
TUGboat, Volume 11 (1990), No. 4

Software

Answers t o

Exercises for TEX: T h e P rogram

Donald E. Knuth

Editor's note: The exercises apropos to these an-

swers were printed in TUGboat 11, no. 2. pp. 165-
170.

1. According to the index, initialize is declared in

$4. It is preceded there by (Global variables 1 3) '

and $13 tells us that the final global variable

appears in $1345. Turning to $1345, we find
'write-loc: pointer;' and a comment. The comment
doesn't get into the Pascal code. The mini-index

at the bottom of page 535 tells us that 'pointer' is
a macro defined in $115. Our quest is nearly over.

since $115 says that pointer expands to halfword,

which is part of the Pascal program. Page ix

tells us that lowercase letters of a WEB program

become uppercase in the corresponding Pascal code:
page x tells us that the underline in 'write-loc' is

discarded. Therefore we conclude that 'PROCEDURE

INITIALIZE' is immediately preceded in the Pascal
program by 'WRITELOC : HALFWORD ; '.

But this isn't quite correct! The book doesn't
tell the whole story. If we actually run TANGLE

on TEX.WEB (without a change file), we find that

'PROCEDURE INITIALIZE' is actually preceded by

{1345:)WRITELOC:HALFWORD;C:1345)

because TANGLE inserts comments to show the origin

of each block of code.

2. The index tells us that done5 and done6 are
never used. (They are included only for people who

have to make system-dependent changes and/or

extensions.)

3. Here we change the input-ln procedure of $31.
One way is to replace the statements 'buffer[last] +-

I xord [f t]; get (f) ' by the following:

if ord (f 7) =, '33 t h e n
begin get (f):

if (ord(ff) > "@I1) A (ord(fT) 5 t h e n

begin buffer [last] +- xord [chr (ord (f f) - ' l o o)] ; get (f) ;
end

else buffer [last] c znvalid-code ;
end

else begin bufler [last] +- xord [f TI ; get (f);
end;

4. The new string essentially substitutes "quar-

ters" q (of value 25) for "dimes" x (of value 10).

Playing through the code of $69 tells us that

69 is now represented by lvvviv and 9999 is

mmmrnmmmmmcmqcvqiv. (The first nine m's make 9000;

then cm makes 900; then qc makes 75; then vq
makes 20; and i v makes the remaining 4.)

5 . Because it may be decreased by 1 in $1293

before being increased by 1 in $82. (The code

in $1293 decreases error-count because "showing"
uses the error subroutine although it isn't really an

error.)

6. The q becomes in $83. This causes $86
to print 'OK, enter ing \batchmode', after which
selector is decreased so that ' . . . ' and (return) are

not printed on the terminal! (They appear only in
the log file, if it has been opened.) This is 7&.X's
way of confirming that \batchmode has indeed been

entered.

7. (a) Arithmetic overflow might occur when
computing t * 297, because 7230585 x 297 = 231 + 97.

(b) Some sort of test is need to avoid division by

zero when 0 < s < 297. If s < 1663497 then
s div 297 < 5601, and 723058515600 is a bit

larger than 1291 so we will have r > 1290 in such

a case. The threshold value has therefore been

chosen to save division whenever possible. (One

student suggested that the statement 'r t t ' be

replaced by 'r +- 1291'. That might or might

not be faster, depending on the computer and the
Pascal compiler. In machine language one would
'goto' the statement that sets badness +- inf-bad,

but that is inadmissible Pascal.) (c) If we get
to $128 with r = p + 1, we will try to make a
node of size 1, but then there's no room for the

node-size field. (d) If we get to $129 with only one

node available, we'll lose everything and rover will
be invalid. (Older versions of have a more

complicated test in $127, which would suppress

going to $129 if there were two nodes available.
That was unnecessarily cautious.) (e) This is a
subtle one. The lower part of memory must not

be allowed to grow so large that a node-size value
could ever exceed max-halfword when nodes are
being merged together in $127.

