
TUGboat, Volume 13 (1992), No. 2

Software

Knuth's Profiler Adapted to the

VMS Operating System

R.M.Damerel1

Abstract

This article describes a Pascal profiler originally

written by D.E. Knuth. In principle, this should

be portable to any machine. In practice it required

a lot of work to adapt it to VMS. We believe

that the modified profiler can now support the

whole of Standard Pascal and many non-Standard

parts of VMS Pascal; and that it should be more

easily portable than the original. We also provide

a companion utility for generating execution count

files.

Introduction

This article is about a Pascal profiler which was

written by D.E. Knuth and distributed with the

Stanford software. As there seems to be no

published description, we begin by explaining how

it works.

Suppose you have a program-let's call it

Sna i l - that runs unbearably slowly. A profiler is

a supplementary utility that determines how much

time the S n a i l is spending in executing different

portions of its code. What usually happens is

that a typical Sna i l will spend nearly all of its

time executing a small subset of itself. Such a

subset is usually stigmatised by such names as

"bottleneck", "critical section", "innermost loop",

etc. Any serious attempt to speed up a Sna i l

must concentrate on this "critical" section, either

by actually rewriting it to run faster or by rewriting

the higher-level code to make it run less often. or

maybe adopting an entirely new algorithm. Nothing

else is likely to make any significant difference. Thus

a profiler is an essential tool for any programmer

who is concerned about the execution speed of his

or her programs.

Most profilers work by making some special

calls to the operating system, asking it to monitor

the behaviour of the Sna i l in some way as it

crawls. Some typical examples are given in [1,2,6].

Knuth's profiler (called "Profi le") works on an

entirely different principle. It reads the source code

of Sna i l , making a table of the time consumed by

each statement. For each statement in the code,

P r o f i l e estimates the time to be w * f where:

w, the weight, is the time taken to execute the

statement once.

f , the frequency, is the number of times the

statement was executed in a run of the Sna i l

program.

P r o f i l e then prints a listing of the Sna i l program

with weight and frequency data added. The weight

of each statement is estimated by parsing the

statement, making reasonable assumptions about

how it might be executed on a typical machine.

If m and n are integers, the Pascal statement:

x : =2. I* (m+n) ; would probably be executed as:

fetch m and n; add; convert to real; multiply;

deposit result in x. The costs of all these primitive

operations are stored as constants in P ro f i l e .

P r o f i l e adds them all together to get the weight,

then multiplies by the frequency to get the total

cost. The frequency is read in from a supplementary

file called a count file. This contains a long list

of numbers; essentially it lists the number of times

every statement in Sna i l was executed in a trial

run.

Thus it appears that P r o f i l e does not require

any special help from the local operating system; so

in principle it should be runnable on any machine.

In practice it is a very different story. The main

obstructions to running P r o f i l e on a new machine

are:

1. No mechanism is provided for generating the

count file.

2. All Pascal compilers implement different lan-

guages - of the same name!

We have been working on the problem of installing

P r o f i l e on the VMS operating system, with the

ulterior aim of eventually producing a portable

version of P ro f i l e . This article describes the

progress made so far. In order to avoid confusion, we

call the altered program VMS-Prof i l e " , reserving

"Profi le" for Knuth's original.

Generating the Count File

P r o f i l e was originally written for the KL-10 ma-

chine at Stanford, on which D.R.Fuchs altered

the system debugger to make it generate a count

file. This is obviously not a practical option for

other users. Hardly any manufacturers provide

the source of their software and few site managers

would allow ordinary users to alter it. Even if

we could alter the VMS debugger, it could not be

distributed as this would be a breach of copyright.

140 TUGboat, Volume 13 (1992); No. 2

We have therefore written a completely separate

utility called Preprof ile for generating count files.

Preprofile reads the source code of the Snail

program and generates a new program file with

a name like SNAIL-COUNT.PAS. If all goes well,

this will be a valid Pascal program, which does

everything that Snail does and also writes a count

file, called SNAIL.COU. This can then be fed into

VMS-Profile along with the original SNAIL.PAS

file.

