
156 TUGboat, Volume 13 (1992), No. 2

A style option for rotated objects in U r n

Sehastian Rahtz and Leonor Barroca

Contents inal trigonometry macros came from Jim Walker

History

Usage

Driver-specific macros

Rotation environments

4.1 Sideways

4.2 Rotate
. 4.3 Turn

Rotated tables and figures

5.1 Rotated captions only . .

Trigonometry macros

Examples

List of Figures

1 IVorking out the position of a box

by considering z: y coordinates of five
. vertices 161

2 Rotation of paragraphs between 0

and -320'. 171

3 Rotation of paragraphs between 0

and 320'. 172

4 Turned, normal, and sideways, pic-
tures within a figure 176

5 Figures rotated with 'psfig' 176

6 A pathetically squashed rotated

pussycat 180

List of Tables

1 This is a narrow table, which should

be centred vertically on the final page. 177

2 Grooved Ware and Beaker Features.

their Finds and Radiocarbon Dates . 178

3 Minimum number of individuals: ef-

fect of rotating table and caption sep-
. arately 179

Abstract

This article documents a LATEX style option, 'ro-

tating.sty', which perform all the different sorts of

rotation one might like, including complete figures,

within the context of a PostScript driver.

1 History

Sebastian Rahtz first wrote rotation macros in 1988.

and has been fighting with them since. The orig-

-
(Dept Mathematics, University of South Carolina);

we later borrowed the trigonometry macros in psfig

1.8. This set of macros is a complete overhaul of

the practice of rotated LATEX boxes destined for a

PostScript driver.

We finally decided to clean these macros up and

document them to bare-bones 'doc' standard in or-

der to avoid doing some real work in January 1992.

We must thank Frank Mittelhach and Rainer Schopf

for promoting this style of literate macro writing,

and inspiring the rest of us to patch up our sorry

efforts. We apologize for the fact that we have not

attempted to make these macros compatible with

'plain'. Life is just too short.

A modification was supplied 9/2/92 by A. Ma-

son to handle the Textures driver, chosen with the

\rotdriver{TEXTURES) option. The 'sidewaysfig-

ure' environment was fixed on 17/3/92 after sugges-

tions by Rainer Schopf.

2 Usage

This style option provides three L A W environ-

ments:

sideways prints the contents turned through 90 de-

grees counterclockwise:

turn prints the contents turned through an arbi-

trary angle;

rotate prints the contents turned through an arbi-

trary angle; but does not leave any space for

the result.

A full set of examples are given in section 7. But

now we present the documented code.

3 Driver-specific macros

We try to make this style driver-independent (!) by

isolating all the usage of \ spec ia l into one case

statement later, so first we declare dummy values for

the two macros which vary according to the driver.

in case \ r o t d r i v e r is never called, or produces no

results.

This style option (potentially!) supports a variety

of dvi drivers; the user must declare the one to be

used.

TUGboat, Volume 13 (1992), No. 2 157

\rotdriver The user can select the specials that should be used by calling the cornmand

\rotdriverCdrzvername). Possible choices are:

0 DVItoLN03

0 DVItoPS

0 DVIps

e m m

0 Textures

This command can only be used in the preamble of the document. The list of drivers

was created for compatibility with the 'changebar' macros (version 3.0 of November

1991 by Johannes Braams), but the code only exists in this style option for 'dvips'

and 'dvitops'.

The argument should be case-insensitive, so it is turned into a string containing all

uppercase characters. To keep some definitions local, everything is done within a

group.

\def\rotdriver#l{%

\bgroup\edef\next{\def\noexpand\tempa{#l))%

\uppercase\expandafter{\next)%

\def\LN{DVITOLN03)%

\def\DVItoPS{DVITOPS)%

\def\DVIPS{DVIPS)%

\def\emTeX{EMTEX)%

\def\Textures{TEXTURES)%

The choice has to be communicated to the macros later on that will be called from

within \document. For this purpose the control sequence \ r o t @ d r i v e r s e t u p is used.

It receives a numeric value using \chardef.

