
TUGboat, Volume 12 (1991), No. 2

Getting \answers in

Jim Hefferon

The tutorial Long-winded Endnotes and Exercises

with Hints or Solutions by Lincoln Durst (TUG-
boat 11, no. 9, pp. 580-588) gives a clear explanation

of why setting up a format like

\begin{exercises)

is hard. The problem is that writing -text- to an

auxiliary file is more complex than it seems. Briefly,

grabs the argument to \answer, expands all

tokens fully (looking for things like page numbers

that must be evaluated now), and then writes the

result as a single-possibly very long-line to that

auxiliary file.

Besides being hard to edit, those long lines may

choke m ' s input mechanism since buf-size may be

only a thousand characters.

Long-winded . . . details a fascinating trick to

try to work around this problem. But for me this

approach has two problems. First, I don't entirely

understand it (so if it breaks I can't fix it). Second.

it won't take line returns inside of braces.

Just as I don't understand the macro. I don't

entirely understand the macro's problems, so I am

reluctant to rely on it. This note is to point out that

an obvious kludge has some advantages.

I defined \answer to write the number of the

current exercise to the file exnos. tex:

(labeledtext counts the formal parts of my docu-

ment). A typical output file looks as follows.

1.2.2.13

Then I wrote an editor macro to find instances

of answer{-text-), match them with lines from

exnos. tex. and write the result to answers. tex.

After executing the macro, answers. tex looks like

Figure 1. (The lines of the answers are, comments

and all, as I typed them.)

My editor macro, listed in the Appendix, is

written in REXX (specifically Personal Rexx for the

Kedit editor on an IBM PC).
This solution may involve leaving T)jX but it

has the advantages that I can modify it to suit

my needs, and that it has no obscure restrictions.

Stretching 7QX is fun. but maybe it just isn't right

for this job.

Figure 1. answers. t ex

\par{Known as Fermat 's Last Theorem, % ! ! index this

this result is easy when

\ (n \) is infinite or \ (2 \) , but is harder

for intermediate \ (n \) .)

Appendix

/* ANSWER.kex THIS IS A REXX PROGRAM * /
/* Used to separate answers from the file in TeX * /
/* Expects the counters for those answers to be * /
/* in the file texauxfile, one to a line. * /
/ Kills .w and . z . */
/* jim hefferon St. Mike's College. 91-1-21 */
answerfilename='answers.tex'

texauxfile='exnos.tex'

TUGboat, Volume 12 (1991), No. 2

/* t r a c e ? i * /
' s e t msgmode o f f ' /* Matches t he "on" below. */

/* Remember t he filename and where we a r e . * /
' e x t r ac t /f i l e i d / '
' s e t point .z '

' t op '

'/\answer{/' / * f i n d s t r i n g l i k e t h i s * /
f a i l ed to f ind=rc

' s e t point . w ' /* . w is l a s t place found answer */

/* Go t o output f i l e . Add header (announce t he new page) . */
' k) answerf ilename

'bot '
' sos addl ine '

' t e x t %ANSWERS! ! '

/* Enter main loop. */
do while fai ledtofind=O

'k 'answerfilename /* Open the answerf i le */
'bot ' /* and i n s e r t any pre- */
' sos addl ine ' / * number i n fo . */
' t e x t ' I l p r e f i x s t r i ng / * */
' k ' t exaux f i l e / * Open the counter */
' down ' /* f i l e and take t he */
' r e s e t block' / * next l i n e . */
'mark l i n e ' /* */
'k 'answerfilename /* Reopen the answer */
'bot ' /* f i l e , copy next l i ne* /

'copy block' /* and put i n post- */
' sos addl ine ' /* number i n fo * /
' t e x t ' I lpostf i x s t r i n g /* * /
' k ' f i l e i d . 1 /* Go t o main (TeX) */
' l o c a t e . w ' /* f i l e and stream * /
' e x t r a c t / cu r l i ne / ' /* mark t h e answer, */
parse value c u r l i n e . 3 with s l '\answer{' r e s t /* e . g . , */
' e x t r a c t / l i n e / ' /* \answer{Hello, t h i s */
' cu rsor f i l e ' l i n e . 1 length(slJ \answer{ ') /* """""""'-'"" */
'mark stream' /* i s i t .) More s t u f f . */
' cmat ch ' /* ""-""-" */
' SOS makecurr' / * */
'mark stream' / * */
' k ' answerf ilename /* Transfer t o answer */
' bot ' /* f i l e . */
' sos addl ine ' /* */
'copy block' / * */
'k ' f i l e i d . 1 /* Any more answers? */
' r e s e t block' / * * /
'/\answer{/' /* * /
f a i l e d t o f i n d = r c /* */
' s e t po in t . w ' /* */

TUGboat, Volume 12 (1991), No. 2

end

/* Cleanup. */
' k ' t exauxf i l e

'qqui t '

/* F i l e the answer f i l e . */
'k ' answerf ilename

' f i l e '
/* Move back t o where we were when the macro was c a l l e d . */
'k ' f i l e i d . 1

' s e t po in t . w o f f '

' l o ca t e .z '

' s e t point .z o f f '

' s e t msgmode on' / * Matches t he "of f" above. */
'msg Answers appended t o ' I lanswerf i lenamell ' . '

o Jim Hefferon
Mathematics
St. Michael's College
Colchester, VT 05439

BITnet: hef f eron@smcvax

Oral

Victor Eijkhout

Tj$ knows two sorts of activity: those actions that

can be classified under 'execution'. and those that

fall under 'expansion'. The first class comprises ev-

erything that gives a typeset result, or that alters the

internal state of m. Examples of this are control

sequences such as \vskip, macro definitions, and all

assignments.

Expansion activities are those that are per-

formed by what is called the mouth of m. The

most obvious example is macro expansion, but the

command \ the and evaluation of conditionals are

also examples. The full list can be found on pages

212-215 of the =book [l].

In this article I will give two examples of com-

plicated macros that function completely by expan-

sion. Some fancy macro argument delimiting occurs.

and there are lots of applications of various condi-

tionals. For a better understanding of these I will

start off with a short section on the expansion of

conditionals.

About conditionals

For many purposes one may picture W ' s condi-

tionals as functioning like conditionals in any other

programming language. Every once in a while, how-

ever, it becomes apparent that = is a macro pro-

cessor. absorbing a stream of tokens, and that con-

ditionals consist of nothing more than just that: to-

kens.

Consider the following example:

\def\bold#l{{\bf #I))

\def \ s lan t# l ((\ s l #I))

\ ifsomething \bold \ e l s e

\ s l a n t \ f i {word)

If the 'something' condition is true, the whole

\ i f . . . \ e l s e . . . \ f i {word) sequence is not

replaced by \bold {word); instead will start

processing the 'true' part of the conditional. It ex-

pands the \bold macro, and gives it the first token

in the stream as argument. Thus the argument taken

will be \e l se . T)?J will only make a mental note that

when it first encounters - more precisely: expands -

an \ e l s e it will skip everything up to and including

the first \ f i l .

The reader may enjoy figuring out why in spite

of the apparent accident in this example the 'word'

will still be bold, and why will report that 'end

occurred inside a group at level 1' at the end of the

job.