So in order to profile a program on VMS,
you need to do the following: compile and link

VMS-Prof ile and Preprof ile; define commands

to run them; run Preprofile on Snail: compile

and link Snail-count; define further commands to

run Snail-count instead of Snail. Then put the

SNAIL. COU file into the same directory as the source

of Snail and run V M S P r o f ile on Snail and (with

luck) you get a profiled file called SNAIL. PRO.

The basic algorithm of Preprofile is fairly

obvious. At each place in the Snail program file

where Profile will need to see a count. Preprof ile

inserts a piece of code to advance a counter.

Roughly speaking:

while (condztzon) do (statement)

becomes

while (condition) do begin

count [i] : = count [i] +l ;

(statement) end;

In the outermost block of Snail, Preprofile

must declare all the extra variables. At the

start of the statement part of the Snail program,

Preprofile inserts code to set all the counters to

zero. At the end, it inserts code to open the count

file. write all the accumulated counts, then close it.

This mechanism now seems to be working, on

all the Snail programs that we have tried. The

most obvious disadvantage is that the Snail-count

program will clearly run even more slowly than the

original Snail did. The extra time is not itself all

that important, because with luck you never need

to run Snail-count more than once. The real

disadvantage of the extra time is that Snail-count

will never produce any useful information unless

it can be run to completion. Another problem is

that all the extra variables that Preprof ile inserts

into the Snail program must have names different

from all the variables that were there previously.

We have not managed to solve this problem; the

best we can do is to give the extra variables

unpronounceable names like L'ZQRWHZ3XX" which do

not figure prominently in most programmers' code.

Preprofile is a much simpler program than

Profile. Profile has to parse the Snail program

in great detail, but Preprof ile is interested only

in those syntax words of Pascal that affect the flow

of control in Snail. It turned out that many of

the most complicated parts of Profile could be

replaced by a routine that merely copies parts of

the text to the output file.

Improved Output

We have madeseveral changes to VMS-Prof ile to

try to improve the usefulness of its output. First

consider the index of module names. Profile is de-

signed to work with the Stanford WEB system. (We

assume that everybody is familiar with WEB; see [4]

if not.) As TANGLE assembles a WEB program, it in-

serts markers into its output like 1123 :]. . . { : 1231,

indicating the start and end of the replacement text

of each module. If Profile sees these markers, it

assumes that Snail was originally a WEB program

and generates an index. For each module that con-

tains executable code. Profile calculates the total

cost of all the statements in that module. It also

calculates the cost of each module as a percentage

of the total cost of the whole program.

This index of modules is essential. The output

of Profile is inevitably bulky, and without an

index it would be a hopeless task to wade through

an enormous listing in search of the critical sections.

But Profile only makes an index if it sees WEB-style

module markers. Therefore we have altered V M S -

Profile to make it build an index of functions,

in addition to Profile's index of modules. (From

now on "function" will include "procedure".) V M S -

Profile calculates the cost of each function both

as an absolute amount and as a percentage of the

total cost.

We have made minor changes to the format of

the index, to improve its signal-to-noise ratio. Since

the percentage costs calculated by VMS-Prof ile

are inevitably inaccurate, we see no point in giving

them to 6 decimal places. Also we list only those

modules or functions that score at least 2% of the

total cost.

We have also altered the way VMS-Profile

lays out the Snail program. The main output

of Profile is the whole of the Snail program.

with weight and frequency data attached. This is

arranged in columns like this:

(statement) (wezght) (frequency)

In VMS-Prof ile, we moved the weight and fre-

quency columns to the left hand side. This change

seems ridiculously trivial, but is actually important.

TUGboat, Volume 13 (1992), KO. 2 141

The original layout has the disadvantage that the

statement has to fit into a fixed width. When

the statement is indented, the width is further re-

duced. The effect is that P r o f i l e imposes a limit

of 62 - k on the length of quoted strings in the

Sna i l program, where Ic is the current amount of

indentation. This is illogical because P r o f i l e is

supposed to work with TANGLE and TANGLE'S limit

is 69. If this limit is violated, P r o f i l e stops with

a fatal error. VMS-Prof i l e allows a much larger

limit; if it sees an over-long string it merely splits

it, so the output is essentially undamaged. The

new layout means that a statement can now spread

out to any width; the output file is much shorter

because it does not need so much padding; we can

add a column for weight * frequency (which is the

data the user actually needs).