\global\chardef\rotQdriversetup=O

\if x\tempa\LN

\global\chardef\rotmdriversetup=0\fi

\ifx\tempa\DVItoPS

\global\chardef\rotQdriversetup=l\fi

\ifx\tempa\DVIPS

\global\chardef\rotOdriversetup=2\fi

\ifx\tempa\emTeX

\global\chardef\rot@driversetup=3\fi

\ifx\tempa\Textures

\global\chardef\rotQdriversetup=4\fi

\egroup

We use a case statement to define the macros appropriate for each driver. We will

define two commands, \ r o t @ s t a r t and \rot@end, which assume that the macro

\ rot@angle produces the angle of rotation.

\ifcase\rotQdrlversetup

The first case (0) is for 'dvitoln03'. for compatibility with 'changebarsty'; we don't

have access to this. so pass by on the other side.

% case 0
\typeout{WARNING! ****
no specials for LN03 rotation)

\or

First real case. James Clark's 'dvitops'. This has not been well tested with ds-itops;

the figures of rotated paragraphs come out oddly. Dvitops has some unusual ways of

TUGboat, Volume 13 (1992)' No. 2

dealing with Postscript \ spec i a l commands; they are kept in a list and dealt with

all together. Each time you use an effect, you number it as a block.

\rotQcount=l

\def\rot@start{\specialCdvitops: origin

rot\the\rotQcount)%

\specialCdvitops: begin rot\the\rotQcount))%

\def\rotQend{\special{dvitops: end)%

\special{dvitops: rotate rot\the\rotQcomt \space

\the\rotQangle)%

\global\advance\rotQcount byl)%

\or

Case 2, Rokicki's dvips (this code works with version 5.47). We simply emit some

literal PostScript (code copied from Rokicki's 'rotate.sty').

\def\rotQstart{\specialCps:gsave currentpoint

currentpoint translate \the\rot@angle\space

rotate neg exch neg exch translate))%

\def\rotGend{\special{ps:cnrrentpoint

grestore moveto))%

To be consistent, lets allow for e m m one day performing here as well

\or % case 3, emTeX
\typeout{WARNING ! ***
emTeX does no rotation at this time)

Lastly sofar. one for a Mac w. The Textures PostScript code has been modified

from code provided by:

Charles Karney Phone: +l 609 243 2607

Plasma Physics Laboratory Fax: +1 609 243 2662

Princeton University MFEnet: Karney@PPC.NIFEnet

P O Box 451 Internet: Karney@Princeton.edu

Princeton. NJ 08543-0451 Bitnet: KarneyPPC.MFEnetQANLVhlS.Bitnet

The following assumptions are made about the PostScript that Textures generates:

1. A single transform is used for all Textures output.

2. The Postscript \ spec i a l is bracketed by gsave . . . grestore.

3. Immediately after the gsave, the coordinate system is translated so the origin

is at the current point; and the y axis is flipped. (The y-axis isn't flipped any

more. . . rotations are clockwise. A.M.)

4. Textures doesn't leave anything on the stack for long periods. (This simplifies

restoring the default coordinate system.)

\or

\typeout{Textures rotation)

\def\rotGstart{\special(postscript

0 0 transform % Get current location in device
% coordinates.

grestore % Undoes Textures gsave.
matrix currentmatrix % Save current transform on stack for use

% by \Gunrotate.
3 1 roll % Put transform at back of current location.
itransf orm % Current location in Textures coords
dup 3 -1 roll % Duplicate the location; x y ==> x y x y

dup 4 1 roll exch

translate % Translate origin to current location
% 1 -1 scale % Flip y coordinate
\the\rotQangle\space rotate % Rotate by \Grotation

TUGboat, Volume 13 (1992), No. 2

% 1 -1 s c a l e % Unf l i p y coordinate

neg exch neg exch t r a n s l a t e % T r a n s l a t e o r i g i n back

gsave)) % To match g r e s t o r e

g r e s t o r e

se tmat r ix

% Undoes Textures gsave

% Set cur ren t t ransform t o value saved on

% s t a c k . (Hopefully, i t ' s s t i l l t h e r e .)

% To match g r e s t o r e

unknown d r i v e r - no r o t a t i o n)

\f i

3

Finaly. we will need boxes to take copies of what we are rotating. and will need some

registers to store sizes and angles.

4 Rotation environments

The basic idea is to put the contents of the environment into a box. change the depth.

width and height of that box (as known to m) if necessary, and then rotate i t .

4.1 Sideways

The 'sideways' environment simply turns the box through 90°, so no trigonometry is

necessary.

4.2 Rotate

In the case of the rotate environment, we are just going to turn the box without

working out the space for it, so again no trigonometry.

