Divide\dimen 0 by {\count 0}%
\Mess@ge {After division, term =\nodimen 0}%
\repeat
\Mess@ge {Final value for term #1 of
\nodimen 2\space is\nodimen 0}%
\xdef\Term {#3 =\nodimen 0\r@dians}%
\aftergroup\Term
```

```
}}%
\catcode (\p =\other
\catcode (\t =\other)
```

throw away the "pt"

```
\gdef\n@dimen #1pt{#1}%
}%
```

just a synonym

\def\Divide #1by #2{\divide #1 by #2}%

allows division of a dimen by a dimen

\def\Multiply #1by #2%

should really freeze parameter 2 (dimen, passed by value)

```
{{%
 \count 0 = #1\relax
 \count 2 = #2\relax
 \count 4 = 65536
 \Mess@ge {Before scaling, count 0 =\the\count 0\space and
 count 2 =\the\count 2}%
```

do our best to avoid overflow

```
\ifnum\count 0 > 32767%
\then\divide\count 0 by 4
\divide\count 4 by 4
\else\ifnum\count 0 < -32767
\then\divide\count 0 by 4
\divide\count 4 by 4
\else
\fi
\fi
</pre>
```

while retaining reasonable accuracy

```
\ifnum\count 2 > 32767%
\then\divide\count 2 by 4
\divide\count 4 by 4
\else\ifnum\count 2 < -32767
\then\divide\count 2 by 4
\divide\count 4 by 4
\else
\fi
\fi
\fi
\fi
\multiply\count 0 by\count 2
\divide\count 0 by\count 4
\xdef\product {#1 =\the\count 0\internal@nits}%
\aftergroup\product
}}%</pre>
```

 $\sin(x+90) = \sin(180-x)$

\def\r@duce{\ifdim\dimen0 > 90\r@dian\then%
\multiply\dimen0 by -1
\advance\dimen0 by 180\r@dian
\r@duce

 $\sin(-x) = \sin(360 + x)$

\else\ifdim\dimen0 < -90\r@dian\then%
\advance\dimen0 by 360\r@dian
\r@duce</pre>

```
\fi
 \fi}%
 \def\Sine#1%
 {{%
        \dim 0 = #1 r@dian
        \r@duce
        ifdimdimen0 = -90\rcdianthen
              \dim 4 = -1 r
              \c@mputefalse
        \fi
        ifdimdimen0 = 90\r@dian\then
              \dim 4 = 1 r
              \c@mputefalse
        \fi
        ifdim dimen0 = 0 r dian then
        \dim 4 = 0 r 
        \c@mputefalse
  \fi
 %
  \ifc@mpute\then
convert degrees to radians
  %
  \divide\dimen0 by 180
  \dimen0=3.141592654\dimen0
 %
a well-known constant
  \dimen 2 = 3.1415926535897963\r@dian%
we only deal with -\pi/2:\pi/2
  \divide\dimen 2 by 2%
  see power-series expansion for sine
  \quad 0 = 1\%
  \dim 2 = 1 r
  \dim 4 = 0 r 
  \loop
then we've done
  ifnum dimen 2 = 0\%
  \then\stillc@nvergingfalse
  \else\stillc@nvergingtrue
  \fi
  \ifstillc@nverging%
then calculate next term
  \advance\count 0 by 2
  \quad count 2 = count 0
  \divide\count 2 by 2
signs alternate
  \ifodd\count 2%
```

\liodd\count 2% \then\advance\dimen 4 by\dimen 2 \else\advance\dimen 4 by -\dimen 2 \fi \repeat TUGboat, Volume 13 (1992), No. 2

```
\fi
\xdef\sine {\nodimen 4}%
}}%
```

Now the Cosine can be calculated easily by calling \Sine

```
%
\def\Cosine#1{\ifx\sine\UnDefined\edef\Savesine{\relax}\else
\edef\Savesine{\sine}\fi
{\dimen0=#1\r@dian\advance\dimen0 by 90\r@dian
\Sine{\nodimen 0}%
\xdef\cosine{\sine}%
\xdef\sine{\Savesine}}}
% end of trig stuff
```

And that's the end of the trigonometry macros. Finally, we'll set up a default for the driver:

\rotdriver{dvips}

7 Examples

'Rotate' provides a generalised rotation environment, where the text will be rotated (clockwise, as is normal in PostScript) by the number of degrees specified as a parameter to the environment, but no special arrangement is made to find space for the result. Note the % at the end of \begin{rotate}{56} --- this is vital to prevent a space getting into the rotated text.

Start here End here

Start here
 \begin{rotate}{56}%
 Save whales
 \end{rotate}
End here

A complete example of rotating text without leaving space would the 'Save the whale' text written at 10 degree intervals round the compass. We use 'rlap' to ensure that all the texts are printed at the same point. Just to show that T_EX can handle PostScript muckings-about properly...