500

8. W e assume t h a t min-quarterword = min-halfword = 0 .

I I "U" / 400 1
I 11 " f " l 10002 1

1 " f " 0 1

T U G b o a t , V o l u m e 11 (1 9 9 0) , No . 4

type (h l i s t -node) , , l ink

wid th (100 p t)

depth

height (1 0 p t)

shi f t -amount

glue-sign (s t re tch ing) , glue-order (f i l l) , list-ptr

glue-set (t y p e real)

type (d i sc -node) , replace-count, l ink

pre-break , post-break

type (kern-node) , subtype (exp l i c i t) , l ink

wid th (1 0 p t)

type (l igature-node) , , l ink

f o n t , character , lig-ptr

type (penal ty-node) , , l ink

penalty

type (g lue -node) , subtype (n o r m a l) , l ink

glue-ptr (f i l l-glue), leader-ptr

type (v l is t -node) , , l ink

width (1 0 p t)

depth (0.5 p t)

height (5 p t)

shi f t -amount (- 5 p t)

glue-sign (n o r m a l) , glue-order (n o r m a l) , list-ptr

glue-set (t y p e real)

type (hl is t -node) , , l ink

wid th (1 0 p t)

depth

height (5 p t)

shift-amount

glue-sign (n o r m a l) , glue-order (n o r m a l) , list-ptr

glue-set (t y p e real)

type (ru le -node) , , l ink

width (nul l - f lag)

depth

height (0 .5 pt)

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

f o n t , character , l ink

TUGboat, Volume 11 (1990), No. 4

9. (Norwegian Americans will recognize this as an

'Uff da' joke.) The output of short-display is

\ l a rge Uff [I

since short-display shows the pre-break and post-

break parts of a discretionary (but not the re-
placement text). However, if this box were output

by hlist-out, the discretionary break would not be

effective; the result would be a box lOOpt wide,

beginning with a large '!' and ending with a small

'da', the latter being raised 5pt and underlined
with a 0.5 pt-rule.

10. Since prev-depth is initially ignore-depth, we

get

v e r t i c a l mode entered a t l i n e 1

(\output rou t ine)
prevdepth -999.99998, prevgraf 1 l i n e

11. According to $236, int-base + 17 is where mag
is stored. (One of the definitions suppressed by an

ellipsis on page 101 is mag; you can verify this by

checking the index!) The initial value of mag is

set in $240. Hence show-eqtb branches to $242 and
prints L\mag=lOOO'.

I

12. In the following chart, '(3)' means a value at level three, and '-' is a level boundary:
(2)

13. (reference count), match ! , match #, left-brace

[, end-match, left-brace {, mac-param #. right-brace
1, mac-param ! , out-param 2, left-brace [. Notice

that the left-brace before the end-match is repeated
at the end of the replacement text, because it

has been matched (and therefore removed from the

input).

14. According to $233, show-eqtb (every-par-loc)

calls show-token-list with the limit 1 = 32. Ac-

cording to $292, we want the token list to contain

a token that prints as many characters as possible

when tally = 31; the value of tally is increased

on every call to print-char ($58). By studying
the cases in $294, we conclude that the worst case

occurs when a mac-param is printed, and when

the character c actually prints as three charac-

ters. The statement 'print-esc("ETC. ")' in $292

will print seven additional characters if the current
escape-char is another tripler. (Longer examples

are possible only if 7QX has a bug that tweaks one

of the outputs '\CLOBBERED.' or ' \BAD . ' in $293;

but this can't happen.)
In other words, a worst-case example such as

in connection with the suggested test line will print

{ r e s to r ing --Meverypar=1234567890123456789012345678901--I--I--METC.~

thereby proving that 44 characters can be printed

by show-eqtb (every-par-loc).

TUGboat, Volume 11 (1990), No. 4

15. Here we must look at the get-next procedure,

which scans the buffer in strange ways when two

identical characters of category 7 (sup-mark) are

found. After the \catcode of open-quote has been

set to 7, get-next begins to scan a control sequence
in 5354, which goes to $355 and finds a space after

' '. Since a space is code ' 40 , it is changed to '140,
and the buffer contents are shifted left 2. By strange

coincidence, '140 is again an open-quote character.

so we get back to $355, which changes ' ' (to h and
goes back to start-cs a third time. Now we go to

$356 and then back to $355 and start-cs, having
changed ") to i. The fourth round, similarly,
changes " ' to a blank space, and the fifth round

finishes the control sequence.
If we try to input the stated line, INITEX will

come to a halt as follows:

! Undefined control sequence.

<*> \catcodeM=7 \hi
! \error

This proves that the buffer now says \hi ! .

16. The error message in question is

! Undefined control sequence.

<*> \endlinechar='! \error
- -M

and our job is to explain the appearance of --M.
The standard \endlinechar is carriage-return,

according to $240; this is '1 5 according to $22, and
'15 is --M in ASCII code. Thus, a carriage-return

is normally placed at the end of each line when it's
read into the buffer (see $360). This carriage-return

is not usually printed in an error message, because

it equals the end-line-char (see $318). We see it

now because end-line-char has changed.
Incidentally, if the input line had been

(without the space after the !) , we wouldn't have

seen the --M. Why not? Because l$$ calls
get-next when looking for the optional space after

the ASCII constant ' ! (see $442-443), hence the

undefined control sequence \error is encountered
before end-line-char has been changed!

