
1989 Conference Proceedings

Users Group

Tenth Annual Meeting

Stanford, August 20-23, 1989

COMMUNICATIONS OF THE T&jX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

VOLUME 10, NUMBER 4 DECEMBER 1989

PROVIDENCE RHODE ISLAND U.S.A.

Production Notes

An interesting range of programs, fonts and output

devices were used to produce this issue of TUGboat.
It is hoped that the information provided here is

complete, and that it gives the reader a good

sampling of what can be done with w, non-7JjX

files, and printers, both laser and typesetter. A

number of figures have been reduced. in order to fit

on the page. Phototypesetting services for most of

the articles produced by an APS-p5 were provided

by Computer Composition Corporation.

Apple LaserWriter 11:
Henderson, Introduction to METAFONT.

Apple LaserWriter I1 NT:
Benson et al, Inserts in a Multiple-Column Format.
Hosek, Design of Oriental Characters with META-
FONT.

Apple LaserWriter Plus:
Greene, W r e a t i o n -Playing Games with Q X ' s Mind.

APS-p5:
Batzinger, Thai Languages and METAFONT.
Billawala, Opening Pandora's Box, using her newly
designed Pandora fonts. The figures were reproduced
from her book Metamarks (1989).
Cheswick, A Permuted Index for W and U r n .
Clark, Olde Worlde m.
Conrad, Fine Typesetting with Tj+Y Using Native Au-
tologic Fonts. Samples 1-4, which compare laser
proof copies to typeset copies were done on a n Apple
LaserWriter Plus Postscript device and an APS-p5,
respectively.
Diaz, 7&Y in Mixico. Figures were produced using a
printer with a Canon SX engine.
Doob, Of the Computer Scientist, by the Computer
Scientist, for the Computer Scientist.
Hamilton, Mastering TE.Y with Templates.
Haskell et al, w for 30,000.
Hoenig, Fractal Images with W. Figures were pro-
duced on a Hewlett-Packard LaserJet Series 11.
Hoover, Using Wordperfect 5.0 to Create w and
IPm Documents.
Knuth, The Errors of w.
Kubek, QX for the Word Processzng Operator.
Latterner and Woolf, w at Mathematical Reviews.
McClure, 7&Y Macros for COBOL Syntax Diagrams.
Mittelbach and Schopf, With L&&% into the Ninetzes.
Rattey-Hicks, TEX and Its Versatility in Ofice Pro-
duction. Figures in Appendix B were produced on a
Hewlett-Packard LaserJet Series 11.
Yonagen et al, Migration from Computer Modern
Fonts t o Times Fonts.

HP LaserJet Series I1 with QMS Jetscript board:
Olejniczak-Burkert, texpic - Design and Implemen-
tation of a Picture Graphics Language in Q X a la
pic.

IMAGEN Imagestation:
Abbott, The U K W Archive at the University of As-
ton.

Linotype L200P PostScript (1270dpi):
Hobby, A METAFONT-like System with Postscript
Output.

Linotronic 300:
Riley and Halverson, Creating an Eficient and Work-
able PC Interface for W. Some font substitution
was done: cmbxtil0, logo8, and logo10 were re-
placed by Times Roman Bold Italic, Avant Garde
Bold 7pt, and Avant Garde Bold 9pt, respectively.

QMS810 PS:
Renfrow, Methodologies for Preparing and Integrating
Postscript Graphics.

Varityper VT600:
Pind, Lexicography in Iceland. The dictionary sample
sheet was done on a Linotronic 300.

Sydoriak, LATEX Memos and Letters.

Other Conference Proceedings

Proceedings of the First European Conference on TEX
for Scientific Documentation. Dario Lucarella, ed.
Reading, Mass.: Addison-Wesley, 1985. [16-17
May 1985, Como, Italy.]

Proceedings of the Second European Conference on W
for Scientific Documentation. Jacques DCsarmCnien,
ed. Berlin: Springer-Verlag, 1986. [19-21 June
1986, Strasbourg, France.]

Conference Proceedings: l&Y Users Group Eighth An-
nual Meeting. Dean Guenther, ed. w n i q u e s
No. 5. Providence, Rhode Island: Users
Group, 1988. [24-26 August 1987, University of
Washington, Seattle, Washington.]

Conference Proceedings: W Users Group Ninth An-
nual Meeting. Christina Thiele, ed. m n i q u e s
No. 7. Providence, Rhode Island: Users
Group, 1988. [22-24 August 1988, McGill Univer-
sity, MontrCal, Canada.]

m 8 8 Conference Proceedings. Malcolm Clark, ed.
Chichester, England: Ellis Horwood, 1989. [18-20

July 1988, Exeter University, Exeter, England.]

Trademark Information

m, AMS-7JjX are trademarks of the American
Mathematical Society. METAFONT is a trademark

of Addison-Wesley Inc. All other brand and product

names are registered trademarks or trademarks of

their respective holders.

Editor's Introduction along, that is an area which should concern those

Welcome to the Proceedings issue of TUGboat,

vol. 10, no. 4- TUGboat is now a quarterly.

Formerly published in the Tjj%niques series, the

Proceedings will now be available to the entire TUG
community, part of your regular membership.

This year's Tenth Anniversary Meeting at Stan-
ford was a smashing success, with the highest at-

tendance of any meeting in TUG'S ten-year history:

some 235 individuals attended, representing coun-
tries and interests from around the world (a List of

Participants is included after the articles).
What better way to remind us how much

has happened over the past decade than to have

the Keynote Address delivered by Prof. Donald

E. Knuth himself. How ironic. in the midst of
celebrating our prowess with 'I)$, for the designer

to describe, with more than the occasional poke

at himself, the various categories of errors, as he

and gradually got onto speaking terms with

one another. It was a delightful morning we spent.

listening to a quiet analysis of where and how things

went wrong in the beginning.

With 30 presentations (up from 24 last year),
there was much to choose from. with several papers

devoted to IPIIjEX, and a healthy dose of META-

FONT too. Previous years have seen interest focused

rather heavily on 7&X alone; to see so many IPW
and METAFONT papers was indeed a pleasure.

Recent meetings have shown a move away from
the notion of as an all-purpose program, to-

wards the more pragmatic idea that 'I)$ has the
flexibility to integrate with and complement other

programs, each one used for what it does best.

This year saw a continuation of this, in discussions

on graphics programs, and pre-processors. Extend-
ing W ' s capabilities will probably be the main

direction of effort in our second decade.

Another aspect to IIjEX which has been emerg-
ing over the past several meetings is that of the

"new user" of T$$ these days. It seems to me that

here too we are seeing something new for the next

decade: 'I)$ has gone from the playground into the
real world. And in the real world of applications for

and its integration into larger processes, the

users are not always going to be computer literate,
or even interested in becoming so. They have a job

to do, and must use IIjEX to do it. Support staff,

office personnel, one's colleagues and the like, these
are the people who want to use 'I)$ but also want

to be spared the theory (a sacrilegious thought for

some). Training and motivating them, helping them

of US who L L k n o ~ how to use m.
The amount of teaching material available is

still quite small, a fact which seriously hampers

good use of all three programs. However, scattered

throughout these articles are references to many

documents available, including several from Europe.
written in a variety of languages.

The internationalization of IIjEX- and our in-

creasing awareness of this fact - was another note-

worthy element a t this year's meeting. Not simply
because of the presence of several European co-

ordinators and presenters. but also in the fact

that we learned of the many user groups and an-
nual meetings. with quite an extensive collection of

documents on TEX and IPW.
There is a great deal of experience, whether

hard won or achieved accidentally, described in

these pages; there is food for thought for both
the w p e r t and the neophyte; and macros for

everyone's needs. On this 10th Anniversary Meeting

of the Tp$ Users Group. they are a celebration of
the many achievements and results due to the work

begun by Prof. Knuth a decade ago (more or less).

And so, the overall impression I have of the 1989
Annual Meeting of the Users Group is that we

did indeed celebrate a decade of accomplishments,

but we also were in a way rejuvenated, with ideas
and suggestions and examples of where the new

challenges are not just being found, but are being
attacked. and solutions being proposed. is here

to stay-now we must look towards extending it,
stretching it, integrating it into the larger picture. I
truly look forward to the second decade, and wonder

what we will have to see at our 20th Anniversary
Meeting.

And now to the articles.

Christina Thiele

Carleton University

1989 Program Committee. The 1989 Annual
Meeting was organised by the following people.

under the most able guidance of Dean Guenther,

Program Coordinator.

Dean Guenther (Washington State University,

Pullman, Washington)

- Hope Hamilton (National Center for Atmo-

spheric Research, Boulder, Colorado)

- Doug Henderson (Blue Sky Research, Portland,

Oregon)

- Christina Thiele (Carleton University, Ottawa,

Canada)

Introduction to METRFONT

Blue Sky Research
534 SW Third Avenue
Portland, Oregon 97204

ABSTRACT

The purpose of this "Introduction to METRFONT" talk is to give a small amount of
historical background on what METRFONT is, to introduce a few key concepts and METR-

FONT commands, and to go over a few more complicated examples and commands. It is

beyond the scope of this twenty-minute talk t o explain how METRFONT works in detail,

but I hope you find METRFONT as interesting as I do, and I hope that I do not verbally

wander off on you - at least, not too far.

1. What is METRFONT?
METRFONT is a very powerful tool for producing fonts. Created in 1081 by Prof. Donald E. Knuth,

it has undergone quite a few changes to bring it to its current state. Prof. Knuth needed to create

the typesetting program/language to be able to create the beautiful math which he was familiar

with in his Art of Computer Programmzng books, and METRFONT is the companion program which

creates typefaces for 5 Y to use. -Y can be labeled a markup language, since one embeds control
sequences in a document, and processes the file accordingly. METRFONT is similar in that it too
has an extremely powerful language, but with METAFONT, the user specifies commands which direct

METRFONT to place strokes of an electronic pen on a "digital canvas". We will be exploring some of

the basic METRFONT commands to get a better understanding of these concepts.

2. Coordinate System
METRFONT works in the ca r tes ian coord ina te sys tem. This means that positive coordinates are

found above and to the right of the 0,O point, which is known as the origin. Fig. 1 shows a rep-

resentation of METRFONT1s cartesian coordinate system. Most METRFONT characters are drawn in

the top right quadrant (A, where x and y are positive), but characters such as a lowercase g, j, or y

have descenders , which extend below the baseline. B represents the baseline of a Font Metrics
or t f m box. For TEX to be able to use characters that METRFONT creates, it needs to know certain
things, such as how wide, high and deep characters are, in order to place one character box next to

another. This information is kept in the t f m file.

Let's look a t a few characters and their t f m boxes, to see how they fit in METFIFONT'S coordinate

system. Fig. 2 shows the uppercase letter W: (w) indicates the w i d t h of the t f m box, (11) is the
height, and (d) is the d e p t h of the box. Fig. 3 shows another character, the lowercase letter g, which

has a non-zero depth value, and we see that i t has a descender, which goes below the baseline. We can

also see some labels inside the character; these are called con t ro l po in t s .