One of the methods that Knuth used for

debugging was the TRIP test [5 , 3] . This

is a special input file containing many unusual

constructions, intended to exercise the entire TEX

program. He found that this is a powerful device

for revealing obscure bugs in a program, after the

obvious bugs have been fixed and the program

seems to be working. In order to help with this

method of debugging, VMS-Prof i l e prints a list of

the line numbers of executable statements that did

not get executed in the trial run.

The Many-Languages Problem

This problem is compounded by the fact that

P r o f i l e uses a rather simple-minded top-down

parsing algorithm. It is well known that such

parsing methods do not work well on programs

that have syntax errors. In theory this should not

matter because Sna i l has to be working before it

makes any sense to try to profile it. In practice,

P r o f i l e runs into trouble as soon as you try to

move it t o another machine, say from Machine A

to Machine B. Every construction in B-Pascal that

is not in A-Pascal is seen by P r o f i l e as a syntax

error. The usual result is that after a little while,

P r o f i l e becomes totally confused and loses track

of the boundaries between statements in the Sna i l

program. I t is therefore essential to adapt P r o f i l e

to read B-Pascal before it can be used on the new

machine.

Of course we can always try to make ad-hoc

changes t o P r o f i l e to support this or that feature

of the new language, but this approach produces

masses of bugs. Even with a debug-help procedure

(based on the one in l&X) it is a difficult business

to adapt P r o f i l e to a new system. We believe that

we have managed to make VMS-Prof l l e support

the whole of Standard Pascal and many of the more

accessible features of VMS Pascal. But we can never

be sure that we have succeeded. There is always

the danger that some unexpected (but perfectly

valid) combination of Pascal syntax will reveal

another bug. We believe that it will require a great

deal of effort to produce a satisfactory solution of

the many-languages problem. Meanwhile, neither

P r o f i l e nor VMS-Profile can be regarded as

portable.

The following examples will show some of the

difficulty. Consider what happens when P ro f i l e

reads a variable declaration, say

var horse, dog, goa t : r e a l ;

P r o f i l e scans the list of names, then the type, then

it sets up structures in its memory so that it will in

future recognise a "horse" when it sees one. Now

suppose that horse was previously declared in an

outer block. Then P ro f i l e again does the obvious

thing: it saves the previous definition of horse

on a stack. When the current block is exited the

previous definition will be un-saved. Now suppose

the definition came in a procedure header, say:

procedure hunt(horse, fox: i n t ege r ; yak:

r e a l) ;

Then P r o f i l e again knows what to do: it first

defines the parameters horse, fox, and yak: then

it defines the procedure itself.

All this is quite straightforward in principle;

the details are not necessary here. Now consider:

what must P r o f i l e do when it reads the word

"forward"? If horse was defined in an outer block,

that definition must be recovered from the stack.

But also the new definition of horse as a parameter

of hunt must be saved somewhere so that P r o f i l e

will know what to do with horse when scanning the

definition of hunt. This definition cannot be saved

on the stack because the current stack frame will be

erased by the time we reach the definition of hunt.

It follows that we have to assemble an entirely new

structure to represent a procedure header in order

to handle forward declared procedures before they

have been defined.

In VMS Pascal the formal parameters of func-

tions can have default values. In the previous

example, suppose that horse and fox had been de-

clared with default values. Then when the function

is called you can omit any parameters with defaults

and pass the others by explicit assignment. as in:

hunt (yak : =4). The library procedures of VMS

Pascal make extensive use of this feature.

142 TUGboat, Volume 13 (1992), No. 2

The VMS versions of TEX and METAFONT use

parts of the VMS system library. In order to handle

these programs VMS-Prof i l e must read the library

header file (called " s t a r l e t .pas"). This file is a

monster, nearly three times as large as TEX. PAS.

We had to increase the size of all the arrays in

VMS-Prof i l e to accommodate all the data; in turn

this forced us to use long numbers to address these

arrays because 16-bit numbers are not large enough.