17. One problem is to figure out which control

sequence is undefined; it seems to be the '?', since
this character has been made active. One clue is to

observe from $312 and $314 that '<recently read>'
can be printed only when base-ptr = input-ptr,

state = token-list. token-type = backed-up, and

loc = null. A token list of type backed-up usually
contains only a single item; in that case, the control

sequence name must be 'How did this happen?',

and we have a problem getting an active character
into a control sequence name.

But an arbitrarily long token list of type

backed-up can be created with the \lowercase

operation (see $1288). In that case, however, the
right brace that closes \lowercase is almost always

still present in m ' s input state, and it would show

up on the error message. (The back-list procedure

of $323 does not clear a completed token list off of

the stack.) We have to make l$$ clear off its stack
before the) is scanned.

At this point the exercise begins to resemble

"retrograde chess" problems. Here is one solution;

since it requires a very long input line, it has been

/ broken into a three-line answer:

\def \answer<\let'\expandaf ter\lccoder ! ='H% [line has been broken]
-\lowercase-<"!-o-w- -d-i-d- -t-hei-s- % [line has been broken]

-h-a-p-p-e-n-?))

(The 'H' is z lowercase ' ! '; a chain of \expandafter s
is used to make the right brace disappear from the

stack.)

Another approach uses \csname, and manufac-
tures a ? from a !:

\def \answer<\def \a##l<<\global\let##l?\aftergroup##l% [broken]
\escapechar'H\lccode'! I / ' ? % [broken]

\lowercase<\expandafter\a\csname ow did this happen!\endcsname))

TUGboat, Volume 11 (1990), No. 4

But there is a (devious) one-line solution,
which makes the invisible carriage-return following
\answer into a right brace:

\def\answer~\catcode13=2\lccode'!=H\lowercase\bgroup!ow did t h i s happen?)

18. (The answer to this problem was much more

difficult to explain in class than I had thought it

would be, so I guess it was also much more difficult

for the students to solve than I had thought it would

be. After my first attempt to explain the answer,

I decided to make up a special version of T '
that would help to clarify the scanning routines.

This special program, called D e m o w , is just like
ordinary TEX except that if \ t r a c ings t a t s>2 the

user is able to watch l&X's syntax routines in

slow motion. The changes that convert w to

Demo= are explained in the appendix below.

Given D e m o w , we tried a lot of simple examples
of things like ' \hfuzz=l .5pt ' and ' \ ca tcode 'a=l l '

before plunging into exercise 18 in which everything

happens at once. While we were discussing input
stacks, by the way, we found it helpful to consider

the behavior of l&X on the following input:

\output{\botmark)
\def\a{\error)

\mark{

\everyvbox{

\everypar{
\everydisplay{

\everyhbox{

\everymathC\noexpand\a)

$\relax)
\hbox\bgroup\relax)

$$\relax)
\noindent\relax)

\vbox\bgroup\relax)
\hbox()\vf i l l \penal ty-I0000

Here \pena l ty triggers \botmark, which defines

\everyvbox and begins a \vbox, which defines

\everypar and begins a \par, which defines
\everydisplay and begins a \display, etc.)

The first line is essentially

\gdef \a#ld#2#3{#2)

where the second 'd' has catcode 12 (other-char).

Hence the second d will match a d that is generated

by \romannumeral. In this line, scan-znt is called

only to scan the 'd and the 12.

The second line calls scan-dzmen in order to
evaluate the right-hand side of the assignment to

\hfuzz. After scan-dimen has used scan-int to
read the ' loo' , it calls scan-keyword in order to

figure out the units. But before the units are known

to be 'p t ' or 'pc', an \ifdim must be expanded.

Here we need to call scan-dimen recursively, twice;

it finds the value 12 pt on the left-hand side, and
is interrupted again while scan-keyword is trying to

figure out the units on the right-hand side. Now a

chain of \expandaf t e r s causes \romannumeral888

to be expanded into dccclxxxvii i , and then we
have to parse \a dccclxxxvii i . Here # I will be
\ e l s e , #2 and #3 will each be c: the expansion

therefore reduces to cc lxxxvi i i \ re lax \ f i . The
first 'c' completes the second 'PC', and the \ i fdim

test is true. Therefore the second 'c' can complete

the first 'PC'. and \hfuzz is set equal to 1200pt.
The characters l xxxv i i i now begin a paragraph.

The \ f i takes the \ifdim out of w ' s condition

stack.
(The appendix below gives further information.