160 TUGboat, Volume 13 (1992), No. 2

4.3 Turn

This is the tricky one. We rotate the box, and work out how much space to leave for
it on the page. We deal with the box as a whole, i.e. both depth and height are joined

to make a single height. After working out the space taken up this box after rotation,

we can worry about placing it correctly in relation to the baseline.

The original philosophy was that given a box with width W and height H, then its
height after rotation by R is W x sin(R) + H x cos(R), and it extends W x cos(R)

to the right and H x sin(R) to the left of the original bottom left corner (formula

courtesy of Nico Poppelier). This works fine in the 'top right' quadrant, but causes

problems in the other quadrants, so we adopted a rather more brute-force scheme. We
consider three vertices of the original unrotated box (A, B and C in Figure I), and

calculate their x , y co-ordinates after rotation by R degrees. This deals with the top

half of the box only, that which comes above the baseline; for the lower half (below

the baseline), we deal with vertices D and E. Given original dimensions of the box as
width W height H; and depth D l the formulae for calculating new positions are:

Ax = W x cos(R)

Ay = W x sin(R)
B x = (W x cos(R)) - (H x sin(R))

By = (W x sin(R)) + (H x cos(R))

Cx = H x cos(R + 90)

Cy = H x sin(R + 90)
Dx = D x cos(R + 270)

Dy = D x sin(R + 270)

E x = (D x cos(R + 270)) - (W x sin(R + 270))

E y = (D x sin(R + 270)) + (W x cos(R + 270))

We could work out how far the rotated box extends to the right of the 'starting

point' (S in Figure 1) by taking the largest of (Bx, Cx, Dx, Ex) ; how far it extends to

the left by taking the smallest of (Bx, Cx, Dx, Ex) ; how far above the baseline with
the largest of (By, Cy, Dy, Ey) ; and how far below the baseline with the smallest of

(By, Cy. Dy, Ey) . But that would be a bit slow, so we simplify matters by working

out first which quadrant we are in, and then picking just the right values.

\endturn \def\endturn{%

\egroup%

Because Postscript works clockwise, and because we conceptualize the trigonometry

in a counter-clockwise way, we temporarily reverse the direction of the angle:

We are going to need to know the sines and cosines of three angles: R, R + 90 and

R + 270. Simplest to calculate all these now; in fact we can work it out from just two

calculations.

TUGboat, Volume 13 (1992)) No. 2

Figure 1: Working out the position of a box by considering x, y coordinates of five

vertices

TUGboat, Volume 13 (1992), No. 2

Now we can calculate the co-ordinates of the relevant vertices. To make the coding

easier, we define the formulae given above as macros (just the ones we ever use).

\def\rotQBx{\rotQtemp\cosineA\wd\rotQbox

\advance\rotQtemp by -\sineA\ht\rotQbox)%

\def\rotQBy{\rotQtemp\sineA\wd\rotQbox

\advance\rotQtemp by \cosineA\ht\rotObox)%

\def\rotQCx{\rotQtemp\cosineB\ht\rotQbox~%

\def\rotQCy{\rotQtemp\sineB\ht\rotQbox>%

\def\rotQDx{\rotQtemp\cosineC\dp\rotQbox~%

\def\rotQDy{\rotQtemp\sineC\dp\rotQbox)%

\def\rotQEx{\rotQtemp\cosineC\dp\rot@box

\advance\rotOtemp by -\sineC\wd\rotQbox)%

\def\rotQEy{\rotQtemp\sineC\dp\rotQbox

\advance\rotQtemp by \cosineC\wd\rotQbox>%

Now a straightforward 'if' condition to see which quadrant we are operating in; but if
the angle is negative, first add 360.

First quadrant: Height = By, Right = E x , Left = Cx, Depth = Dy

Second quadrant: Height = Ey, Right = Dx, Left = Bx, Depth = Cy

Third quadrant: Height = Dy, Right = Cx; Left = E x , Depth = By

Fourth quadrant: Height = Cy, Right = Bx, Left = Dx, Depth = E y

TUGboat, Volume 13 (1992), No. 2

Put the angle back to what it was before, to pass to Postscript

At the end of all that nonsense, \rotQheight contains the amount above the baseline

we need to leave for the rotated box we are dealing with, and \rotQdepth the amount

below the baseline. \rotQleft and \rotQright are offsets to left and right which we

need to take into account. We are going to set the size of the box we are dealing with
to 0 all round, and put in some struts to force T@ to leave space. We will position

ourselves a t the point where the bottom left-hand corner of the top half of box would

have been, then swing the box round by that corner. Thinking about this drives you

mad.