It is clear that adapting P r o f i l e to another

machine is not just a simple matter of adapting its

system-dependent procedures to the eccentricities

of a new compiler. Many of the internal struc-

tures have to be redesigned. These structures are

represented by linked lists. It is terribly easy for list-

processing programs to become messy, and messy

programming is utterly abhorrent to the spirit of

the WEB language. It is an accepted convention

that any respectable WEB program must contain a

clear explanation of how it is supposed to work.

There seem to be two main difficulties that must

be overcome in order to write a clean program

that does list-processing. First, it is impossible to

specify the structure of a complicated list in words.

We need a n easily-readable notation. We have

therefore included in VMS-Prof i l e the beginnings

of a suite of macros for this purpose. These

macros are no use for complicated lists; even so.

they make a valuable contribution to the clarity of

VMS-Prof i l e . The Appendix at the end shows

some examples.

The second main difficulty of list-processing is

that Pascal has no suitable primitives; so every

operation needs half-a-dozen statements. We have

therefore written a set of WEB macros for simple list

operations.

Although the many-languages problem is un-

solved, we have managed to solve a small part of it.

VMS Pascal provides a great many non-Standard

predeclared functions. Some of these have weird

syntax. The most extreme example is the open

procedure, which links a disk file to a Pascal file

variable. This procedure is both complicated and

important; i t is difficult to imagine how any serious

programmer in VMS Pascal could avoid using it.

Its declaration is something like this:

procedure open(fi1e-variab1e:file;

file-name:S-typ:=";

history:H-typ:=new;

record_length:integer:=132;

access-method:A-typ:=sequential;

record-type:R-typ:=variable;

carriage-contro1:C-typ:=list;

organization:O-typ:=sequential;

disposition:D-typ:=save;

file-sharing:W-typ:=none;

funct ion user-action:integer:=none;

defau1t:S-typ:=";

error:E-typ:=message); extern ;

where S-typ can be any character string type and

H-typ, etc., are enumerated types whose values are

here immaterial. (The true definition of open is even

more complicated than this simplified paraphrase

suggests; it seems to be impossible to express this

in Pascal.) In order to handle these predeclared

functions, VMS-Prof i l e must assemble suitable

structures in memory to represent their headers. It

would be an unbearably long and error-prone task

to do this by hand. The only tolerable method is to

write the declarations of these functions into a file

and make VMS-Prof i l e read them before it reads

the Sna i l program itself.

For this purpose. we use the pool file mechanism

of the WEB language. This is a most valuable feature

of WEB which deserves to be far more widely used

than it is at present. We have yet to see any

large Pascal program that could not be improved

by judicious use of this mechanism. It was invented

by Knuth to circumvent the difficulty that Standard

Pascal has no satisfactory mechanism for handling

character strings. When TANGLE is assembling a

WEB program. if it reads a string in double quotes, it

writes that string into a supplementary file called a

pool file. The idea is that the Tangled program can

then read all these strings from its pool file into its

memory. So we insert all the predeclarations into

the VMS-PROFILE . WEB file. When VMS-Prof i l e

starts up it reads the pool file before it reads the

Sna i l file. Here are some sample definitions:

declare("const t r u e = l ; f alse=O; " ,
"maxint=2147483647;minint=-maxint;",

"minchar=O ;maxchar=255 ; ,
l1type boolean=f a l s e . . t r u e ; " ,
I1integer=minint..maxint;",

I1char=minchar. .macha r ; I' ,
I1text=f i l e of char; ")

The declarations are written in the usual Pascal

form; they may extend over several lines and each

line must be enclosed in double quotes. Then

dec la re must be called on these lines. Several

lines may be declared at once; then they must

be separated by commas to keep TANGLE happy.