Examples like this give some glimmering of the weird

maneuvers that can be found in the TRIP test, an

intricate pattern of unlikely code that is used to
validate all implementations of w .)

19. If. for example, \thickmuskip has the value

5mu p lus 5mu that plain w gives it, the first com-

mand changes its value to -5mu p lus -5mu, because
scan-glue in $461 will call scan-something-internal

with the second argument true; this will cause all

three components of the glue to be negated (see

$431).
The second command, on the other hand, tells

TEX to expand '\the\thickmuskip' into a sequence
of characters, so it is equivalent to

\thickmuskip=-5mu plus 5mu

(The minus sign doesn't carry into the stretch

component of glue, since $461 applies negate only
to the first dimension found.)

This problem points out a well-known danger

that is present in any text-macro-expanding system.

20. We'd have a funny result that two macro texts

would be considered to match by \ i f x unless the

first one (the one starting at q when we begin

$508) is a proper prefix of the second. (Notice the
statement ' p + null' inside the while loop.)

21. Because the byte in dvi-buf [dvi-ptr - 11 is

usually not an operation code, and it just might
happen to equal push.

504 TUGboat, Volume 11 (1990); No. 4

22. 2,7d l d 8,2,8, ld 8,2,8,4, 5,gd 0d 4, 5,. disallowed (see $336 and $346). However, insertions

23. rn is in 'no mode' only while processing
\wr i te statements, and the mode is printed during

\wr i te only when tracing-commands > 1 during

expand. We might think that \catcode operations
are necessary, so that the left and right braces

for \wri te exist; but it's possible to let W ' s

error-recovery mechanism supply them! Therefore
the shortest program that meets the requirements

is probably the following one based on an idea due

to Ronaldo Amti, who suggests putting

\batchmode\tracingcommands2

\immediate\write!\nomode

into a file. (Seven tokens total.)

are still allowed, and this can lead to a third level
of error when overflow calls succumb.

For example, let's assume that max-in-open =

6. Then you can type '\catcode1?=15 \x' and
respond to the undefined control sequence error by

saying ' i \x??' six times. This leads to a call of

error in which six ' < in se r t> ' levels appear; hence
in-open = 6, and one more insertion will be the last

straw. At this point, type '1'; this enters error at a
second level, from which 'i' will enter error a third

time. (The run-time stack now has main-control

calling get-x-token calling expand calling error
calling get-token calling get-next calling error

calling begin-file-reading calling overflow calling

error .)
24. When error calls get-token, because the user

has asked for tokens to be deleted (see $88). a second 25. In $38. define str-number to be the same as

level of error is possible. but further deletions are pool-pointer, and define str-end = 128. In $39,

I delete the declaration of str-start. In $40, declare

function length(s : str-number): znteger;
var t: pool-pointer ;

begin t c s;
while str-pool [t] # str-end do incr(t);

length + t - s;
end:

In $41, define cur-length - (pool-ptr - str-ptr). In
$43, declare

function make-string: str-number; {current string enters the pool)
var t: str-number; { the result)
begin str-room (1); append (str-end);

t +- str-ptr; str-ptr +- pool-ptr; make-string +- t ;
end;

In $44, we can

define Push-string - begin repeat decr (str-ptr);
until str-pool[str-ptr - 11 = str-end:

pool-ptr + str-ptr;

end

The comparison function in $45 is used only in
$259, where we can replace

'if length (text (p)) = 1 then if str-eq-buf (text (p), j) '

by 'if str-eq-buf (text (p), j , I)'. The function now
has three parameters:

TUGboat, Volume 11 (1990), NO. 4

funct ion str-eq-buf (s : str-number; k. 1 : rnteger): boolean;

{ test equality of strings)
l abe l exit;

var j : pool-poznter: { running index)
begin j c- s; s +- s + 1;

if str-pool[s] # str-end t h e n str-eq-buf +- false

else begin while j < s d o

begin if str-pool [j] # buffer[k] t h e n
begin str-eq-buf c- false; return; end ;

zncr(j); incr(k):

end ;

str-eq-buf +- true;
end ;

exit: end ;

The procedure of $46 is modified in an obvious.
similar way.

The first three statements of 547 become just

two: 'pool-ptr +- 128; str-ptr +- 128'. The body of

the for loop in $48 becomes just

if ((Character k cannot be printed 4 9)) t h e n

if k < '1 00 t h e n str-pool [k] +- k + '1 00
else str-pool [k] +- k - '1 00

else str-pool [k] + k

In $59, variable j is no longer needed. If 0 5 s < 128

and

say

-

if s isn't the current new-line character, we now

begin if str-pool[s] # s t h e n

begin print-char (" -"); print-char ("^");
end ;

print-char (sir-pool [s]);

e n d

In the other case, where s 2 128, we say

while str-pool[s] # str-end d o

begin print-char (str-pool [s]); incr (s) ;

end

In 5407, similarly, variable k is eliminated: the loop

on k becomes a loop on s, while str-pool[s] #
str-end.