The left adjustment comes out negative, so be careful:

Pu t in struts (not advancing forward at all), for the height and depth.

Finally emit the Postscript code to start rotation, output the box, end the rotation,

and leave some space at the right if needed.

5 Rotated tables and figures

Now we present some macros adapted from those by James Dolter

(j dolterQsawtooth . eecs . umich . edu) which provide a complete environment for

sideways figures and tables. We define two environments sidewaysf igure and

sidewaystable that fit in with the normal table and figure floats. These are 'fixed'

environments that just do 90 degree rotation, but it would be easy to parameterize
this to do other rotations if needed (the mind boggles. . .).
First a generalised ' rotf loat' environment. We have to take a copy of I4T@'s float

macros, in order to change the assumed width of a float being \columnwidth. We

want it to work on a width of \textheight so that when we rotate the float, it comes

out the right height. This is not actually very satisfactory, since what we really want

is for rotated floats to occupy the space they actually use. The captions are a problem

- since they can precede the figure or table, we cannot set them in a box of the right

width (i.e. the height of the forthcoming object), because it has not happened yet. The
result of these difficulties is that rotated figures always end up as full page figures.

TUGboat, Volume 13 (1992), No. 2

\def \Qxrotf loat#l[#2] C\ifhmode \Qbsphack\Qf loatpenalty -\QMii\else

\Qfloatpenalty-\@Miii\fi\def\Qcaptype{#l)\iflnner

\Qparmoderr\Qfloatpenalty\z@

\else\Qnext\Qcurrbox\QfreelistC\Qtempcnta\csname ftypeQ#l\endcsname

\multiply\Qtempcnta\Qxxxii\advance\Qtempcnta\sixtQQn

\&for \atempa :=#2\do

{\if\Qtempa h\advance\Qtempcnta \Qne\fi

\if\Qtempa t\advance\Qtempcnta \twQ\fi

\if\Qtempa b\advance\@tempcnta 4\relax\fi

\if\Qtempa p\advance\Qtempcnta 8\relax\fi

~\global\count\Qcurrbox\Qtempcnta)\Qfltovf\fi

\global\setbox\Qcurrbox\vbox\bgroup

The only part changed is the setting of \hsize within the \vbox to be \ t ex the ight

instead of \columnwidth.

We copy the ' \end@float ' macro and emend it to rotate the box we produce in a

float.

\def\endQrotfloat{\par\vskip\zQ\egroup%

\ifnum\Qfloatpenalty <\zQ

\global\setbox\rotQtempbox\box\@currbox

\global\setbox\Qcurrbox\vboxi\centerline{\begin{turn){-90~%

\box\rotQtempbox\endCturn)))%

\Qcons\@currlist\Qcurrbox

\typeout{Adding sideways figure to list,

\the\ht\Qcurrbox\space by \the\wd\Qcurrbox)%

\ifdim \ht\@currbox >\textheight

\Qwarning{Float larger than \string\textheight)%

\ht\Qcurrbox\textheight \fi

\ifnum\Qfloatpenalty <-\QMii

\penalty -\QMiv

\Qtempdima\prevdepth

\vboxC)%

\prevdepth \Qtempdima

\penalty\Qfloatpenalty

\else \vadjust{\penalty -\QMiv

\vbox{)\penalty\Qfloatpenalty)\Qesphack

\f i\f i)

The following definitions set up two environments, sideways t a b l e and sidewaysf igure,

which uses this type of float. Naturally, users may need to change these to suit their
local style. Both contribute to the normal lists of figures and tables.

TUGboat, Volume 13 (1992), No. 2

We need to copy a standard \@makecapt ion to set the caption on a width of the height

of the float (i.e. the text height). This macro is normally defined in LATEX style files,

so style file writers who change that will also need to redefine \r@caption.