Procedures and functions must have just the header,

followed by "extern". For comparison, here is part

of the equivalent code from P ro f i l e :

TCGboat, Volume 13 (1992), No. 2

char-loc : =get-avail; If this comment is seen, then the number is assumed

info (char-loc) :=char-type; - to be the cost of the function. In this respect VMS-

int-loc:=get-avail; Profile is inferior to Profile, because in Profile

info(int-loc):=int-type; all the costs are tidily collected together in one place.

p:=get-avail; link(int-loc):=p; We think the improvement in clarity outweighs the

q:=get-avail; val (q) : =-max-int ; price.

info(p):=q; q:=get-avail;

val(q) :=max-int ; link(p) : =q; Future Developments

bool-loc:=get-avail;

info(boo1-loc):=int-type;

p:=get-avail; link(boo1-loc):=p;

zero-loc:=get-avail; val(zero-loc):=O;

info(p):=zero-loc; one-loc:=get-avail;

val(one-loc):=l; link(p):=one-loc;
id5(llf I!) (!la") (Illll) (Us") (lie!!)

(bool-const) (0) ;

id4("tH) ("r") ("u") ("e") (bool-const) (1) ;

p:=get-avail; val(p):=max-int;
id6(llmll) (Mall) (l l x l l) ("ill) (lln!l) (lltll)

(int-const) (p) ;
id7(llill) (l l n l l) (l l t l l) (Well) (llgfl) (Hell) (llrN)

(def ined-type) (int-loc) ;
id7(llbll) (Uoll) (UoIl) (Ill") (Me") (Mall) (Ifn")

(def ined-type) (bool-loc) ;

And here is how it all works. Declare is a

WEB macro with no replacement text. When TANGLE

reads a declare, it first evaluates the argument. As

this is a string in double quotes, it copies the string

into the pool file. Then it evaluates the declare

and solemnly puts nothing into the Pascal file.

Then VMS-Profile reads the pool file and parses

the declarations as if they were part of the Snail

file itself. Where functions use non-standard syntax

(like write and open above) we have made some

ad-hoc changes to VMS-Prof ile's parsing routines

to support these.

We believe that this mechanism is much cleaner

than the previous one, as you can actually read

the declarations. It does have one unfortunate

consequence; in order for VMS-Prof ile to allow for

the execution time of these predeclared functions,

we must specify these times. This is done using

Profile's "change-weight" mechanism. Recall that

the weight of a statement is the estimated time

to run it once. If Profile gets this wrong, you

can rectify this by adding a so called "change-

weight" comment, which looks like this: {+1001.

This means "add 100 units to the cost of the

current statement". In VMS-Prof ile you can add

change-weight comments to external declarations.

thus:

declare("function sin(x:real):real;",

"extern{+lOO); ")

The current version of VMS-Prof ile contains sev-

eral problems besides those mentioned above. The

first concerns the accuracy of the calculated profile.

Ideally, when moving Profile to a new machine,

one ought to calibrate it by measuring the time

taken to do all the primitive operations and writing

these times into the table of costs in the program.

This would be a tremendously long and messy job.

and probably not worth doing. Given that V M S -

Profile works by examining the source of Snail, it

cannot possibly have as close a contact with reality

as a profiler that actually monitors the crawling

Snail. On the other hand an accurate profile is

neither needed nor possible. Any modern operating

system is doing several jobs at once: so the time

taken for a given task will vary according to the - -
burden of other tasks. If a profiler gives a useful

result, that result will be that "function X is using

10 times as much time as everything else". Since

the truth is inevitably fuzzy, we believe that any

calculated profile within a factor of 2 is probably

good enough for practical purposes.

When discussing Profile's index, we said that

Profile produces a list of all the modules in Snail

and their total costs, and slurred over the question

of how this is actually done. There are two ways

of doing this. If M is a module, then its explzczt

cost is defined as the total cost of the statements

actually contained in M. But WEB modules may be

nested to any depth. So we can also define the

zmplzczt cost of a module. The implicit cost of

module M is the total cost of the statements in M and

also all modules directly or indirectly included in M.

Roughly speaking, the explicit cost of a module is

the amount of time you might save by rewriting its

code to run infinitely fast: the implicit cost is what

you might save if you could bypass that module

altogether. Profile lists all the modules in Snail,

giving both their explicit and implicit costs.