In 5464, replace the two occurrences of

'str-start[str-ptr]' by 'str-ptr'.

The first loop in 5603 becomes

k +- font-area [f];
while str-pool[k] # str-end d o

beg in dvi-out (str-pool [k]); incr (k);

e n d

and the second is like unto it.

26. Let's assume that we have a machine in which

str-pool is addressed by byte number, so that 8-
bit values take no more space than 7-bit values.

Method (a) requires us to impose a limit on the
length of strings: 255 characters max. This isn't

unreasonable, because the only important use of
longer strings is in the implementation of \special.

when the restriction doesn't actually apply (since

$1368 doesn't call make-strzng). But method (a)

saves no space and little or no time by comparison

with the simpler method of problem 25. Problem 25

saves about one byte per string, compared to the

text's way. Method (b) saves another byte per string
but at the expense of considerable programming

complexity; it requires awkward special-casing to

deal with empty strings.

27. We'd replace 'wzdth (g)' by

wzdth (g) + shzft-amount (g)

(twice). Similar changes would be needed in

5656. (But a box shouldn't be able to retain its

shzft-amount; this quantity is a property of the list
the box is in, not a property of the box itself.)

28. The final line has infinite stretchability, since

plain sets \parf illskip=Opt plus if il. Re-
ports of loose, tight, underfull, or overfull boxes are

never made unless o = normal in $658 and 5664.

29. If a vbox is repackaged as an hbox. we get really

weird results because things that were supposed to

stack up vertically are placed together horizontally.
The second change would be a lot less visible, except

in characters like V where there is a large italic

correction; the character would be centered without

taking its italic correction into account. (The italic

correction in math mode is the difference between

horizontal placement of superscripts and subscripts

in formulas like V;.)

30. The spacing can be found by saying

$x==l$ $x++l$ $x,,l$ \tracingall\showlists.

Most of the decisions are made in 5766. using the

spacing table of 5764. But the situation is trickier in
the case of +, because a bzn-noad must be preceded
and followed by a noad of a suitable class. In

506 TUGboat, Volume 11 (1990), No. 4

the formula $x++l$, the second + is changed from and there's only one, QQ2, for the second. But for

bin-noad to ord-noad in 5728. It turns out that the third, a line from QQ2 to QQ3 (the break after

thick spaces are inserted after the x and before 'para-') has 46725 demerits, which certainly looks
the 1 in 'x == 1'; medium spaces are inserted worse than the 1225 demerits from QQ2 to QQ4. This,

before each + sign in 'x + +I,; thin spaces are however, leads Brand X into a trap, since there's no

inserted after each comma in 'x, ,1 ' . good way to continue from QQ4. Similarly, Brand X
will choose to go from QQ7 to QQ9, and this forces

31. The behavior of the simpler algorithm, which
it to Q Q l I and then infelicitously to QQ13 (because

we may call Brand X, can be deduced from the
the syllable 'break-' is too long to be squeezed in).

demerits values ('d=') in the trace output. There is
The resulting paragraph, as typeset by Brand X,

only one reasonable choice, QQI, for the first line;

I
looks like this (awful):

31. When your instructor made up this problem, he

said ' \ t racingparagraphs=i ' so that his transcript
file would explain why has broken the paragraph
into lines in a particular way. He also said

' \pretolerance=-1' so that hyphenation would be

tried immediately. The output is shown on the next
page; use it to determine what line breaks would have

been found by a simpler algorithm that breaks one

line at a time. (The simpler algorithm finds the
breakpoint that yields fewest demerits on the first

line, then chooses it and starts over again.)

32. (This exercise takes awhile. but the data struc- Given the word aabcd. it is interesting to watch 5923

tures are especially interesting; the hyphenation produce the hyphenation numbers 'oaoazb cods'
algorithm is a nice little part of the program that from this trie.

can
are

be studied in isolation.)
constructed:

OP

trie[96] 0
trie[97] 0

trie[98] 0
trie[100] 1

trie[l02] 1

trie[l03] 0

trie[l05] 3

The following tables

char link

96 1

97 5
97 2

98 3

99 4
98 6
99 4

33. The idea is to keep line numbers on the save

stack. Scott Douglass has observed that, although

is careful to keep cur-boundary up to date.
nothing important is ever done with it; hence

the save-index field in level-boundary words is not
needed, and we have an extra halfword to play with!