2.1 C o n t r o l P o i n t s

Control points tell METRFONT where to draw, or, more accurately, where to have the digital pen pass
through, leaving a wake of ink. Here is one way t o assign a value to control point 1:l

Semicolons are used to separate M E T R FONT statements.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 1: The Cartesian Coordinate System

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 2: The capital letter W

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 3: The lowercase letter g

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

We can also assign the same values to the same control point with a single statement like this:

(xl,y1)=(10,25);

or alternately, a pair of variables can be assigned with a z-point notation where z represents an z-y

pair. It is sort of a shorthand method for describing a coordinate pair. It looks like this:

zi=(10,25);

All three statements just shown are equivalent.

Now let's define some more control points and see what happens when we try to draw something
with the draw command. Here is one way to define some control points:

y1=25;

22= (75,50) ;

x3=100; xi=y3=y5=10;

24=(120,-20);

x5=150;

Notice that the x i , y3 and y5 values have all been assigned in one statement as being 10, and that the

22 and 24 control points were assigned in a single statement. By combining the x-y assignment and
the z assignment methods, we can save quite a bit of typing and also make it clear to METAFONT the

relationship between our control points at the same time.

Here is a simple draw statement to help us see the path we have defined (after we have started up

the demo on the Macintosh, that is):

virmf2 &cm \mode=proof; screenstrokes; input tugcon

draw zi..z2..~3..~4..~5;

Figure 4 illustrates the path that results after executing the draw statement. So we can get a

better feel for what METAFONT is doing, let's look at the individual control points along the curve we
just drew (Fig. 5):

lose-control(l,2,3,4,5)

This macro was one that I created for this conference so it would punch holes in the path of the
previous draw command, and we could better see how control points are used.

Of course, we don't need to say draw zi . .z2. .z3. .z4. .z5; with the control points ordered
sequentially from 1 to 5; we can also draw starting and ending at any defined control point. For

instance, if we said:

clearit ;

draw zi..z3..~4..~5..~2;

instead of our previous order, we would get the shape shown in (Fig. 6)
After we expose the control points, Fig. 7 shows the results of:

We can see by the control points inside our drawn path that the curve starts at point 1, proceeds

down to 3, then curves nicely around to 4 and 5, and ends up at point number 2. METAFONT draws

nice curves through these points, and in order to continue smoothly to the next point, it needs to swing

out a little ways after passing through a control point. The way that METAFONT makes these pleasing

curves is internal; all you need to do is specify the control points to draw through and it does the rest
for you. You can change how METAFONT draws curves with special curve modifying commands and

we might explore a few of these later. For now, let's look at how METRFONT draws curves.

2.2 Curves

When METRFONT draws a curve, it uses something we can simply call "the four-point method". If we

have four control points (Fig. 8):

inimf is h o w as the initialization version of METRFONT, virmf is the production version.

The c lear i t ; statement is one which we use to erase the previous picture that METFI FONT was saving for US SO we

can draw again.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 471

Figure 4: Curve 1 2 3 4 5 with default pen

Figure 6: Curve 1 3 4 5 2 with default pen

Figure 5: Curve 1 2 3 4 5 with exposed control points

Figure 7: Curve 1 3 4 5 2 with exposed control points

Figs. 4-7: Curves and Control Points

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

z1=(35,100); z2=(60,10); z3=(200,10); z4=(225,75);

the curve that METRFONT would draw is found by repeated mid-point calculations, as in Fig. 9.
A more technical name for the curve defined by METAFONT is a Bdzier cubic. What METAFONT

does for us is take the original control points we supply and add other control points of its own, as we

see in Fig. 10. Then it refines the curve between the "scaffolding", as Knuth calls i t , until the curve
is left on the innermost path between midpoints, which is what we see in Fig. 11. METRFONT then

discards the scaffolding and draws a nice curve which is inside the scaffolding.

These are the basics for drawing curves, using this four-point refinement method. There are also
other commands which affect how the scaffolding is built. For instance, there are commands which

can create more tension in the curve, such as in Fig. 12, or more curling of curves at the endpoints

(Fig. 13).

The degree to which you can manipulate METRFONT curves is really quite astounding. Unfortu-
nately, there is not enough time to go into all the ways to generate different curves with METAFONT.

2.3 P e n s
Another interesting concept is that of a METRFONT pen. A good way to view the sizes and strokes we

use to draw with METAFONT is to think of them as being produced by nibs of different pens (because,
in fact, they are). Until now, we have only used one pen type for our examples and since we didn't

specify, METRFONT provided us with a default pen. Let's look a t some different pen types and how
to use them.

Before you start drawing with a pen, you generally have to pick it up first, and here is how we tell
METRFONT to do just that:

pickup penc i rc le ;

In addition to a circular nibbed pen, there are a few other pen types that METRFONT knows about
(through definition in the plain base file). They are:

pensquare

penspeck

penrazor

penspeck and penrazor are special-purpose in nature; penspeck is used in the drawdot macro, and
penrazor, as the name implies, is a razor-thin pen (one pixel). penci rc le and pensquare perform

mostly as you would expect of pens with such names. Let's look a t how we can specify different pen

nibs via some examples:

% c l e a r drawing board, but not cont ro l po in ts

c l e a r i t ;

% pickup a pen t o draw with

pickup penc i rc le ;

% and draw !

draw z l . . z 2 . . z 3 . . ~ 4 . . ~ 5 ;

As we see, this is the pen we used before (the default pen). Let's look at a few ways t o "build"
some pens for METRFONT to use. One way to change our pen is by scaling it to the size desired. There

are three scaling commands: scaled, xscaled, and yscaled. Here is a command which scales a pen

to nearly one tenth point size:

c l e a r i t ;

pickup penc i rc le sca led . l p t ;

draw z I . . z 2 . . ~ 3 . . z 4 . . ~ 5 ;

Notice the size difference from the last pen we used. This pen (Fig. 14a) is much smaller than our

default in Fig. 4, which was approximately .4pt.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 8: Four-point method 1 2 3 4 draw

Figure 10: Four-point method 123 1234 234 draw

Figure 12: Four-point method 1 tension 2 1234

tension 2 4 draw

Figure 9: Four-point method 12 23 34 draw

Figure 11: Four-point method 1 1234 4 draw

Figure 13: Four-point method 1 curl infinity

1234 curl infinity 4 draw

Figs. 8-13: Four Point Method

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

*

Figure 14a: Pen = .1pt Figure 15a: Pen = xcale=.€pt, yscale=.2pt

Figure 14b: Curve with pen = . lp t

Figure 16a: Pen = xscale.2pt, yscale.6pt

Figure 15b: Curve with pen = xscale=.6pt, yscale=.2pt

Figure 17a: Pen = xscale.2pt, yscale.6pt,

rotate 32 degrees

Figure 16b: Curve with pen = xscale=.2pt, yscale=.€pt Figure 17b: Curve with pen = xscale.2pt, yscale.6pt,

rotate 32 degrees

Figs. 14-17: Pen Building

TUGboat. Volume LO (1989), No. 4- 1989 Conference Proceedings

The following command introduces the x and y scaling operation?

c l e a r i t ;

pickup p e n c i r c l e xscaled . 6 p t yscaled . 2 p t ;

drawem;

In Fig. 15a, we can see the pen nib is wide and short, since the xscaling is greater than the yscaling.

If we switch the x and y scaling, like this:

c l e a r i t ;

p ickup p e n c i r c l e xsca led .2p t yscaled . 6 p t ;

drawem;

we get the results shown in Fig. lGa, where the nib is thin and tall, since the yscaling is greater than

the xscaling.

Another parameter of control that one has for pen manipulation, aside from scaling, is rotation.

Here is a sample (Fig. 17a) that has the pen rotated 32 degrees with the same xscaling and yscaling
as the previous example (x= . 2 ; y=. 6):

c l e a r i t ;

pickup p e n c i r c l e xscaled . 2 p t yscaled .6pt r o t a t e d 32;

drawem;

This last pen seems to emulate a calligraphic pen, with the rotation acting as the angle of a pen

being held by a hand.
This concludes the section on METAFONT commands. Now I will attempt to give a brief history

of METAFONT, and then show a little of the power behind METRFONT.

3. METRFONT - Evolution of a Program
Originally, METAFONT had only 28 parameters which described the small pieces which make up a
complete character. After working with Hermann Zapf, Mathew Carter, Charles Bigelow and Kris
Holrnes (receiving much feedback from them all in 1981), ICnuth worked very hard at bettering his

original typefaces. Then, in April 1982, Richard Southall came to Stanford and helped make extensive
changes t o the Computer Modern programs (especially the sans serif letters). This resulted in the
refinement of the METAFONT language and brought the number of parameters to 45. Although small

refinements occasionally surface in the Computer Modern typefaces, they remain today steady and

stable with the total number of parameters at 62 as there have been since 1985 (see Appendix A for a

list of the parameters for cmrio).

So one of the key ideas behind a METAFONT is that there are a large number of parameters to
describe what a character looks like. By varying these parameters, we can see how different typefaces
are created. Let's look at some differences in parameters by viewing the result of a test file named

G t e s t , which uses six different sets of parameters to create six variations of the same character.

virmf & \mode=proof; mag=.33; sc reenchars ; inpu t 6 t e s t

As we can see in Fig. 18, there are six different characters that have been generated on the screen.

They are: cmriO or Computer Modern Roman (top left), cmssio or Computer Modern Sans Serif (top

middle), cmt t l0 or Computer Modern Typewriter (top right), cmblO or Computer Modern Roman Bold
(bottom left), cmbxl0 or Computer Modern Roman Bold Extended (bottom middle), and cmtilO or

Computer Modern Test Italic (bottom right).

4. A Word About Computer Modern
The Computer Modern typefaces, 75 in all, comprise the effort put forth by Knuth to create the spirit

of the typeface Monotype Modern 8A, which has traditionally been used to print textbooks of all

sorts, including Knuth's first two volumes of The Art of Computer Programming. If one doesn't like
Computer Modern, I believe it is because one doesn't like Monotype Modern 8A, not because Knuth

made a poor rendition of same.

I was lazy and didn't want to make too many typos in my demo, so I created the macro drawem, which draws from

control points 1 to 2 to 3 to 4 to 5.

476 TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

Figure 18: Results of the 6test file

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

An extreme example of this misunderstanding that I have encountered, occurred when someone
waved an Epson dot matrix folio in my face, and exclaimed "this is ugly". Well, looking at i t , I
had to agree. And when this person further claimed that the sad looking characters on the page

didn't look anything like Times Roman (obviously what he expected) I'also had to agree. I think this

misunderstanding is common. People often view Computer Modern and say td themselves "Why didn't

Iinuth typeset his first volumes in Garamond or Palatino?", just wishing that Computer Modern was
actually one of those, or perhaps Times Roman (these fonts happen to be in vogue now). Well, he didn't

and they are not. They should not be compared in this apples-are-better-than-oranges way. Besides,

Garamond and Palatino fonts are proprietary fonts; source files would certainly not be available - as

they are for the CM fonts - for users to modify and alter and re-shape.