When VMS-Proflle calculates its index of

functions, it can only calculate explicit costs. The

explicit cost of a function F is the (estimated)

amount of time used by the code that is actually

part of F, ignoring any time used by functions

called by F. The only way we could estimate an

TUGboat, Volume 13 (1992), No. 2

implicit cost of F would be by assuming that every

invocation of every function uses the same time.

(This assumption is clearly false, but VMS-Prof i l e

has no way to get more accurate information.)

Suppose that function F calls function G q

times. Then we must add q * cln to the implicit

cost of F, where c is the cost of G and n is the

total number of times G has been called. This

simple-minded approach fails when functions call

one another recursively. In order to find implicit

costs, VMS-Prof i l e would have to solve a set of

linear equations. It is easy to prove that the matrix

of coefficients is nonsingular but ill conditioned. We

have not tackled the problems of assembling these

equations or of finding a suitable method for solving

them.

In conclusion, we believe that Knuth's profiler

is potentially a useful program, but it cannot realise

its full potential until it is made portable. Copies of

VMS-Prof i l e and Preprof i l e have been submit-

ted to the archives at Aston, with a suggested direc-

tory name " [t ex-archive . u t i l s . vms-prof i l e l " .
They may be freely copied, "as is", on condition

that no warranty is expressed or implied.

References

1. M. Bishop, Profiling under UNIX by patch-

zng, Softw. Pract. Exp., 17, 729-739, (1987).

2. T. Cargill and B. Locanthi, Cheap hardware

support for software debugging and profiling, Com-

puting Architecture News, 15 (5) , 82-83, (1987).

3. D.E.Knuth, The Errors of m, Softw.

Pract. Exp., 19, 607-686, (1983).

4. D.E. Knuth, Lzterate Programming, Comput.

J., 27, 97-111, (1984).

5 . D.E. Knuth, A torture test for QX, Stanford

Comput. Scz. Report STAN-CS-1027, Nov. 1984.

6. B. Plattner and J . Nievergelt, Monitorzng

program executzon: a survey, Computer, 14, 76-93.

(1981).

Appendix 1

Here we give some examples of the linked-list macros mentioned earlier. There are some errors of

mis-alignment, which we regard as not worth fixing. A Pascal array type is represented by the structure:

I "array" I 1-/]-basetype

and multi-dimensional arrays by: -
I "array" / 1-1 tindexl 1 1-1 "array" I 1-1 tindex2 I 1 . . . -basetype.

A record type is represented by

/ "record" / I ---+ I ff ieldl I I - / tf ield2 I 1 . . . - / tf ieldn 1 null 1
where each pointer f i e l d i points to I name 1 type].
Finally, a function declaration is represented by

I tlfunctionll I I - I tresult I 1 -+ / - mfP2 . . . - [tPn 1 null /
where PI, etc., correspond to the parameters. For each parameter, PI points to:

PI-+/-I mechanism I J-type.

While a list is being built, it looks like this:

This structure is non-intuitive, but it works. The chief booby-trap is that you must remember to remove

or bypass the leading cell before starting to extract data from the list.

Appendix 2

This is the source for Appendix 1, with most of the plain text deleted. First, the underlying macros:

% T h i s one p u t s a box around i t s argument; based on t h e

% ' c o n t r o l sequence token' macro i n TeXbook

TUGboat, Volume 13 (1992), No. 2

% Partitioned boxes for linked lists

% Pascal arrays:

\centerlineC\leftbox {"arrayl')\TO\leftbox C\-indexl)\TO

\leftbox C1'array")\TO \leftbox I\-index2) \dots\TO C\tt basetype).)

% Record type:

\centerlineC\leftbox {"record")\TO\leftbox {\̂ fieldl)\TO

\leftbox (\-field2)\dots\TO\dbox {\̂ fieldn){null))

\noindent where each pointer (\tt fieldi) points eo \dbox CnameHtype).

\noindent Finally, a function declaration is represented by

For each parameter, (\tt PI) points to:

\centerlineCC\tt Pl)\TO \leftbox(name)\TO \leftbox{mechanism)\TO C\tt type).

% List structure:

o R.M.Damerel1

Maths Dept,

Royal Holloway & Bedford New College

Egham, Surrey, U.K.
Janet: uhah208@uk. ac . ulcc .pluto