\long\def\@makercaption#l#2{%

\vskip 10\pQ

\setbox\@tempboxa\hbox{#l: #2)%

\if dim \wd\@tempboxa >\vsize

#1: #2\par

\else

\hbox to\vsize{\hfil\box\@tempboxa\hfil)%

\f i)%

5.1 Rotated captions only

Sometimes you may find that the rotation of complete figures does not give quite

the right result, since they always take up the whole page. You may prefer to rotate
the caption and the float contents separately within a conventional figure. Here we

offer a suggestion for a \rot caption command, which inserts the caption rotated by
90'. It is essentially a copy of the normal captioning code. Styles which define the

\@makecaption command may also need to define \@makerotcaption.

While we are doing useful new environments, why not add landscape slides?

TUGboat, Volume 13 (1992), No. 2

6 Trigonometry macros

Now the trigonometry macros which are borrowed from psfigl.8; the original author

is not credited there, so we cannot do so either. All we have done is remove some

spurious spaces which were creeping into my output (and causing havoc!), and put

the comments in 'doc' style.

Turn me on to see T)$ hard at work ...

don't need to compute some values

but assume that we do

Things that need abnormal catcodes

freeze parameter 1 (count, by value)

freeze parameter 2 (dimen, by value)

\edef\tOQ {\expandafter\nOdimen\the #2\rBdian)%

\tam C\tQ C \ t W C#33%

3%
\gdef\tQrm #1 #2 #3%

{I%
\count 0 = 0

\dimen 0 = l\dimensionlessQnit

\dimen 2 = #2\relax

\MessOge {Calculating term #1 of\nodimen 23%

\loop

\ifnum\count 0 < #1
\then\advance\count 0 by 1

\Message {Iteration\the\count O\space)%

\Multiply\dimen 0 by {\dimen 2)%

\Message {After multiplication, term =\nodimen 03%

\Divide\dimen 0 by {\count 03%

\Message {After division, term =\nodimen 03%

\repeat

\Message {Final value for term #I of

\nodimen 2\space is\nodimen 0)%

\xdef\Term {#3 =\nodimen O\rQdians)%

\aftergroup\Term

TUGboat, Volume 13 (1992)) No. 2

throw away the "pt"

just a synonym

allows division of a dimen by a dimen

should really freeze parameter 2 (dimen, passed by value)

IC%
\count 0 = #l\relax

\count 2 = #2\relax

\count 4 = 65536

\MessQge {Before scaling, c o m t 0 =\the\count O\space and

count 2 =\the\count 21%

do our best to avoid overflow

while retaining reasonable accuracy

TUGboat, Volume 13 (1992)' No. 2

\f i

\f i)%

\def \Sine#l%

-EC%
\dimen 0 = #l\rQdian

\rOduce

\ifdim\dimenO = -9O\rQdian\then

\dimen4 = -l\rQdian

\cQmputef alse

\fi

\ifdim\dimenO = gO\rQdian\then

\dimen4 = l\rQdian
\cQmputef alse

\fi

\ifdim\dimenO = O\rQdian\then

\dimen4 = O\rQdian

\cOmputef alse

\f i

%
\ifcGmpute\then

convert degrees to radians

a well-known constant

we only deal with -71./2 : 7r/2

\divide\dimen 2 by 2%

\Message {Sin: calculating Sin of\nodimen 0)%

see power-series expansion for sine

then we've done

then calculate next term

signs alternate

TUGboat, Volume 13 (1992), No. 2

Now the Cosine can be calculated easily by calling \Sine

%
\def\Cosine#1{\ifx\sine\UnDefined\edef\Savesine{\rel~~\else

\edef\SavesineC\sine)\fi

{\dimenO=#l\rQdian\advance\dimenO by 90\rQdian

\Sine{\nodimen 0)%

\xdef\cosine{\sine)%

\xdef\sine{\Savesine)))

% end of trig stuff

And that's the end of the trigonometry macros. Finally, we'll set up a default for the

driver:

7 Examples

'Rotate' provides a generalised rotation environment, where the text will be rotated
(clockwise, as is normal in Postscript) by the number of degrees specified as a pa-

rameter to the environment, but no special arrangement is made to find space for the

result. Note the % at the end of \begin{rotate){56) - this is vital to prevent a

space getting into the rotated text.

Start here @d here

%
Start here

\begin{rotate){56)%

Save whales

\endCrotate)

End here

A complete example of rotating text without leaving space would the 'Save the

whale' text written at 10 degree intervals round the compass. We use 'rlap' to ensure
that all the texts are printed at the same point. Just to show that can handle

Postscript muckings-about properly. . .