The challenge which lies ahead is for brave souls to create new typefaces, or adapt classic typefaces
to satisfy the TUG community. We can all start with some understanding of typography, and the
basics of METRFONT, and go from there.

Any volunteers?

Bibliography

Knuth, Donald, E. The Art of Computer Programmzng, vols. 1-3 Reading Mass.: Addison Wesley,

1968, 1973

Iinuth, Donald, E. The M E T R F O N T ~ O O ~ Computers and Typesettzng, Vol. C. Reading, Mass.: Addi-
son Wesley, 1986.

Iinuth, Donald E. METRFONT: The Program. Computers and Typesettzng, Vol. D. Reading, Mass.:
Addison-Wesley, 1986.

Iinuth, Donald E. Computer Modern Typefaces. Computers and Typesettzng, Vol. E. Reading, Mass.:

Addison-Wesley, 1986.

TUGboat, Volume 10 (1989)' No. 4 - 1989 Conference Proceedings

Appendix A

% This is CMR1O.W in text format, as of Mar 31, 1986.
Computer Hodern Roman 10 point

if unknown cmbase : input cmbase f i

font-identifier :="CNR" ; f ontsize 10pt#;

u#.=20/36pt#;

width-adj#:=Opt#;

seriffit#:=Opt#;

cap-serif3 it#:=5/36pt#,

letter3 it#:=Opt#;

bodyheight#:=270/36pt#;

ascheight# :=XO/36pt#,

capheight* : =246/36pt#;

f igheight* : =232/36pt# ;
xheight# :=155/36pt#;

math-axis#: =90/36pt#;

barheight#:=87/36pt#;

commadepth#:=70/36pt#;

desc_depth#:=70/36ptX;

crisp#: =Opt#;

tiny#:=8/36pt#;

fine#:=7/36pt#;

thin_join#:=7/36pt#;

hair#:=9/36pt#;

stem#:=25/36pt#;

curve#:=30/36pt#;

ess#:=27/36pt#;

flare#:=33/36pt#;

dot_sizeX:=38/36pt#;

caphair*: =ll/36pt # ;

cap-stem#:=32/36pt#;

cap-curve# : =37/36pt #;

cap-ess# :=35/36pt#;

rule_thickness#:=.4pt#;

dish#:=l/36pt#;

bracket#:=20/36pt#;

jut#:=28/36pt#;

cap-jut#:=37/36pt#;

beakjut# :=iO/36pt# ;

beak#:=70/36pt#;

vair# :=8/36pt#;

notch-cut# : =1Opt#;

bar#:=11/36pt#;

slab#:=11/36pt#;

cap-bar#:=11/36pt#;

cap-band#:=11/36pt#;

capnotch~cut#:=l0pt#;

serif_drop#:=4/36pt#;

stern_corr#:=1/36pt#;

vair_corr#:=1/36pt#;

apex-corr#:=Opt#;

0#:=8/36pt#;

apex-0#:=8/36pt#;

slant : =O ;
fudge :=I;
mathspread :=0;

superness:=l/sqrt2;

superpull:=l/6;

beak-darkness :=11/30;

ligs:=2;

square-dot s :=false ;

hefty : =false ;
serifs :=true;

monospace:=false;

variant%:=false;

low-asterisk:=false;

math3itting:rfalse;

generate roman

% unit width
% width adjustment for certain characters
% extra sidebar near lowercase serifs

% extra sidebar near uppercase serifs
% extra space added to all sidebars

% height of tallest characters
% height of lowercase ascenders
% height of caps
% height of numerals

% height of lowercase without ascenders
% axis of symmetry for math symbols

% height of crossbar in lowercase e
% depth of comma below baseline

% depth of lowercase descenders
% diameter of serif corners

% diameter of rounded corners
% diameter of sharply rounded corners

'& width of extrafine details

% lowercase hairline breadth
% lowercase stem breadth

% lowercase curve breadth
% breadth in middle of lowercase s

% diameter of bulbs or breadth of terminals
% diameter of dots
% uppercase hairline breadth
% uppercase stem breadth

% uppercase curve breadth
% breadth in middle of uppercase s

% thickness of lines in math symbols
% amount erased at top or bottom of serifs

% vertical distance from serif base to tangent
% protrusion of lowercase serifs

% protrusion of uppercase serifs
% horizontal protrusion of beak serifs

% vertical protrusion of beak serifs
% vertical diameter of hairlines

% maximum breadth above or below notches
% lowercase bar thickness

% serif and arm thickness
% uppercase bar thickness

% uppercase thickness above/below lobes
% mar breadth above/below uppercase notches

% vertical drop of sloped serifs
% for small refinements of stem breadth
% for small refinements of hairline height

% extra width at diagonal junctions
% amount of overshoot for curves

% amount of overshoot for diagonal junctions
% tilt ratio (delta x/delta y)
% factor applied to weights of heavy characters

% extra opemess of math symbols
% parameter for superellipses

% extra openness inside bowls
% fraction of triangle inside beak serifs

% level of ligatures to be included
% should dots be square?

% should we try hard not to be overweight?
% should serifs and bulbs be attached?

% should all characters have the same width?
% should an italic-style g be used?

% should the asterisk be centered at the axis?
% should math-mode spacing be used?

% switch to the driver file

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

T)jX Users Group Meeting and Short Course
Stanford University, July 25-30, 1982

Opening Pandora's Box

NEENIE BILLAWALA

841 Stendhal Lane
Cupertino, California 95014
sun!metamarks!nb

ABSTRACT

The motivation behind the Pandora project was to use METAFONT as a design
tool rather than as a production tool in the creation of a typeface.

Pandora was developed by using generalized descriptions of the visual relation-
ships between parts of characters, characters in a font, and fonts in a typeface family.

Pandora transforms from one font in her family to the next through different
parameter settings applied to a single framework. It is not important that all vari-
ations look good, rather that a reasonable set can be found within the framework.
A rich description allows a designer to quickly look a t a number of possibilities.

1. METAFONT

1.1 Background
When I first heard about METRFONT in 1980, the idea seemed intriguing - using computers
to design type. In 1984 when actually faced with the first generation of SUN computers, a n
experimental V operating system with a cryptic boot command, and version O . * * of METAFONT,

I was not sure what it could really do - or rather, what 1 could convince it t o do. The idea of
designing type that was modifiable by the proverbial "turning of knobs" was seductive. And the
idea that you, the designer, could choose those knobs was even more so.

It was not very confidence-inspiring to know that I had no computer experience and there
was no manual yet to use as a guide. However, I did have some ideas of what I would like
METAFONT to do and lots of help from the authors of the language.

Designing begins with ideas of how to solve a problem. What is the problem, what tools
can be used t o help solve the problem, how are those tools best used, what palette of solutions
presents itself?

The problem of type design involves identifying the requirements of a design. Such require-
ments are outlined in a document called a design brief. For what purpose is the design being
considered? Is it a text or a display face, or intended primarily for use as symbols? What visual
flavor is i t t o have? What feeling does it convey? Will i t have a single weight or will a family of
weights need to be considered? Type is intended to be reproduced without deviation within a
given range of tolerance. So, which technologies will be used in reproducing it? Additionally for
METAFONT - what lund of flexibility do you want to build into the design to make it adaptable
to different marlung engines or different resolutions?

1.2 Drawing
Drawing type by hand is a special skill that takes years to develop, and even then, only a handful
of people are successful a t it. Having an eye and a sense of what belongs in a design takes another
talent. Sometimes that talent combines in one person, but often i t is the collaboration of these
two types of skills that results in type.

Drawing type with METAFONT, a tool that can draw a precise line and a pleasing curve, takes
time to learn also. Instead of the hand-eye coordination that a calligrapher or a type designer
develops, you need to develop a feel for mind-eye coordination. You need to be able to translate

TUGboat, Volume 10 (1989); No. 4- 1989 Conference Proceedings 481

visual shapes into the mathematical constructs that METAFONT understands. A steady hand is
no longer needed as METAFONT will do the drawing for you. Though, an understanding of the
problem and a sensitive eye is still required.

METAFONT uses pens to draw - and i t has a broad notion of pens. These pens can have a n
arbitrary shape and size and inclination. They may even have no thickness, so that an outline
can be filled. They relate to pens that we use for drawing, malung the marks of a tip or nib
that follows a path (Figure 1). However, the path traced out by the human hand will be much
different from that traced out by a mathematical equation.

Figure 1: Pen strokes defined by two (top) or three (bottom) control points

A calligrapher's pen creates marks that are a combination of the shape of the nib, the consis-
tency of the ink, the texture of the writing surface and subtle changes in pen pressure and pen
angle. Such variety is difficult to recreate with METAFONT. While METAFONT can easily change
pen nibs and pen angles, the "written" result is consistent - there is no fluctuation for writing
surface or ink or pressure. T h s is not to say that one result is more or less beautiful than the
other, just that it is not the same.

1 . 3 Designing
What makes METAFONT special is the fact that you can actually design with it . You can go
through the same trial and refinement process of the traditional type design method - only the
drawing tool looks a bit different.

METAFONT's strengths lie in its flexibility. The value of a flexible description becomes ap-
parent as the technology changes. 1 remember a few years back when a 200 dpi XGP printer was
being retired in the Computer Science department a t Stanford. There were some 500 hand-tuned
fonts that had been created for this printer and that represented man-years of work. Professor
Art Samuel tackled the task of making these fonts work with the newer generation of 300 dpi
laser printers. He developed an ingenious program that considered the pixel patterns, alternat-
ing rows of pixels and neighboring pixels, and then automatically converted a 200 dpi pattern
t o a 300 dpi pattern. In some ways the results were successful - previously created documents
could still use the same fonts and they had about the same look as the 200 dpi printer. Unfor-
tunately, the method could not take advantage of the hgher resolution to improve the look of
the fonts. Had those fonts been in a METAFONT format, i t would have been a small matter to
regenerate them a t a higher resolution.

There are times when i t might be useful to include more than resolution information into a
typeface. You might have a printer where one -pixel lines are too thin. It might be a write-white
printer or perhaps a high resolution imagesetter. I t might be convenient to be able t o set a
minimum pixel thickness of 1 or 2 or even 5 as the resolutions increase. I t might be useful to
thicken up a design if you are going to print in reverse or increase all serif lengths by an arbitrary
amount. Perhaps you just want a slightly different design. I t might be that none of the above
applies and other considerations will arise in the future.

482 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Once you learn how to transfer your ideas, you can embed more information into the char-
acter than could ever be guessed from a single drawing. Though it's possible to use METAFONT
in a form of digital tracing, the potential richness of a flexible description would be lost.

METAFONT's value as a design tool is carried out by the fact that you can draw any number
of iterations, changing one or many thngs in order t o find a design solution. The drawing can be
done more quickly than by hand, allowing the designer to consider many more possibilities and
directions. With the aid of a printer to test variations and compare the results, you can draw
and experiment.