(The present data structure has fossilized elements

left over from old incarnations of m.) However,
line numbers might get larger than a halfword; it

seems better to store them as fullword integers.

[I] 12] 131 This problem requires changes to three parts of
hyf-distance 2 0 3 the program. First, we can extend 51063 as follows:

hyf-num 1 3 2

hyf-next 0 0 2
I

(Cases of main-control that build boxes and lists 1056) +-
non-math(1eft-brace): begin saved (0) + line; incr(save-ptr); new-save-level(simp1e-group);

end; {the line number is saved for possible use in warning message}

any-mode (begin-group): begin saved (0) + line; incr (save-ptr); new~save~level(semi~simple~group);
e n d ;

any-mode (end-group): if cur-group = semi-simple-group t h e n
begin unsave; decr (save-ptr); { pop unused line number from stack)
end

else off-save;

TUGboat, Volume 11 (1990)' No. 4

A similar change is needed in 51068, where the first

case becomes

simple-group: begin unsave; decr (save-ptr); { pop unused line number from stack)
end;

Finally, we replace lines 6-11 of 51335 by code

for the desired messages:

while cur-level > level-one do
begin print-nl (I' (I f) ; print-esc ("enduoccurreduwhenu'~);

case cur-group of

simple-group: print-char ("C");
semi-simple-group: print-esc("begingroup");

othercases confusion (" endgroup")

endcases;
print (",onulineU"); unsave; decr (save-ptr); print-int (saved (0)) ; print ("uwasuincomplete) ");
end;

while cond-ptr # null do
begin print-nl(" (I 1) ; print~esc("enduoccurreduwhenu~l); print-cmd-chr(if-test , cur-if);

34. First, 52 gets a new paragraph explaining what
is, and the banner line changes:

define banner - 'ThisuisUTeXX ,,,VersionU2. 2 * { printed when starts }

Then we add two new definitions in 5134:

define is-xchar-node(#) = (font (#) = font-base) { is this char-node extended?)
define bypass-xchar (#) z

if is-xchar-node(#) then # +- l ink(#)

(It's necessary to say font-base here instead of

null-font , because null-font isn't defined until later.)
The short-display routine of 5174 can treat

an \xchar like an ordinary character, because
print-ASCII makes no restrictions. Here is one way

to handle the change:

procedure short-display(p : integer); {prints highlights of list p)

label done;

var n: integer; { for replacement counts)
ext : integer; { amount added to character code by xchar)

begin ext t 0;
while p > mem-min do

begin if is-char-node(p) then

begin if p L: mem-end then

begin if is-xchar-node (p) then

begin ext +- 256 * (qo(character(p))); goto done;

end;

if font(p) # font-in-short-display then
begin if (font (p) < font-base) V (font (p) > font-max) then print-char("*")

else (Print the font identifier for font(p) 267);

print-char(","); font-in-short-display t font(p):

end:

TUGboat, Volume 11 (1990), No. 4

print-ASCII (ext + qo (character(p))); ext +- 0;

e n d ;

e n d
else (Print a short indication of the contents of node p 175);

done: p +- link(p);

e n d ;
e n d ;

A somewhat similar change applies in $176:

p r o c e d u r e print-font-and-char (p : integer); { prints char-node data)
l abe l reswitch;

var ext: integer; {amount added to character code by xchar, or -1)
begin ext + -1;

reswitch: if p > mem-end t h e n print-esc ("CLOBBERED. ")
else beg in if is-xchar-node (p) t h e n

beg in ext +- qo (character (p)); p +- link (p); g o t o reswitch; e n d ;
if (font(p) < font-base) V (font(p) > font-max) t h e n print-char("*")

else (Print the font identifier for font(p) 267);

print-char

if ext < 0 t h e n print-ASCII (qo (character (p)))

else beg in print-esc("xcharM); print-hex (ext * 256 + qo(character (p)));

end:

e n d :

e n d :

(These routines must be extra-robust.) The first Every opcode that follows it in $208 and $209,
line of code in '$183 now becomes from math-char-num to mas-command, must be

if is-char-node (p) t h e n increased by 1. We also add the following lines to

beg in print-font-and-char (p); $265 and $266, respectively:

bypass-xchar (p): primitive ("xchar 'I, xchar-num, 0);
end xchar-num: print-esc("xchar");

In $208 we introduce a new operation code. This puts the new command into m ' s repertoire.