\newcount\wang

\newsavebox{\wangtext)

\newdimen\wangspace

\def\wheel#l{\saveboxC\wangtext)C#l)%

\wangspace\wd\wangtext

\advance\wangspace by Icm%

\centerline{%

\ruleCOptH\wangspace)%

\rule [-\wangspacel COpt)C\wangspace)%

\wag=-180\loop\ifnum\wang<180

\rlap(\begin{rotate)C\the\wang)%

\rule{lcm)~Opt)#l\end(rotate))%

\advance\wang by 10\repeat))

\wheel(Save the whale)

170 TUGboat, Volume 13 (1992), No. 2

If the user desires L A W to leave space for the rotated box, then 'turn' is used:

Start here \begin{turn){-561%

Save the whale

\end{turn) end here

&
Start here end here

The environment 'Sideways' is a special case, setting the rotation to -90, and

leaving the correct space for the rotated box.

Start here

\begin{sideways)%

Save the whale

\end{sideways)

End here
5

Start here g ~ n d here
If you deal with whole paragraphs of text, you realize that boxes are not as

simple as they sometimes look: they have a height and a depth. So when you rotate,

you rotate about the point on the left-hand edge of the box that meets the baseline.

The results can be unexpected, as shown in the full set of paragraph rotations in

Figures 2 and 3. If you really want to turn a paragraph so that it appears to rotate

about the real bottom of the box, you have to adjust the box in the normal L A W

way:

\newsavebox{\foo)

\savebox{\foo){\parbox{lin)ISave

the whales Save the whale

Save the whale

Save the whale))%

Start

\begin{turn){-45)\usebox{\foo)\endfiurn}

End

\savebox{\foo){\parbox[b]{lin){Save

the whales Save the whale

Save the whale

Save the whale))%

Start

\begin{turn){-45)\useboxI\foo)\end{turn)

End
Start End

We can set tabular material in this way; at the same time, we demonstrate that

the rotation can be nested:

\begin{sideways)

\rule{lin){Opt)

\begin{tabular){IlrI)

\em Word & \begin{rotate){-901%

Occurrences\end{rotate).

\\
\hline

hello & 33\\

goodbye & 34\\

\hline

\end{t abular)

\end{sideways)

TUGboat; Volume 13 (1992), No. 2

Save the whales

Save the whale

Save the whale

Save the whale i

Figure 2: Rotation of paragraphs between 0 and -320'

TUGboat, Volume 13 (1992), No. 2

Figure 3: Rotation of paragraphs between 0 and 320'

TUGboat, Volume 13 (1992), No. 2

\begin{quote)

\rule{Opt){1.5in)\begin{tabular){rrr}

\begin{rotate){-45)Column l\end{rotate)&

\begin{rotate){-45)Column 2\end{rotate)&

\begin{rotate){-45)Column 3\end{rotate)\\

\hl ine

1& 2& 3\\

4& 5& 6\\

7& 8& 9\\

\hline

\end{tabular)

\end{quote)

TUGboat, Volume 13 (1992), No. 2

\begin{sideways)

\begin{tabular){~l~c~c~c~c~c~p{lin~~)

\hline

&&\multicolumn{4){c){NUMBER OF SITES)\vline &ACCEPT or\\

\cline{3-6) &STUDY AREA&&\multicolumnI3}{~3C%

IN BOUNDARY ZONE)\vline&REJECT\\

\cline{4-6)&&&&\multicolumn{2){c){EXPECTED)

\vline&NULL\\

\c~~~~{~-~)&&TOT&OBS&FROM&TO&HYPOTH\\

\cline{2-7)

&FULL SAMPLE&41&31&10.3&27.0&REJECT\\

&SAMPLE AREA 1&23&16&4.3&16.7&ACCEPT\\

&SAMPLE AREA 2&18&15&2.8&13.7&REJECT\\

&RUSHEN&13&9&1.2&10.4&ACCEPT\\

&ARBORY&10&7&0.6&8.8&ACCEPT\\

&MAROWN&10&8&0.4&8.6&ACCEPT\\

\ruleCO.Scm)COpt)

\begin{rotate){-9O)PRIMARY UNITS%

\end{rotate)\rule{O.5cm~{Opt)

&SANTON&8&7&0.0&7.3&ACCEPT\\

\hline

\end{tabular)