2. Metamarks
In some ways type design lends itself well to description. The visual consistency that defines
a typeface can be described in a program. Traits that are shared among characters - vertical
dimensions, stem thicknesses, terminal treatments - can also share an analytical relationship.

The question is one of how to translate those visual relationships into language METAFONT
understands. Words convey ideas, concepts and information well, but they are often lacking
when it comes to describing something visual. It is really true that "one picture is worth a
thousand words".

crnchar "Calllgraphlc A " ;

beginchar("AU. 14.4uX. cap.hetght#. O),
italcorr .5u*:

adjust-fit(-.05w#. 0): pickup cai nth;

iff 2s = .54w; 27 = .9w:

Lop ys = h + 4cap.curue: bot yi. = bot.Jourtsh.ltne.

zs = 3/27. zj] - bend:
pickup tt1ted.nib;

iff z i = .05w: 2.2 = .2w; rt zr = 15.

yl = yz + . l h ; bat y2 = bot.J?ounsh.i~ne: lop y4 = h + 4cap-curve;

y3 = ys. 23 = whaleverjrz, z4i + Zbend:
draw (21 . tension 1.2 . (r tght]zz)soi t~oinf lex(rz , z3, z4); % left diagonal

pickup cai.nzb;
erase fill (0. bot ys) - - (w . bot y5) - - (w. top ys) - - (0. top y ~) - -cycle:

draw flex(2s. LC. 27) soitjoin (17 - - Z T + cal.eztenston): % rtght diagonal
draw rt 23 - - 26; % bar
rnath.fit(.5u* - Imp-he~ght* * slant, K #) ; labels(l . 2. 3, 4 . 5 , 6. 7); endchar;

Figure 2: Sample of METAFONT character output and source file (Computer Modern)

Mathematics has long been used as a tool to link the visual with the symbolic. METR-
FONT is an algebraic language. Algebraic equations describe the relationships you want to keep
(Figure 2). Cubic Bezier curves are then drawn according to these relationships (Figure 3).

Certain relationships are very useful to maintain with type. The xheight of the typeface
should be the same for all lowercase letters, just as the height of capitals should be the same.
Sometimes all the numerals should have the same width so that they will align. With a drawn
representation of a set of characters, measurements need to be taken to ensure consistency. A
change t o the xheight requires careful re-drawing of all the characters. However, should the
xheight be a parameter that is shared by all characters, then a change to t h s parameter will
have a global effect.

The first thing is to find a relationshrp in related parts of characters, and the next step is to
look a t a number of variations. I t is a matter of experimentation and experience that will lead
to discovery of those relationships that work well together. The visual consistency found in the
characters of a typeface led to Metamarks: Preliminary Studies for a Pandora's Box of Shapes,
an exploration of the related but not identical shapes that are found in several characters.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 483

Figure 3: A series of BCzier curves, showing the general effect of control point placement

Part of the discovery of how METAFONT works lies in understanding its logic. You may
understand how the curves are drawn and how parameters work, but you may still be surprised
a t the result. Since you can build a description, you must also be aware of the relationships you
are building. You will need to think clearly about how the inter-relationshps of the parameters
will affect what you build.

Though everything is written down explicitly enough for a computer to understand, the spec-
ifications may not show the whole intent of the designer. It is virtually impossible to predict all
outcomes for all cases, but with trials and error messages, METAFONT will direct you.

3. Pandora
Pandora started out as an experiment. Could this new tool and some wild ideas really com-
bine into something that overlapped with the spirit of good type design? Was it possible to
take the sense of traditional type design and apply it to the digital technology? Did the new
format present options that were previously unavailable? Could the general requirements of
functionality for type be satisfied? Generally, the answers turned out to be yes.

Pandora was the result of a meta-design brief that developed as I learned more about META-
FONT, type and technology. Other than the idea that Pandora would be a family of roman-based
forms and that text faces would be the main focus, there were no specific requirements to fulfill.
No style had to be matched, no vertical dimensions maintained and no single marking engine was
targeted. Pandora's was a meta-design brief, because many potential briefs were considered.

Mostly, Pandora is a family of text typefaces. I could see a relationshp shared among text
typefaces that was not as clear in display typefaces; for example, Bodoni and Helvetica are much
closer than Calypso and Stop (Figure 4).

However, in place of the specifics that make up a traditional design brief, Pandora has pa-
rameters. Rather than have a specific xheight, Pandora has a parameter called xheight. Instead
of a single stem weight, there are several parameters for setting stem thicknesses. The general
slant of the typeface or obliqueness is also a changeable value. Pandora is special, because of
her versatility.

3.1 Meta-Design
In meta-designing a typeface family, you need to think about the visual "essence" of a character.
What makes a character recognizable? Is there an objective ideal shape? Do some cultures read
letters better when they are of one style and others understand them better when they are of
another? How much of what we consider to be clear and beautiful text comes from what we
have grown up with? Is Univers really a universal typeface?

An essence cannot be defined by a single shape, but some of i t is in every letter that we read.
I t is t h s indescribable essence that makes people from around the world understand the wide
variation in handwriting and typefaces. Today we have a hard time reading the texts that were
popular 500 years ago and printed in a blackletter type. Is it because we are not used to them
or are they intrinsically harder to read?

484 TUGboat? Volume 10 (1989), No. 4- 1989 Conference Proceedings

ABCDEFGHIJKLMNOPQRSTUWVXYZ
abcdefghijklmnopqrstuwxyz

H E L V E T I C A L I G H T

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890
H O N O T Y P P B O D O N I

Figure 4: Contrast between display and text fonts

With Pandora I tried to capture some of thls essence. I tried to construct the characters
and the relationships that would preserve it. It is important to emphasize the features of each
character that make i t readily recognizable. Not that every variation would be a beautiful or
appropriate solution, but that a set of reasonable solutions could be found. 1 did not look for
the one and only solution, or an all-encompassing one -just a set that would work reasonably
well and be flexible.

You can set relationshps that should be preserved, and put in as much or as little control as
you want. Sometimes it is interesting to give METAFONT a simple general guide and see what
lunds of shapes can be created. I t may lead you onto a path that you might not otherwise have
considered. You might make a typeface that includes a certain amount of randomness. Or one
that has several variations of the same character. It would be possible to create a set of three
(or more) related interchangeable fonts and then perhaps set each third word with characters
from each for the three fonts. Or you might want more control and place more conditions on
your characters. For example, I have made the joining point of the arch in the lowercase n be
on the stem somewhere between the top of any serif that there may be and the bottom part of
the thckness of the arch. This avoids problems and fills the condition of most useful arches.

In loolung for underlying relationshps, does everyone think differently or is there something
"objective" about the relationships? Separately, both Don Knuth and I came up with essentially
the same serif scheme, though we never discussed it. On the other hand, there are many differ-
ences in the approach to Computer Modern and to Pandora. It would be interesting to see the
results of giving the same set of characters to ten different designers, with the same instructions
to fill out the family. Would there be ten different results? Would they all share some of the
underlying concepts of change? In fact, Figure 5 shows the results of having 26 different design-
ers create two characters (one uppercase, one lowercase), with the same vertical dimensions.
However, i t takes more than mathematical relations to make a uniform typeface.

The underlying concept will not apply to every lund of letter in every language. I t is good
judgement that decides the balance between a fair amount of flexibility and creating a separate
basic form. Pandora and much of the Computer Modern family are good examples of roman
forms. Other sets of basic forms will work for gothic characters, Chinese, Tamil and so on.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 485

ABCDEFGH I JKKLM
NOPQRSTTUVWXYZ

abcdefghijklm
nopqrstuvwxyz

Figure 5: Results from 26 designers given only a few design parameters (Knuth 1984:106)

3.2 A Design Approach
Many of our text types come with a history whose origins begin with the written letter. It is a
natural assumption when looking a t a letter, to think that its inspiration might be a pen. Indeed,
my first trials with METAFONT consisted of letters created by penstrokes. These characters
tended to have a calligraphic flavor, but were somewhat limited.

However, type is created for a specific technology. Type does not exist without the means
to create it. It is in the re-workmg of the forms from the hand-written inspiration that the
deviations in shape occur - deviations that are no longer easily recreated by the penstroke.

For this reason, designing with penstrokes, whereby most of an unmodified METAFONT pen-
stroke defines a character, can be limiting. It is useful in some cases and necessary in others. For
the most part, however, I found it much more flexible to design with an outline, or a penstroke
of no thickness.

The next step is to identify explicitly all those things that are important in the design. Vertical
dimensions are an excellent example of t h s . You may know that you want lowercase characters
to share an xheight, but you may not know what that value is to be. It may be between 50-55%
of the point size, or it may be dependent on the height of capital letters, or i t may be dependent
on some other consideration. Rather than give an explicit xheight value in character description,
you make the value of the xheight a parameter. Then as that parameter changes, all the places
where the xheight is used will be changed.

The same applies for the height of capitals and all other shared vertical dimensions. When
we talk about the height of a character, we are talking about the visual height of a character,
not necessarily the mathematically measured value from top to bottom.

There are a few typical optical illusions that need to be considered. Look at the case where a
circle, a square, and a triangle all share the same vertical and horizontal dimensions (Figure 6).
The shapes all have a different visual weight. T h s is natural if you think about the area encom-
passed by each. Though vertical dimensions are equal, the circle and the triangle appear a bit
shorter and narrower than the square. It shows that by a t least one mathematical calculation,
the "same value" does not result in the same visual result.

Figure 6: Optical illusion: square, circle and triangle with same vertical dimensions

These optical illusions carry over into type design. If the curved and pointed characters,
such as an 0 and A, are to have the same visual vertical height as other characters, they may
actually have to be a bit bigger in the vertical dimension. Those characters that have a strong

486 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

horizontal feature, such as an E or a T, may have to be slightly shorter. One way to make the
necessary adjustment is to build in another parameter that is dependent on the vertical height
and perhaps on the resolution also.

Other features of a character combine to create a visual total. The inner shape or counter
of a character plays a critical role. The proportion of thick and thm in a letter can combine
to change the visual height and width. The example from Metamarks (Figure 7) gives a clear
demonstration. Equal horizontal and vertical weights may give the illusion that one is heavier
than the other. Unequal stem widths may actually look better. Typically weight is either added
or sculpted away in order to achieve a pleasant and functional visual balance.

Figure 7: Circular shapes with variation in vertical stroke weight

Part of the design process remains the same. There are still the same problem solving aspects
and visual considerations in the result. However, METAFONT does tend to change the approach.
Rather than start with specifics, general parameters are built and visual relationships that have
mathematical counterparts are constructed.

3.3 Parameters
Pandora relies on over one hundred parameters to define her shape. Some define dimensional
limits, others relate to specific parts of characters, and some affect every character. The first
group of parameters has values that are independent; the next group has values that are mostly
dependent on the first group.