```
\newcount\wang
\newsavebox{\wangtext}
\newdimen\wangspace
\def\wheel#1{\savebox{\wangtext}{#1}%
\wangspace\wd\wangtext
\advance\wangspace by 1cm%
\centerline{%
\rule{Opt}{\wangspace}%
\rule[-\wangspace]{Opt}{\wangspace}%
\wang=-180\loop\ifnum\wang<180
\rlap{\begin{rotate}{\the\wang}%
\rule{1cm}{Opt}#1\end{rotate}}%
\advance\wang by 10\repeat}
\wheel{Save the whale}</pre>
```

If the user desires LATEX to leave space for the rotated box, then 'turn' is used:

Start here $\begin{turn}{-56}\%$ Save the whale \end{turn} end here

end here

Start here 5 The environment 'Sideways' is a special case, setting the rotation to -90, and leaving the correct space for the rotated box.

> Start here \begin{sideways}% Save the whale \end{sideways} End here

Start here SEnd here

If you deal with whole paragraphs of text, you realize that $T_{\!E\!} \! X$ boxes are not as simple as they sometimes look: they have a height and a depth. So when you rotate, you rotate about the point on the left-hand edge of the box that meets the baseline. The results can be unexpected, as shown in the full set of paragraph rotations in Figures 2 and 3. If you really want to turn a paragraph so that it appears to rotate about the real bottom of the T_EX box, you have to adjust the box in the normal IAT_EX way:

End

\newsavebox{\foo} \savebox{\foo}{\parbox{1in}{Save the whales Save the whale Save the whale Save the whale}}% Start End \savebox{\foo}{\parbox[b]{1in}{Save the whales Save the whale Save the whale Save the whale}}% Start

\begin{turn}{-45}\usebox{\foo}\end{turn}

We can set tabular material in this way; at the same time, we demonstrate that the rotation can be nested:

\begin{sideways} \rule{1in}{0pt} $\begin{tabular}{|lr|}$ \em Word & \begin{rotate}{-90}% Occurrences\end{rotate} $\backslash \backslash$ \hline hello & 33\\ goodbye & 34\\ \hline \end{tabular} \end{sideways}

End

Figure 3: Rotation of paragraphs between 0 and 320°