\end{sideways)

If you are interested in setting rotated material in tables or figures, this presents

no problem. Figure 4 shows how Postscript files which are being incorporated using

psf i g can be rotated a t will. while Figure 5 shows. in contrast. how p s f i g itself

handles rotation. It is also possible to rotate the whole of the figure environment,

including caption, by using the sidewaysf igure and sidewaystable environments in

place of figure and table. The code used to produce figures 1-6 is as follows:

Figure 1 \begin{sidewaystable)
\centering

\caption{This is a narrow table, which should be centred vertically

on the final page.\label{rotfloatl}}

\begin{tabular){I111)

\hline

a & b \ \

c & d \ \

e & f \ \

g & h \ \

i & j \ \

\hline

\endCtabular)

\end{sidewaystable)

Figure 2 \begin{sidewaystable)
\centering

\begin~tabular~CI1111lll1p{lin)l)

TUGboat, Volume 13 (1992), No. 2

\ h l i ne

Context &Length &Breadth/ &Depth &Pro f i l e &Pottery &Fl in t

&Animal &Stone &Other &C14 Dates \ \
& &Diameter & & & &

&Bones&&&\\

\ h l ine

&&&&&&&&&&\\

\multicolumnilO~iI13i\bf Grooved Ware)&\\

784 $--- &0.9m &0.18m &Sloping U &PI &\times46

& \times8 && $\times52 bone& 21505\pm$ 100 BC\\

785 &--- &1.00m &0.12 &Sloping U &P2--4 &$\times523

& \times21 & Hammerstone &---&---\\

962 &--- &1.37m &0.20m &Sloping U &P5--6 &\times48

& \times57* & ---& ---&I990 \pm 80 BC (Layer 4) 1870 \pm90 BC (Layer I) \ \

983 &O. 83m &O. 73m &0.25m &Stepped U &--- &\times18

& \times8 & ---& Fired clay&---\\

&&&&&&&&&&\\

\multicolumnilO)(Il)C\bf Beaker)&\\

552 &--- &0.68m &0.12m &Saucer &P7--14 &---
& --- & --- &--- &---\\

790 &--- k0.60m &0.25m &U &PI5 &\times12
& --- & Quartzite-lump&--- &---\\

794 &2.89m &O. 75m &0.25m & I r r e g . &PI6 &\times3
& --- & --- &--- &---\\

\ h l i ne

\end(tabular)

\caption[Grooved Ware and Beaker Features , t h e i r Finds and

Radiocarbon Dates](Grooved Ware and Beaker Features , t h e i r

Finds and Radiocarbon Dates; For a breakdown of t he Pot tery

Assemblages see Tables I and 111; f o r

t he F l i n t s see Tables I1 and IV; f o r t h e

Animal Bones see Table V.)\ labelCrotfloat2)

\endisidewaystable)

Figure 3 \begin{table)
\centering

\rotcaptionCMinimum number of individuals; effect of rotating table

and caption separately)\label{rotf loat331

\beginbideways)

\beginCtabular)[b]{cccccccccp{lcm})

\hline

Phase&Total&Cattle&Sheep&Pig&Red Deer&Horse&Dog&Goat&Other\\

\hline

&1121&54&12&32&1&1&1&1&1 polecat\\

3&8255&58&6&35&1&1&1&1&1 roe deer, 1 hare, 1 cat, 1 otter\\

4&543&45&6&45&4&1&1&---&---\\

\hline

&9919&157&24&112&6&3&3&2&5\\

\hline

Figure 6 \begin{sidewaysf igure}

\caption{A pathetically squashed rotated pussycat)\labelCrotfloat4)

\endbidewaysfigure)

TUGboat, Volume 13 (1992), No. 2

Figure 4: Turned, normal, and sideways, pictures within a figure

Figure 5: Figures rotated with 'psfig'

TUGboat, Volume 13 (1992), No. 2

TUGboat, Volume 13 (1992), No. 2

TUGboat, Volume 13 (1992), No. 2

TUGboat. Volume 13 (1992), No. 2

o Sebastian Rahtz

ArchaeoInformatica

12 Cygnet Street

York YO2 1AG
spqrQuk.ac.york.rninster

o Leonor Barroca

Department of Computer Science

University of York

Heslington

York YO1 5DD

1mbQuk.ac.york.minster