The independent parameters include common vertical values and thcknesses of stems and
bowls. The designsize is set to the point size of the font. Other values, though independent,
are implicitly dependent on the designsize or on each other. Typically the height of capitals or
cap height is less than the designsize. An xheight is usually smaller than the cap height. Stem
weights are usually less than bowl weights.

The dependent parameters are generally those that relate to parts of characters. These pa-
rameters are used in the macros that are then used to build the actual character descriptions.
For example, there are a number of parameters that determine the shape of serifs and terminals.
The serif-thickness is dependent on the xheight. It cannot be greater than half of the xheight,
otherwise a character with two serifs would disappear. The terminal-thickness is related to the
serif-thickness, and in Pandora they are set equal.

In addition to the serifs and terminals, there are parameters for arms, arches, bowls, cir-
cular shapes, junctures and notches. There are also settings for punctuation, accents, width,
obliqueness, softness of the corners, and a number of other features.

However, the parameters are useless unless they have values. It is somewhat like working
backward. You know you will need to have an xheight, but unlike a traditional method of
worktng, you might not know how high i t is until you have fit in the rest of the design. By
defining the parameters, you will have necessarily thought about what each is meant to affect
and you will have a starting point as to what value to give the parameters. In order to see an
instance of the character or typeface, you will need to give an arbitrary value to each of the
parameters. Not every possibility will work, but neither will every hand-drawn shape. I t is
more important to find a range of parameter settings that work together reasonably.

3.4 A Rich Description
Instructions for a letter t o behave under certain conditions can be embedded into the character
description. Algebraic equations specify conditions; booleans and conditional statements are

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 487

used to make decisions. If all stems are to have the same number of pixels, then give them all
the same value, and make sure they all begin on a pixel boundary. If point A is halfway between
points B and C, METAFONT's way of saying this is A = . 5 [B , C] . In Pandora, there are alternate
character possibilities for some of the lowercase letters. An upright style may use one variation,
whereas an italicized version might use another (Figure 8).

Since the glue that ties the METAFONT family together is the underlying concept, this means
that fixed width and proportional characters can share a relationship. Ideas of typeface consis-
tency remain the same - stem widths are the same or similar, there is the notion of an xheight
and cap height and so on. The major difference is that the widths have a special requirement
that they all be the same. How do you fit the letter m into the same space as the letter i? Since
letters were not meant to all have the same width, i t is almost like trying to fit them into a
straight-jacket. Variations can be made that might stand out in a normal text, such as adding
or lengthening a serif in the i in a face that is otherwise sans serif.

Unlike previous technologies, there is no longer a need for different weights in a family to
retain the same widths. Widths can vary according to the space they need to maintain the proper
visual relationships. It may be more difficult to give a good description of what that relationship
should be.

METAFONT also introduces a new feature not available with drawings - program bugs. They
result from settings in the program that conflict with the way METAFONT draws. Sometimes the
shape is affected, other times not. This is one of the trade-offs of having the ability to consider
many possibilities.

Because you have to describe key relationships that are to be maintained, the METAFONT
description gives more than a visual relationship. In fact, though related by METAFONT program
and concept, the shapes of characters and the typefaces themselves may no longer be related in
the traditional sense. METAFONT changes the meaning of a typeface family.

3.5 The Pandora Family of Typefaces
Pandora became an example of a flexible typeface family. I t might only be the initiated who will
recognize thls, as the relationship is no longer purely visual. Many parameters or hooks have
been built in and some have been used. Some of the parameters have limits placed on them, in
the hopes of keeping the results reasonable. However, these too can be altered.

The inspiration for malung a fixed-width typeface came out of a desire to print the META-
FONT programs in Pandora and have the programs align as they did on the screen. I t was a
self-referential task - creating programs for characters so that the programs that created the
characters could be printed.

The current family consists of 8 styles - serif and sans serif versions of a regular and a bold
weight, a fixed pitch style, and slanted versions of each. The character sets match those of
Computer Modern for the typewriter and roman styles. This means that the typefaces can be
used interchangeably in terms of characters, though the look of the two families remains quite
different.

4. Conclusion
Tools like METRFONT make it very easy to generate and disseminate printable characters. No
longer is a lengthy apprenticeship needed in order to have access to the tools that once were
among a kingdom's most valued riches. Limited access had the advantage of a certain amount
of quality control. The amateur was not likely to be in a position to do much damage, so to
speak. On the other hand, accessibility spawns creativity and the sharing of information.

Bibliography
Billawala, Neenie. Metamarks: Preliminary Studies for a Pandora's Box of Shapes. Dept.of

Computer Science, Stanford University. Report No.STAN-CS-89-1256.

Knuth, Donald E. "A Course on METAFONT Programming." TUGboat 5(2):105-118, 1984.

Knuth, Donald E. Computer Modern Typefaces. Computers and Typesetting Vo1.E. Reading,
Mass.: Addison-Wesley, 1986.

488 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

3 1 2 Serifs are palts of a character that often protrude f rom the stems of letters such as ' 1 ' . ,m ' ,

o r ' n ' . They may be very subtle, showlng only as a slight bowlng of a vertical stem; or they

may be very prominent. The placement of a se r~ f i n a charactel usually has some historical

relationship t o how the character was drawn or wr l t ten

For our purposes, serifs have the following propertres: They are always connected t o a

stem, even if tha t stem has no thickness. They have a left part and a r l gh l part , w i t h both

parts comblnlng t o form the ful l serrf. They have a horizontal base, and a bracket area that

connects the stem t o the base. We may also take a small amount ou t o f t he bot tom of the

base M a t t h e w Caner has suggested that thls be called '.entasls." Midbracket pul l is

created by adding a polnt In the bracketed reglon through whlch the serif path must pass

This extra p o ~ n t lies somewhere on the line that protrudes f r om each bracket area.

Bracketing can also be specified by choos~ng control points on t he base and the stem

The general serif i l lustrated here shows the key points constructed by t he program.on the

opposite page.

Figure 8: Serifs: base and stem variations (top); general description (bottom)

TUGboat , Volume 10 (1989), No. 4 - 1989 Conference Proceedings

AMS-W82 Users Course and TEX Users Group Meeting
Stanford University, July 11-15, 1983

Terman Engineering Center Auditorium

Fractal Images with TQX

Department of Mathematics
John Jay College of Criminal Justice

[use mailing address below]:

17 Bay Avenue

Huntington, IVY 11743

ABSTRACT

This article is an additional demonstration that T@ can create non-textual images.

Using halftone fonts created by Knuth, can typeset fractal images. The images are
somewhat coarse-grained; this is due to the limitations on the number of characters per
page that can be typeset by 'I)$.

Sometimes one tires of the printed word, and at such black times, it's nice to know that Tj-ijX has its
non-textual uses as well. Knuth [7] has previously demonstrated the possibility of typesetting halftone

images using special halftone fonts. Shortly thereafter, Clark [2] was the first (apparently) to use these

fonts and comment in writing on the experience. Their work is fascinating, but the drawback to the

casual user of TEX who wants to participate in these experiments lies with specialized equipment one

needs to generate the halftone data. I will discuss ways of using purely mathematical rules to generate
images of beauty and realism.

1. Fractals
In the past 20 years or so, mathematicians have discovered new families of objects, shapes of great

mystery, beauty, and intrigue. There is mystery and intrigue because, despite the simple mathematics

used to generate them, they have lain undiscovered all this time. These shapes have become known as

fractals. A precise definition of this term is out of place here; see [a]. It suffices to explain, I think, that

they involve the disclosure of patterns of extraordinary complexity where one would nayvely expect to
encounter chaos or monotony.

We set the stage with a recipe for generating a simple fractal pattern. Let z, represent point i on

the complex plane. We use the METAFONT mediation function to denote some other point lying some

portion of the way between two given points. If z = t[zo, zl], then z is the point lying on the line
connecting 2.0 to zl and located a &action t of the way between zo and zl.

Begin by locating the three corners of a non-degenerate triangle, and by selecting a random point

zo lying somewhere within the triangle. Draw this point. Now:

1. Select one of the vertices of the triangle at rand0m.l Let z, be the chosen vertex.
2. Construct the midpoint z between zo and z,; that is,

3. Draw this point. Re-label this point 20, and return to step 1.

4. Continue this iteration until several tens of thousands of points have been generated and drawn.

What pattern will appear on the page? I am not ashamed that my own intuition "assures" me
that a uniform spread of dots will appear. Nothing prepares me for what really appears.

A roll of a single die makes a good random vertex generator. Choose vertex 1 if 1 or 2 show on the die; choose the

second vertex if 3 or 4 show on the die; choose the third vertex otherwise.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings 49 1

But before displaying this pattern, let me make a connection between this procedure and rn
or METAFONT. The mathematical procedure that creates the midpoint is a special kind of object
called an afine transformation. These are precisely the tools within METAFONT for rotating, shifting,
stretching, and shrinking graphic objects. As a first attempt, we might try to create a single character
using METAFONT to plot lots and lots of points. My success with METAFONT has been limited, largely
because great quantities of dots cause METAFONT to exceed its capacity.

'I)$ provides an altogether more satisfactory approach. The idea is to use one of the halftone fonts
suggested and demonstrated by Knuth [7]. Here's how to proceed.

We use an external compilter program to generate the data. First, we translate the above algorithm
into a high-level language (I used QuickBASIC or FORTRAN). The computer program should ask the
computer to maintain a large 2 x 2 array, the four corners of which represent the corners of our diagram.
Then, each time the computer generates a random point, it must determine which spot in the array
best corresponds to the location of the dot on the page. Increment the value of this element in the
array by 1. Do this several thousand, or tens of thousands, of times.

When done with this series of iterations, the program will spit this information out to a disk
file. Instead of spewing rows of whole numbers, we ask the computer to spread the values in some
way between the character 0 and p.2 There are 64 characters lying between 0 and p in the ASCII
convention, and Knuth's halftone characters occupy these positions. Next, print out these characters
to the disk file. This creates an ASCII file which we feed into 'I)$. Of course, we need to make some
adjustments so TFJ processes the file properly - suppress interlineskipping and indentation, invoke
the halftone font, and some other things. Here is what you see when you typeset this pattern (Fig. 1).
Benoit Mandelbrot, the mathematician who is the father of things fractal, calls it the Sierpinski carpet.

Fig. 1: Typesetting the Sierpinski carpet Fig. 2: A 4-cornered carpet: first attempt (unsuccessful)

The coarseness of this carpet's weave is due to at least two factors. There are various upper limits
on the number of characters that can typeset on a given page. Remember, each dot in a halftone
is a separate character as far as TEX is concerned, and a single image involves far more characters
than are usual on any single page of typeset matter. A greater dot density would be more pleasing.
Furthermore, to enhance the contrast in these few figures, only two distinct characters were used in
the typesetting, 0 if a pixel never contained any point, or p otherwise.

2 Because of the peculiarities of human perception, it probably shouldn't be a linear spread; see the helpful figures on

page 137 of reference [7] for insight into this problem.