```
\begin{quote}
\rule{0pt}{1.5in}\begin{tabular}{rrr}
\begin{rotate}{-45}Column 1\end{rotate}&
\begin{rotate}{-45}Column 2\end{rotate}&
\begin{rotate}{-45}Column 3\end{rotate}\\
\hline
1& 2& 3\\
4& 5& 6\\
7& 8& 9\\
\hline
\end{tabular}
\end{quote}
\begin{quote}
\begin{tabular}{rrr}
\begin{turn}{-45}Column 1\end{turn}&
\begin{turn}{-45}Column 2\end{turn}&
\begin{turn}{-45}Column 3\end{turn}\\
\hline
1& 2& 3\\
4& 5& 6\\
7& 8& 9\\
\hline
\end{tabular}
\end{quote}
\begin{quote}
\rule{0pt}{1.5in}\begin{tabular}{rrr}
\begin{rotate}{-45}Column 1\end{rotate}
\rule{.5cm}{Opt}&
```

\begin{rotate}{-45}Column 2\end{rotate}

\begin{rotate}{-45}Column 3\end{rotate}

\rule{.5cm}{0pt}&

\rule{.5cm}{0pt}\\

\hline

1& 2& 3\\

4& 5& 6\\

7& 8& 9\\ \hline \end{tabular} \end{quote}

				_			-			
ACCEPT or	REJECT	NULL	НТОЧҮН	REJECT	ACCEPT	REJECT	ACCEPT	ACCEPT	ACCEPT	ACCEPT
ES	ZONE	CTED	TO	27.0	16.7	13.7	10.4	8.8	8.6	7.3
R OF SIT	UNDARY	EXPE(FROM	10.3	4.3	2.8	1.2	0.6	0.4	0.0
IUMBEI	IN BO		OBS	31	16	15	6	2	×	2
Z			TOT	41	23	18	13	10	10	8
	STUDY AREA			FULL SAMPLE	SAMPLE AREA 1	SAMPLE AREA 2	RUSHEN	ARBORY	MAROWN	SANTON
			Ş	ST	IN	n.	КЯ	¥٧	VI {	Ъ

\begin{sideways} $begin{tabular}{||c|c|c|c|c|p{1in}|}$ \hline &&\multicolumn{4}{c}{NUMBER OF SITES}\vline &ACCEPT or\\ \cline{3-6} &STUDY AREA&&\multicolumn{3}{c}{% IN BOUNDARY ZONE \\ vline&REJECT \\ \cline{4-6}&&&&\multicolumn{2}{c}{EXPECTED} \vline&NULL\\ \cline{5-6}&&TOT&OBS&FROM&TO&HYPOTH\\ $cline{2-7}$ &FULL SAMPLE&41&31&10.3&27.0&REJECT\\ &SAMPLE AREA 1&23&16&4.3&16.7&ACCEPT\\ &SAMPLE AREA 2&18&15&2.8&13.7&REJECT\\ &RUSHEN&13&9&1.2&10.4&ACCEPT\\ &ARBORY&10&7&0.6&8.8&ACCEPT\\ &MAROWN&10&8&0.4&8.6&ACCEPT\\ \rule{0.5cm}{Opt} \begin{rotate}{-90}PRIMARY UNITS% \end{rotate}\rule{0.5cm}{0pt} &SANTON&8&7&0.0&7.3&ACCEPT\\ \hline $\end{tabular}$ \end{sideways}

If you are interested in setting rotated material in tables or figures, this presents no problem. Figure 4 shows how PostScript files which are being incorporated using psfig can be rotated at will, while Figure 5 shows, in contrast, how psfig itself handles rotation. It is also possible to rotate the whole of the figure environment, including caption, by using the sidewaysfigure and sidewaystable environments in place of figure and table. The code used to produce figures 1-6 is as follows:

```
Figure \ 1 \ \ begin{sidewaystable}
```

```
\centering
    \caption{This is a narrow table, which should be centred vertically
    on the final page. \label{rotfloat1}}
      \begin{tabular}{|11|}
    \hline
        a & b \\
        c & d \\
        e & f \\
        g & h \\
        i & j \\
    \hline
      \end{tabular}
    \end{sidewaystable}
Figure 2 \begin{sidewaystable}
    \centering
    \begin{tabular}{|11111111p{1in}p{1in}|}
```