define xchar-num = 17 The next thing we need to worry about is

textended character (\xchar)) what to do when \xchar occurs in the input.
It's convenient to add a companion procedure to

] scan-char-num in 5435:

p r o c e d u r e scan-xchar-num;

beg in scan-int ;

if (cur-val < 0) V (cur-val > 65535) t h e n

beg in print-err ("Bad,chara~ter,code~~);

help2 ("Anu\xchar,numberumustubeubetweenU~uandu255. 'I)

("Iuchangeduthisuoneutouzero . It); int-error(cur-val); cur-val +- 0;
e n d ;

e n d :

TUGboat. Volume 11 (1990) , No. 4

Similarly, new-character gets a companion in 5582:

function new-xchar(f : internal-font-number; c : integer): pointer:
var p, q: pointer: { newly allocated nodes)
begin q t new-character (f , c mod 256);
if q = null then new-xchar + null
else begin p +- get-avail; font (p) +-- font-base: character(p) +- qi ((c div 256)) ; link (p) + q;

new-xchar + p;
end;

end;

Extended characters can be output properly if
we replace the opening lines of the code in $620 by
these:

reswitch: if is-char-node (p) then
begin synch-h; synch-v;
repeat if is-xchar-node (p) then

begin f +- f o n t (l i n k (p)) ;
if character (p) = qi (0) then p +-- l i n k (p) ; { bypass zero extension)

end
else f t f on t (p) ;
c + character (p) ;
if f # dvi-f then (Change font dvi-f to f 621);
if is-xchar-node (p) then

begin dvi-out (s e t l + 1) ; dvi-out (q o (c)) ; p t l i n k (p) ; c c character(p);
end

else if c 2 qi (128) then dvi-out (s e t l);
dvi-out (qo (c)) ;

Many of the processing routines include a
statement of the form ' f + fon t (#) ' , which we

want to do only after bypassing the first half of an
extended character. This can be done by inserting

the following statements:

bypass-xchar (p) in $654;

bypass-xchar (s) in $842;

bypass-xchar (cur-p) in $867;

bypass-xchar (s) in $871;

bypass-xchar (p) in $1147.

In $841 we need to do a little more than a simple

bypass:

if is-char-node (u) then

begin if is-xchar-node (v) then

begin v t l i n k (v) ; decr(t) ;
{ an xchar counts as two chars)

end;

Two changes are needed in order to suppress
hyphenation in words that contain extended char-

acters. First we insert

if hf = font-base then goto d o n e l ;
{ is-xchar-node (s))

after the third line of $396. Then we replace

'endcases;' in $899 by

endcases

else if is-xchar-node (s) then goto done1 ;

If \xchar appears in math mode, we want

to recover from the error by including mmode +
xchar-num in the list of cases in $1046. If \xchar

appears in vertical mode, we want to begin a

paragraph by including vmode + xchar-num in the

second list of cases in 51090.

But what if \xchar appears in horizontal

mode? To handle this, we might as well rewrite

$1122:

510 TUGboat, Volume 11 (1990), No. 4

1122. We need only two more things to complete the horizontal mode routines, namely the
\xchar and \accent primitives.

(Cases of mazn-control that build boxes and lists 1056) +-
hmode + ~char-num: begin scan-~char-num; link(tai1) + new~xchar(cur~font, cur-val);

if link(taz1) # null t h e n tazl t link(lznk(taz1));

space-factor + 1000;

end ;
hmode + accent: make-accent ;

Finally, we need to extend make-accent so that
extended characters can be accented. (Problem 34
didn't call for this explicitly, but should surely
do it.) This means adding a new case in $1124:

else if cur-cmd = xchar-num t h e n

begin scan-xchar-num ; q + new-xchar (f , cur-val);

e n d

and making changes at the beginning and end of

$1125:

(Append the accent with appropriate kerns, then set p +- q 1125) -
begin t 6 slant (f)/float-constant (65536):
if zs-xchar-node(q) t h e n i +- char-znfo (f)(character(lznk (9)))

else i t char-znfo (f)(character (9));

w +- charwidth(f)(z);

subtype(tazl) + acc-kern; link(p) + tad;

if 2s-xchar-node (q) t h e n { in this case we want to bypass the xchar part }
begin tail-append (q); p +- link (q);

e n d

else p + q;

e n d

35. The main reason for preferring the method of

problem 34 is that the italic correction operation
($1113) would be extremely difficult with the other

scheme. Other advantages are: (a) Division by

256 is needed only once; m ' s main loops remain
fast. (b) Comparatively few changes from TEX
itself are needed, hence other ripoffs of m can

easily incorporate the same ideas. (c) Since fonts

don't need to be segregated into 'oriental' and

'occidental', \xchar has wide applicability. For

example, it gives users a way to suppress ligatures
and kerns; it allows large fonts to have efficient
256-character subsets of commonly-used characters.