492 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Fig. 3: A Ccornered carpet: second attempt (successful) Fig. 4: A pentagonal Sierpinski carpet

2. Fractal Botany
Consider n transformations, and a set of probabilities pl through p,, so that C:'"=,p, = 1. We will
create a sequence of points, place them in an array, and then typeset this array as we did the Sierpinski
carpets. The sequence begins with a single point, and successive points are found by transforming a
predecessor point by one of the n transforms. Any of these transforms are chosen randomly, the only
constraint on this random choice being that in the long run, the ith transform should be chosen a
fraction p, of the time. A deep theorem guarantees that it is possible to choose the transforms and the
probabilities so that the resulting pattern resembles real objects. These objects may appear uncannily
real, perhaps because these images seem to repeat certain patterns at ever decreasing levels of scale,
like Russian matrushka dolls. One example is the fern shown in Fig. 5 . Some computer scientists find
these images exciting; this technique holds promise that the large amounts of information one might
think necessary to create images at a convincing level of detail can be easily summarized by some
relatively small group of transformations.

Fig. 5: A fractal fern Fig. 6: A fiactal, though stemless, fern

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 493

This fern is an outgrowth of the application of four transformations. Each transform w, is deter-

mined by six constants. Let the six constants for transform w, be a, through f,, and if z = (x, y), then

the transformed point w,(z) is

The following table shows the values for the fractal fern and the associated probabilities for each

transform ~ i : ~

I was especially intrigued by the first probability, pl = .01. It's hard to imagine what the contribu-

tion of wl can be to the final image since it is applied so seldom. It is easy to investigate by re-running

the program with pl = 0 and p2 = .86 (so the sum of the probabilities continues to equal 1). In the
absence of w1, we grow a peculiar stemless fern (Fig. 6).

Barnsley [l , p. 871 discusses this material in great detail, and displays some extraordinary examples

of the fractalist's art. This book displays several striking plates - subjects include fields of sunflowers,

Alaskan huskies, a young Bolivian woman, and scenes from the Black Forest. It would have been nice
to use these transforms to typeset pictures, but the data is proprietary.

3. Mandelbrot and Julia Sets
There is a final group of fractal images we can generate. If we imagine that our page represents

the complex plane, then complex points c within a so-called Mandelbrot set are those which lead to

sequences of points which remain bounded. The sequence of points stem from a repeated iteration of
a simple non-linear equation:

20 = 0

that is, the sequence 0, c, c2 + C, (c2 + c) ~ + C, and so on. For some values of c, these sequences

eventually generate elements which lie ever farther from the origin of the page. For some other values

of c, no matter how many terms we examine, they remain within commuting distance of the origin. It
is these latter points which comprise the Mandelbrot set.4

Using the apparatus available for all these projects - auxiliary program to generate data and

prepare a TJ-$ source file, typesetting using special halftone fonts. and final previewing or printing

- leads to some interesting results. The shape of the Mandelbrot set surpasses rational expectation
(Fig. 7).

The fuzzy outline of this set is not an artifact of the conversion to 'I$$ halftones, and we can prove
this by magnifying the image near the boundary of the set. The image fails to exhibit any further

smoothness no matter how much the magnification is increased. Increasing levels of magnification

reveal ever-increasing levels of complex patterns (Fig. 8). The patterns appear to me to be quite
striking, but judge for yourself.

When I began playing with this material, I used METRFONT to generate the numerical data. Runs

used to take eight hours! I have since learned how to speed up my calculations by a factor of about
24.

Pictures of related objects, Julia sets, deserve mention. Recall that in the preparation of the

Mandelbrot set, we varied c. The sequence always began with zo = 0. To generate a Julia set, follow

These values originally appear in [I].

By the way, concepts such as "complex numbers," "sequences," and "distances from the origin" are not complex

concepts at all. The reader is urged to seek out references [3]-[5] for an excellent introduction to these concepts and

their connection to Mandelbrot and Julia sets.

494 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Fig. 7: The Mandelbrot set

Fig. 8: The Mandelbrot set: several magnifications

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Fig. 9: Julia sets set with TJ-$

Fig. 10: Detail from a Julia set

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

the algorithm for the Mandelbrot set with a few modifications. In this case, fix a value of c and let the
choice of zo range over the complex plain. The points of the Julia set consist of those zo for which the
sequence zo, zl = 202 + C, z2 = z: + C, . . . remains bounded. Julia sets display their own good looks
(Fig. 9).

As with the Mandelbrot set, magnifying the detail of a Julia set reveals new levels of intricate
filigree (Fig. 10).

Of course, there are other kinds of halftone fonts that will suffice when typesetting these pictures.
Knuth has suggested several of them [7], and their uses give interesting new looks to these pictures
(Fig. 11).

Knuth has observed that if you enjoy "fooling around making pictures" and if you have suitable
fonts, then "TEX will be a source of endless frustration/amusement for you, because almost anything
is possible . . ." [6, p. 3891. METRFONT is now as widely available as TEX, so it's easy to create special
purpose fonts. I encourage readers to have as much fun making pictures as I have had.

Bibliography

[I] Barnsley, Michael. Fractals Everywhere. New York: Academic Press, 1988.

[2] Clark, Adrian F. "Halftone Output from w . " TUGboat 8:270-274, 1987.

[3] Dewdney, A.K. "Computer Recreations." Scientific American 253, 2:16-24, August, 1985

[4] Dewdney, A.K. "Computer Recreations." Scientific American 257, 5:140-145, November, 1987.

[5] Dewdney, A.K. "Computer Recreations." Scientific American 260, 2:108-111, February, 1989.

161 Knuth, Donald E. The w b o o k . Reading, MA: Addison-Wesley, 1984.

[7] Knuth, Donald E. "Fonts for Digital Halftones." TUGboat 8:135-160, 1987.

[8] Mandelbrot, Benoit. The fiactal Geometry of Nature. New York: W.H. Freeman and Co., 1983.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Fig. 11: New looks to the Mandelbrot set

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Design of Oriental Characters with METAFONT

Platt Campus Center
Harvey Mudd College

Claremont, CA 91711
dhosek(0yrni.r

dhosek(0jarthur.claremont.edu

ABSTRACT

The goals of a meta-font can perhaps be best realized in the design of Oriental char-

acters. These characters, unlike Western alphabets, are composed of a finite number of

identifiable components. For example, the Kanji characters used by Japanese are each

composed of a number of radicals which are then composed of a set of strokes. Variations
in the size and appearance of these elements have a certain degree of regularity to them.

The Quixote Oriental Fonts Project (Q0FP) l has two goals: the first is to simplify

the creation of the large number of characters required by languages such as Chinese

and Japanese by making the top-level description of the characters as simple as possible.

Ideally the program for a single Kanji character would be composed entirely of names of
radicals and mnemonic names for their placement. No coordinates would appear at all.

The second goal is to pave the way for the creation of new families of Oriental typefaces
by reducing the required work to that of re-designing the component strokes of a character
(and possibly making minor changes to the programs for radicals) rather than requiring

the designer to modify thousands of individual character programs.

1. Introduction
Before considering the details of QOFP, it is worthwhile to consider the question of why an American
with little or no knowledge of a n y Oriental language would take on a project as large as that entailed

in the design of character sets for Chinese, Japanese, and Korean (there are a total of nearly twenty

thousand characters involved in this endeavor).

The main reason relates to my interest in the philosophy of METAFONT. In Icnuth (1982), the

sentiment is expressed that ultimately we might hope to find the "essence" of a letter such as A and
be able t o express all possible typefaces by changing the values of various parameters. However, the

long evolution of Western letterforms makes this a difficult process.2 It seemed to me, however, that

the appearance of the Kanji characters used in Oriental typefaces was ideal for implementation in

METAFONT. One almost wonders if the originators of the Oriental characters foresaw the creation of
a system such as METRFOM.

While it is difficult to define the "essence" of the letter "A", this is not so big a problem with the
typical Kanji character. Each character is not defined so much by its total appearance as it is defined

by the combined appearance of the strokes that comprise it.

My earliest efforts to create a Kanji font were frightfully bad.3 For one thing, my lack of knowledge

of Chinese or Japanese caused me to make many invalid simplifications of certain characters and to

introduce unnecessary complications. After showing some of the early samples to some friends studying
Japanese, I received many helpful suggestions. One of these was to define characters in terms of their

'The reason for choosing this name should be apparent to anyone who thinks about it.
2Modern Western typefaces have a variety of influences in their form stemming from the different manners in which

they have been produced over the centuries.

3They are now hidden away in i?rchival storage and I refuse to show them to anyone.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 499

radicals rather than their strokes. This has two main advantages: first, it dramatically simplifies the

character programs and second, it makes it far easier to correct my mistakes as I go along.

2. The Plan of Attack
Rather than rush into the character design on my second try, I spent more time on developing support
code for the characters and came up with what might best be described as an "object-oriented meta-
font." The main principle behind this technique is to reduce the amount of information any particular
portion of the code needs to "know" about the remainder of the system. For example, a typical

character program might look like the following:

beginjchar(">", l*=la)(l'>'l, la)(UNDEFINED);
tn'plet(1, 2, 3, 4, 5, 6);

nichi(1, 2);
nichi(3,4);
nichi(5, 6);

endjchar;

In this character program, not a single explicit coordinate is specified. For that matter, there is not

even any need for the program to be aware of the shapes of the radicals used either. The program
for is identical to E with the sole exception that nichi is replaced with kuchi. Note also that the

dimensions of the character itself are not given, but rather are specified elsewhere.
These two items are one of the primary things setting off QOFP from the work done by Guoan

and Hobby in the old METQFONT (see Guoan and Hobby 1984). While they also took the approach of
calling subroutines to put strokes and radicals together into characters, they additionally specified all

dimensions of the character and internal coordinates explicitly, in this manner limiting the possibilities

of the meta-ness of their font.4

2.1 How M e t a - is m y Font?

In keeping with my philosophy of object-oriented METRFONT, I decided to determine parameters for
the font in a manner similar to that described by John Sauter (1986) for the Computer Modern fonts.

A top-level input file would contain only the bare minimum specifications that define that typeface:

if unknown qjbase: i n p u t qjbase fi % Make sure qjbase is present.

font-identifier := "CJKJM"; font-size 10pl#;
font-coding-scheme "JIS";

driverfile "qkan j i" ;

i n p u t bbqkjm % Generate QKJM at 10pt.

Through some fortunate coincidences, the syntax of the opening file has developed some pleasant
regularity. Any declaration in which := appears is of no importance in the generation of the font while
the remainder of the declarations are used in producing the font.