```
\hline
    Context &Length &Breadth/ &Depth &Profile &Pottery &Flint
      &Animal &Stone &Other &C14 Dates \\
& &Diameter & &
                                                 &
                                                           &
      &Bones&&&\\
    \hline
    **********
    \multicolumn{10}{|1}{\bf Grooved Ware}&\\
    784 &--- &0.9m &0.18m &Sloping U &P1
                                                            &$\times$46
     & $\times$8
                   && $\times$2 bone& 2150$\pm$ 100 BC\\
    785
          &----
                    &1.00m &0.12 &Sloping U &P2--4
                                                            &$\times$23
    & $\times$21 & Hammerstone &---k----\
                    &1.37m &0.20m &Sloping U &P5--6
    962
         &---
                                                            &$\times$48
     & $\times$57* & ---& ---&1990 $\pm$ 80 BC (Layer 4) 1870 $\pm$90 BC (Layer 1)\\
          &0.83m &0.73m &0.25m &Stepped U &---
    983
                                                           &$\times$18
     & $\times$8 & ---& Fired clay&---\\
    ***********
    \mathbb{10}{|1}{\mathbb R} 
    552
          &--- &0.68m &0.12m &Saucer &P7--14 &---
     & ----
             & ---
                       &---
                                   &---\\
    790
            &--- &0.60m
                                &0.25m &U
                                                   &P15
                                                           &$\times$12
     & ---
            & Quartzite-lump&--- &---\\
            &2.89m &0.75m &0.25m &Irreg. &P16
    794
                                                          &$\times$3
     & ---
             & ---
                        &---
                                   &---\\
    \hline
    \end{tabular}
    \caption[Grooved Ware and Beaker Features, their Finds and
    Radiocarbon Dates]{Grooved Ware and Beaker Features, their
    Finds and Radiocarbon Dates; For a breakdown of the Pottery
    Assemblages see Tables I and III; for
    the Flints see Tables II and IV; for the
    Animal Bones see Table V.}\label{rotfloat2}
    \end{sidewaystable}
Figure 3 \begin{table}
    \centering
    \rotcaption{Minimum number of individuals; effect of rotating table
    and caption separately}\label{rotfloat3}%
    \begin{sideways}
    \begin{tabular}[b]{ccccccccp{1cm}}
    \hline
    Phase&Total&Cattle&Sheep&Pig&Red Deer&Horse&Dog&Goat&Other\\
    \hline
    &1121&54&12&32&1&1&1&1&1 polecat\\
    3&8255&58&6&35&1&1&1&1&1 roe deer, 1 hare, 1 cat, 1 otter
    4&543&45&6&45&4&1&1&---&---
    \hline
    &9919&157&24&112&6&3&3&2&5\\
    \hline
    \end{tabular}
    \end{sideways}
    \end{table}
Figure 6 \begin{sidewaysfigure}
     \centerline{\psfig{figure=cat.eps,width=.8\textheight,height=.4\textwidth}}
    \caption{A pathetically squashed rotated pussycat}\label{rotfloat4}
    \end{sidewaysfigure}
```

---\begin{turn}{-156} \psfig{figure=cat.eps,width=1in} \end{turn}---

---\begin{sideways} \psfig{figure=cat.eps,width=1in} \end{sideways}---

---\psfig{figure=cat.eps,width=1in}---

Figure 4: Turned, normal, and sideways, pictures within a figure

\psfig{figure=cat.eps,width=1in,%
angle=-56}

\psscalefirst
\psfig{figure=cat.eps,width=1in,%
angle=-56}

Figure 5: Figures rotated with 'psfig'

٥	q	f	Ч	
ದ	ပ	e	50	· -

CONTEXT	гепдил	Breadtn/ Diameter	Depth	Fronie	Pottery	r lint	Animal	Stone	Other	C14 Dates
Grooved	Maro									
784		$0.9 \mathrm{m}$	0.18m	Sloping U	P1	$\times 46$	× 8		$\times 2$ bone	$2150\pm\ 100\ \mathrm{BC}$
785		$1.00 \mathrm{m}$	0.12	Sloping U	P2-4	imes 23	$\times 21$	Hammerstone		
) 62		1.37m	$0.20 \mathrm{m}$	Sloping U	P5-6	$\times 48$	×57*			1990 ± 80 BC
										$\begin{array}{c} \text{(Layer 4)} 1870 \\ \pm 90 \text{BC} \text{(Layer)} \end{array}$
) 83	0.83m	0.73m	0.25m	Stepped U		$\times 18$	×8		Fired clay	1)
Beaker						-				
552	Į	0.68m	0.12m	Saucer	P7-14					
062	-	$0.60 \mathrm{m}$	$0.25 \mathrm{m}$	U	P15	$\times 12$	******	Quartzite-lump		
794	$2.89 \mathrm{m}$	0.75m	$0.25 \mathrm{m}$	Irreg.	P16	$\times 3$		-		-

eakdown of the Pottery Assemblages see Tables I and III; 5 ರ FOL Table 2: Grooved Ware and Beaker Features, their Finds and Radiocarbon Dates; for the Flints see Tables II and IV; for the Animal Bones see Table V.

her		ecat	roe	зr,		re,	cat,	tter
Ot]		bol	, .	dee	Ţ	haı	,1	1^{0}
Goat	1		1					
Dog			-1					
Horse			,					
Red Deer			1					
Pig	32		35					
Sheep	12		9					
Cattle	54		58					
Total	1121		8255					
Phase		,	c,					

oat Other		polecat	l 1 roe	deer,	1	hare,	1 cat,	1 otter		2 5
Dog Gc			1						1	3
Horse]	1		1						1	3
Red Deer			1						4	9
Pig	32		35						45	112
Sheep	12		9						9	24
Cattle	54		58						45	157
Total	1121		8255						543	9919
Phase			3						4	

ī

Figure 6: A pathetically squashed rotated pussycat

 Sebastian Rahtz ArchaeoInformatica
 12 Cygnet Street York Y02 1AG
 spqr@uk.ac.york.minster

Leonor Barroca
 Department of Computer Science
 University of York
 Heslington
 York Y01 5DD
 Imb@uk.ac.york.minster