(d) The conventions of TEX match those of the GF

files produced by METAFONT.

The only disadvantage of the T&X method is
that it requires all characters whose codes differ by

multiples of 256 to have the same box size. But this
is a minor consideration.

Appendix

The solution to problem 18 refers to a special version

of T@ called D e m o m , which allows users to see
more details of the scanning process. D e m o m is

formed by making a few changes to parts 24-26 of

w.
First, in $341, the following code is placed

between 'exit:' and 'end':

if tracing-stats > 2 then
begin k + trace-depth; print-nl(" ");
while k > 0 d o

begin print decr (k);

end ;
print (" I "); print-char ('Iu");

if cur-cs > 0 t h e n
begin print-cs (cur-cs);
print-char ("=");
end ;

print-cmd-chr (cur-cmd, cur-chr);
end;

TUGboat, Volume 11 (1990)' No. 4

(A new global variable, trace-depth, is declared
somewhere and initialized to zero. It is used to

indent the output of D e m o m so that the depth of
subroutine nesting is displayed.)

At the beginning of expand (in $366): we put
the statements

incr (trace-depth);

if tracing-stats > 2 then print(",<xU);

this prints '<x' when expand begins to expand

something. The same statements are inserted at the

beginning of scan-int ($400), scan-dimen ($448),

and scan-glue (sec461)' except that scan-int prints
'c i ' , scan-dimen prints '<d3, and scan-glue prints

'cg'. (Get it?) We also insert complementary code
at the end of each of these procedures:

decr (trace-depth);

if tracing-stats > 2 then print-char(">");

this makes it clear when each part of the scanner
has done its work.

Finally, scan-keyword is instrumented in a

similar way, but with explicit information about
what keyword it is seeking. The code

incr (trace-depth);

if tracing-stats > 2 then
begin print (",< '"); print (s) ;

print-char (I 1 - ");
end;

is inserted at the beginning of 5407, and

if tracing-stats > 2 then print-char("*");

exit: decr (trace-depth);
if tracing-stats > 2 then print-char(">"):

end;

replaces the code at the end. (Here '*' denotes
'success': the keyword was found.)

For example, here's the beginning of what

D e m o w prints out when scanning the right-hand
side of the assignment to \hfuzz in problem 18:

I ! t h e charac te r = <d
I! t h e charac te r 1 <i

I! t h e charac te r 1

I! t h e charac te r 0
I ! t h e charac te r 0

I ! t h e l e t t e r P>

I ! t h e l e t t e r P <'em'

I ! t h e l e t t e r P> < 'ex '

I ! t h e l e t t e r P> < ' t r u e '

I ! t h e l e t t e r P> < ' p t '

I ! t h e l e t t e r P
I! \ i fdim =\ifdim <x <d

I! t h e charac te r 1 <i

I ! t he charac te r 1

l ! t he charac te r 2

I! t he l e t t e r p>
I! t he l e t t e r p <'em'

I ! t he l e t t e r p> < ' ex '

I ! t he l e t t e r p> < ' t r u e '
I ! t he l e t t e r p> < ' p t '

I ! t he l e t t e r p

I! t he l e t t e r t*>

I! t he charac te r =>

(After seeing '=', TEX calls scan-dimen. The next
character seen is '1'; scan-dimen puts it back

to be read again and calls scan-int, which finds

' loo' , etc. This output demonstrates the fact

that frequently uses back-input to reread a
character, when it isn't quite ready to deal with

that character.)

Acknowledgement

I wish to thank the brave students of my exper-

imental class for motivating me to think of these
questions, for sticking with me when the questions

were impossible to understand. and for making
many improvements to my original answers.

o Donald E. Knuth
Department of Computer Science
Stanford University
Stanford. CA 94305

Webless Literate Programming

Jim Fox

Abstract

This article introduces c-we8 (no-web, for short) as

an alternative to the CWEB 'literate programming'
system. c-web is a method which allows a program-

mer to both t e x (format) and cc (compile) the same

source, without the need for preprocessors.

What is ewe8

In c all comments begin with the characters ' /*'
and end with the characters '*/'. c-web is a macro
package that w s all comments, 'verbatims' all the

code, and uses the comment delimiters to switch be-

tween the two modes. A c-we8 program can be com-

piled directly by c and can be formatted directly by
w. It has the advantage of high portability, while

providing fully m ' d comments, page headers and
footers, and a table of contents.