Numerous behind-the-scenes macros are used in QOFP to convert information from the human-
readable format in which it is input into something that will be more useful for the system. For

example, the b e g i n j c h a r macro examines the value given by font-codingscheme to determine

which pair of character codes given (if any) should be used in determining the final code used. The
use of these codes is not simply confined to a basic mapping of the two-byte code to METAFONT

charcode and charext: for example, if the font-coding-scheme is set to "jTeX JIS", the code will

be automatically re-mapped into the subfont divisions used in J'Q$ (see Saito 1987). This partially

explains the use of default-coding-scheme in the above example. Since qkjmlO divided into subfonts

is still qkjml0, i t makes sense to re-use that part of the code with the following file used as a top-level
input file:

4They are to be forgiven for this, however, since they were among the f r s t pioneers of METRFONT. Knuth does

similar things with his character programs in Computer Modem (1986); for example, it is not possible, without changing
the character program itself, to create a Century Schoolbook version of the iE ligature from the CM description of it due

to the hard-coding of such things as the height of the crossbar of the "En.

500 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

font-coding-scheme " j TeX JIS";

choose-subfont 8;

input qkjmlO

which will generate the subfont indicated by \ja in Saito's JT@. Note that font-codingscheme
was modified to not change the coding scheme if one is already in affect (which makes this particular
application practicable).

By organizing the top-level input files in this fashion, i t should be a fairly simple procedure to
generate any font in a given family with minimal effort.

One thing worth noting is the use of "design-sized" fonts in this system. In a letter from Edgar
Cooke, I was informed that at present, this practice does not occur in Japanese typography. This
is doubtless due to the monumental effort that would be required to do such a task. However, just

because this is not a current practice doesn't mean that it shouldn't be done. Only experience will tell

whether the ability to have an Oriental font tailored t o a specific typesize will indicate whether such
a practice is worthwhile.

2.2 Choosing Radical P lacements

Perhaps the most revolutionary aspect of QOFP is the fact that no coordinates are specified explicitly
in the character program. Instead, as demonstrated above, symbolic names are given for the placement
of the radicals in the characters. A cursory examination of any Oriental code table will indicate that
radicals come together to form characters in a relatively small number of positional combinations.
By exploiting this, characters can be easily generated. At present, I am still experimenting with the

potentials of this technique, so I am unable to include any examples of the lowest level code i n ~ o l v e d . ~

The big obstacles in this approach are designing radical programs to be general enough to fit together

in the different placement combinations, and prudently choosing the coordinates to be generated for
the different placement codes.

Korean

The Hangul alphabet of Korean is of particular interest in this project since Hangul characters are
subject to the same sort of regular placement rules as Kanji are, but to an even greater extent. It may
be possible to even simplify Hangul character programs to the point where all that needs be specified
for any character is the letters which compose it (assuming that the organization of Hangul characters
in the Korean character set is reasonably algorithmic). I hope to have some samples of this available
for display at the conference in August.

3. Plans for the Future
Ultimately, QOFP will result in at least three, possibly more, families of typefaces for the Japanese,

Chinese, and Korean national character sets. Once the basic routines are working reliably, creation of a

single character can be accomplished in five minutes or less (depending on how familiar the individual

inputting the character definition is with the names and use of the METRFONT macros involved). Even
after the project is completed, this will be a useful feature since the assorted national character sets

omit many thousands of uncommon Kanji from their coding which could possibly be necessary for

certain documents. Ideally, the code will be distributed freely, but economic circumstances may make
this impractical.

5 A printed copy of all METRFONT code written to date will be available for perusal a t the conference.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 501

Appendix: Oriental '-I'E;)Z

QOFP is currently not concerned with the problems of special versions of 'I)$ for Oriental processing

or with solving the Kanji input problem. However, I have collected a few thoughts on the problem of
creating a suitable Oriental processor and a corresponding environment for d v i output:

A "big" T@ implementation which uses 64-bit words rather than 32-bit words could be used for
Oriental processing (the main memory array does not necessarily need to be increased to greater

than 64,000 words if this would cause problems in a low-memory environment). If the word size
is 64 bits, then the size of a quarterword would then be 16 bits, which would allow for character

codes adequately large enough for two-byte character sets.

A d v i driver for an Oriental language which uses non-printer-resident fonts should only download
the characters in the font actually used. It's a good idea to remember (for all d v i drivers, actually)
that the character codes used by do not necessarily need to correspond to those used in the

printer. For example, the fact that TEX accesses some character at character code 255 does not

mean that that character must be accessed a s character 255 when it is used on the printer (this

is especially important for those output devices which have a limit on the size of a character set
less than 256).

Bibliography

Fenn, C.H. The Five Thousand Dictionary. Cambridge, Mass.: Harvard University Press, 1955.

Guoan, Gu and John Hobby. " A Chinese Meta-Font." TUGboat 5:119-136, 1984.

Knuth, Donald E. "The Concept of a Meta-Font." Visible Language 16:3-27, 1982.

Knuth, Donald E. Computer Modern Typefaces. Reading, Mass.: Addison-Wesley, 1986.

Rose-Innes, Arthur. Beginners' Dictionary of Chinese-Japanese Charac-ters. New York: Dover Books,

1977.

Saito, Yasuki. "Report on m: A Japanese w." TUGboat 8:103-116, 1987.

Sauter, John. "Building Computer Modern Fonts." TUGboat 7:151-152, 1986.

Tobin, Georgia K.M. "Designing for Low-Res Devices." TUGboat 9:126-128, 1988.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Thai Languages and METRFONT

Bob Batzinger
UBS Tech Support Center
Box 116
Chiang Mai MA1 50000
Thailand

ABSTRACT

The Thai languages poses new challenges for typesetting with TI$. The high degree
of curvature in the script requires special attention to the discreteness of the METAFONT

generated fonts. Different traditional styles of the Thai font have radically different
loops. While diacritical marks of the Thai script could be handled by methods already
published, the lack of white space between words requires a new approach. Since many
lines are longer than the width of a page, intercharacter glue is required. This special glue
must be able to center some diacritical marks over the expandable intercharacter space.
Thai typesetting tradition requires line breaks only between words instead of between
syllables. This paper will describe the methods and auxiliary programs we have used to
adapt TI$ for use with Thai text.l

Due t o travel difficulties, the final version of this paper will not be included in the Proceedings. However, it will be

published in a forthcoming issue of TUGboat, as soon as it becomes available -Ed.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 503

T)jX Users Group
Stanford University, August 13-24, 1984

Terman Engineering Center Auditorium and The Graduate School of Business

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

A METAFONT-like System with Postscript Output

AT&T Bell Laboratories
600 Mountmain Avenue

Murray Hill, NJ 07974

hobbyQresearch.att.com

ABSTRACT

The MetaPost system implements a language very much like METAFONT except that

the output is expressed with cubic splines and PostScript commands rather than in METR-

FONT'S raster-oriented Generic Font Format. It is a powerful language for expressing

figures for documents printed on Postscript printers, and it can also be used for creating

Post Script fonts.

The data types are mostly the same as in METRFONT. except that pictures represent
a continuous version of what is scan-converted in order to create METAFONT's pictures.
Some raster-oriented METAFONT primitives are removed and primitives for expressing

PostScript concepts are added. Facilities are also included for adding text to pictures.

This should make it convenient for figures to include labels that match the typography
of the rest of the document.

1. Introduction
In addition to being a font-making tool, METAFONT is also a powerful graphics language. The only

problem is that METAFONT produces raster output which is not very suitable for applications other
than font making. This paper describes a tool for applying METAFONT's power as a graphics language

to applications where PostScript output is more appropriate.

A less ambitious approach to the problem due to Leslie Carr had some success but ran into practical
and theoretical difficulties [2]. Some work by Shimon Yanai avoids many of these problems by using

a slightly altered version of METAFONT [7]. The work discussed here includes a number of important
features that Yanai does not implement. It should avoid most of the difficulties encountered in ear-

lier work, but one practical problem remains: PostScript character definitions based on METRFONT

programs turn out to be rather large. Because of this, we concentrate on turning METAFONT into a
system for typesetting graphics analogous to Brian Kernighan's pzc [3,4].

Even with bitmap output, METAFONT has already found some use as a figure-drawing tool. META-

FONT can be used to create a special font that contains one character for each figure in the document,
and this font can be used to print all the figures. This works reasonably well for some output devices,

but it does require working with characters that may be several inches wide. Another drawback is that

it is difficult to create figures that contain text as well as graphics.
This paper describes a variant of METAFONT that is currently under development. The new system

is called MetaPost. It processes a language very similar to METAFONT, but it produces PostScript

programs instead of a gf file. The new output medium allows MetaPost to be used as a figure-drawing

tool without dealing with enormous characters. It also facilitates MetaPost commands for integrating

text and graphics.
MetaPost produces a sequence of PostScript programs that need to be merged with the rest of

the document before being sent to a PostScript printer. If the document is written in w, then the

dvi-to-PostScript translator should do the merging as indicated by Figure 1. If the T)$ document

uses downloaded fonts, then the translator must be modified to scan the included PostScript programs

and ensure that any required characters get downloaded properly. Of course, the output of MetaPost

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 505

Figures in MetaPost T@ Document

MetaPost

I
I

Figures in Postscript
1

dvi file

1
I dvips I

Fig. 1: A diagram of the processing for a TEX document with figures in MetaPost

will be designed to make this scanning process as easy as possible.

The description of the language in Section 2 assumes familiarity with The METAFONTbook and
concentrates on the differences between METAFONT and MetaPost.

Section 3 describes two possible extensions. The first is the use of a preprocessor to allow text
included in MetaPost pictures to be coded in ?$$. The second possible extension is a feature to allow

resolution-dependent operations such as those that Knuth discusses in Chapter 24 of The METR-
FONTbook and uses in Computer Modern.

Finally. Section 4 contains a few concluding remarks.

2. The Language
Since MetaPost is essentially an altered version of METAFONT, it is easiest to describe it by comparing

it to METAFONT. We therefore assume some familiarity with METAFONT and describe the alterations
necessary to deal with continuous rather than discrete output.

One important difference is that while METAFONT primitives work in units of pixels, MetaPost
uses points, as 'I&X does. Since MetaPost is intended to be used with a macro package analogous

to plain.mf, some of the differences in the primitives can be shielded from the user by suitable

adjustments to the standard macro package.

2.1 Pens
Of METAFONT's eight data types, boolean, numeric, pair, path, string, and transform have no relation
to the discrete raster and can be used in MetaPost as they are in METAFONT. The other two types

are pen and picture. They both describe concepts that are useful in MetaPost, but their meaning is

altered to eliminate their discrete flavor.
In the case of pens, this means that it is not appropriate for MetaPost to convert elliptical pens into

polygons as METAFONT does [5, pp. 148-1491.l A better strategy for MetaPost is to treat elliptical

pens as ideal ellipses so that appropriate PostScript commands can be given when drawing with them.

For example, in the case of a circular pen.

draw quartercircle scaled 200 withpen pencircle scaled 10

might be rendered in PostScript (Fig. 2) as

newpath

0 0 100 0 90 arc

10 setlinewidth 1 setlinecap stroke

Ideally. the Postscript interpreter should do this.

506 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Fig. 2: The result of a draw command with penci rc le scaled 10

Fig. 3: The result of a draw command with penci rc le xscaled 5 yscaled 10

Using an elliptical pen of a more general shape,

draw qua r t e r c i r c l e scaled 200 withpen penc i rc le xscaled 5 yscaled 10

can be rendered in Postscript (Fig. 3) as:

newpath

0 0 100 0 90 a r c

1 2 s c a l e

5 se t l inewid th I s e t l i necap s t roke

METAFONT also allows polygonal pens to be constructed via the makepen operator or with the

pensquare macro from plain.mf. MetaPost needs to treat such pens as polygons and implement

them via Postscript's f i l l operator. For example,

draw qua r t e r c i r c l e sca led 200 withpen pensquare scaled 10

might be rendered in Postscript (Fig

newpath

105 -5 moveto

5 5 100 0 90 a r c

-5 105 l i n e t o

-5 -5 100 90 0 arcn

closepath f i l l

As explained in [6, part 241, METAFONT already implements drawing with polygonal pens by using

the outline representation. MetaPost does the same thing except it turns the outline into Postscript
commands instead of using it to control scan conversion routines.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 507

Fig. 4: The result of a draw command with pensquare scaled 10

2.2 Pictures

The picture data type loses its discrete flavor in MetaPost, and this affects the set of operations allowed

on pictures. MetaPost pictures function mainly as repositories for the results of draw commands and
differ from METAFONT pictures in that they do not get digitized until after they have been translated

into Postscript and read by the Postscript interpreter. Thus MetaPost does not have METAFONT's

restriction on the types of transformations that can be applied to pictures (see [5 , pp. 117, 1441).
Another consequence of the non-discrete nature of MetaPost pictures is the loss of the totalweight
operator.

One of the more fundamental differences between METAFONT pictures and MetaPost pictures is

in how pixel values are interpreted. In a METRFONT picture, each pixel has a numeric weight, draw
commands add to the weights, and pixels with positive weights are considered to be black. In contrast,

MetaPost adopts Postscript's view of the world where pixels have colors and drawing operators assign

new values to the colors of affected pixels. Thus while the unf ill macro from plain . m f is implemented
with the cull command. the analogous operation in MetaPost is accomplished by filling withcolor
white.2

An important feature of MetaPost pictures is that they can contain textual labels. The text can
come from any font for which there is a tfm file available, but the Postscript version of the picture

assumes that the font is known to the printer and is scaled to match the design size in the tfm file. If
the picture is to be included in a l)+ document, then support code is needed in the dvi-to-Postscript

translator in order to ensure that these conditions are satisfied.

The syntax for generating textual labels involves a single operator inf ont:

(picture secondary) ---t (string primary) inf ont (string primary)

This produces a picture that contains the given string set in the given font at the design size specified in

the tfm file with the reference point of the first character at (0,O). The result can then be transformed
as desired and added to a picture variable, as in:

addto currentpicture also "label" infont "cmrlO" scaled 1.2 shifted (100,100)

Operators for finding the bounding box of a textual label facilitate placing the label and ensuring
that there is enough space for it. This information is available to MetaPost from reading the tfm file
and can be accessed via the following operators:

(pair primary) - llcorner (picture primary)

1 ulcorner (picture primary)

I lrcorner (picture primary)

I urcorner (picture primary)

These operators find the bounding box of any picture whether or not it is the result of inf ont. This

includes all elements of the picture, even those filled withcolor white.

METAFONT's cull command is not implemented in MetaPost because it deals with pixel weights and therefore

does not fit into Postscript's view of the world.

508 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

2.3 Drawing Commands
Drawing commands in MetaPost must differ from those in METAFONT in order to take advantage of

the features of PostScript, but the overall syntax is similar except for the new features. Thus MetaPost

has METAFONT'S primitive commands

addto (picture variable) contour (path expression) (with list)

addto (picture variable) doublepath (path expression) (with list)

and the corresponding macros

f i l l (path expression) (with list)

draw (path expression) (with list)

where a (with list) can be empty or contain various kinds of clauses. New kinds of clauses that provide
access to Postscript features are explained below.

MetaPost interprets addto commands and f i l l and draw macros as assigning a new color to some

region of a picture, and this region is determined according to Postscript's non-zero winding number
rule [I, Section 4.61. Since the safef ill macro defined in The METAFONTbook uses the same rule,

MetaPost behaves roughly as METAFONT would if all calls to the f i l l macros were replaced by calls

to saf ef ill (see [5 . p. 1211).
If the (with list) contains a

withpen (pen expression)

clause, then the affected region is enlarged to include everything swept out by the pen.

The color to be assigned to the affected region is given by a

withcolor (color expression)

clause. For this purpose, there is a three-component numeric type color normally accessed via pre-

defined constants white, black, red. green, and blue. Colors can be added together, multiplied by

numeric constants or used in mediation expressions. For example:

O.3black + 0.7white and 0.7[black, white]

are the same shade of gray. Of course red, green, and blue will seldom be used as long as most
PostScript printers can only handle black and white or use halftoning to render shades of gray.

Another important feature of Postscript is the ability to draw dashed lines. This is accessed by

giving a

dashed (picture expression)

clause in a (with list) and using the picture expression to specify the pattern of dashes desired. For

example, the picture

begingroup c l e a r i t ;

draw (0 , 0) . . (6 , 0) ;
draw (l4,O). . (20 ,0) ;

cur r ren tp ic ture endgroup

illustrated in Figure 5a may be used in a dashed clause to specify the dash pattern in Figure 5b,

created by laying copies of Figure 5a end to end.

- -

Fig. 5a: A dash pattern Fig. 5b: A line created five from copies of it

This dash pattern is specified by the Postscript command

[I2 81 6 setdash

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

In general, dashed (picture expression) means that the pattern of dashes is what would be produced

by laying copies of (picture expression) end to end. This ignores features of (picture expression) such

as color and line width since the only purpose is to tell MetaPost what argument to give to Postscript's
setdash operator.

To provide access to Postscript's clip operator, there is a primitive drawing command

clip (picture variable) to (path expression)

and a macro

clipto (path expression)

equivalent to

clip currentpicture to (path expression)

The region affected by the clip command is determined by the usual non-zero winding number rule:

but instead of being filled with black or some other color, the clipping region is treated as a window.
and all parts of the picture falling outside of the window are removed.

3. Possible Extensions
The MetaPost language described in Section 2 is basically a version of METRFONT with raster-oriented

features removed and features added to provide access to Postscript primitives. A heavy reliance
on Knuth's public-domain code for METAFONT should make this project manageable. This section

describes other features that might not be included in the initial version of the language because either

they are difficult to implement or they require a substantial amount of external software.

3.1 TEX Text in Pictures
Section 2.2 described an inf ont operator that could be used to add textual labels to pictures. While

this is fine for simple applications, it makes no provision for mathematical typesetting or even interword
spaces. Thus words need to be positioned individually, and math formulas require piecing together

many characters from different fonts in a complicated fashion.
These difficulties could be avoided by having a preprocessor that reads a MetaPost input file

with TEX commands interspersed, and outputs an identical file with the T@ commands replaced by

sequences of addto commands involving inf ont operations. This would produce an ordinary MetaPost
input file that could then be processed in the usual way.

The preprocessor would work by running the interspersed commands through Tj$ and then extract-

ing the character placement information from the dvi file. To find the picture expression corresponding
to the 7$jK commands

$\displaystyle{\sqrt{3a+b\over ac})$

the preprocessor could use 9$$ to obtain a dvi file containing this equation on a page by itself. The

preprocessor could then scan the dvi file to find the coordinates of each character and each horizontal
or vertical rule on the page. It is then a simple matter for the preprocessor to create an appropriate

MetaPost picture expression. In the above example, this leads to the following picture expression:

def addalso = addto currentpicture also enddef;

begingroup

save currentpicture;

picture currentpicture;

clearit ;

addalso "r" infont "cmex1O" shifted (0,15.96);

fill unitsquare xscaled 29.2 yscaled 0.4 shifted (10,15.96);

addalso "3" infont "cmrlO" shifted (11.2,6.77);

addalso "a" inf ont "cmmi1O1l shifted (l6.2,6.77) ;

addalso "+I1 infont "cmrl0" shifted (23.71,6.77);

addalso "b" infont "cmmil0" shifted (33.71,6.77);

fill unitsquare xscaled 26.8 yscaled 0.4 shifted (11.2,2.61);

TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

addalso "ac" infont "cmmil0" shifted (19.79,-6.86);

currentpicture

endgroup

This MetaPost picture contains all the components of the formula exactly as TEX would typeset

them, except that the horizontal rules have been replaced by calls to the fill macro. If the required

fonts are available, the formula should look as though typeset by w, except that it may be difficult
to ensure that the rounding to pixel units is done according to the rules found in dvitype.

3.2 Pixel Rounding
MetaPost has not been designed to deal with discrete pixels because its Postscript output is continuous
in nature. However. the PostScript interpreter does produce pixel output and it may need help if it is

to do a good job. In order to provide this help, a PostScript program occasionally needs to transform
coordinates into what the PostScript manuals call devzce space to facilitate pixel-oriented rounding

operations.
Techniques for coping with discreteness are discussed in Chapter 24 of The METAFONTbook. Since

many of them are specific to font making, they are most applicable when MetaPost is being used
to create a PostScript font. As Leslie Carr concluded in [2], this seems to be impractical at present

because of the large size of a PostScript font description. However, this problem might be alleviated

by future advances in PostScript interpreters combined with techniques for simplifying the character

descriptions by degrading the outlines slightly.
Regardless of the application, it is worth considering how to implement something like the round

macro from plain.mf. When applied to a pair, the round macro finds the nearest pixel corner. The

following PostScript commands perform the same operation on a coordinate pair at the top of the
operand stack:

itransform round exch round exch transform

The problem in using this is that MetaPost would not know the value of the pair computed by the

round macro. All it would have would be a string of PostScript commands for computing it. Thus

all subsequent operations involving the pair would also have be maintained as sequences of Postscript

commands. For instance. the result of

might be the following PostScript commands:

3 2 itransform round exch round exch transform

1 add exch 4 add exch

Note that the coordinates (3,2) and (4 , l) are in units of points, not pixels.

Not all operations on a pair such as round(3,2) can easily be done in PostScript. For example, in

a path expression such as

round(3,2){up). . (7,3)

MetaPost computes control points according to the rules on pages 130-132 of The METAFONTbook.

Rather than attempt to do this with PostScript commands, it seems more natural to start by converting

into

(3.2) . . controls (3.4.2122) and (5.95897,4.95193) . . (7.3)

as usual. It is then a relatively simple matter to give Postscript commands that compute control

points near (3,4.2122) and (5.95897,4.95193) based on the assumption that the curve begins at the

rounded version of (3,2).

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 511

Generalizing from this example, it would be nice to be able to specify a PostScript procedure and

a MetaPost macro that computes an approximation. For the above example, the PostScript procedure
is

i t r ans form round excharound exch t ransform

and the MetaPost macro is

def round primary p = p enddef

Although in this case, the macro operates on a pair and returns a pair, the basic idea works for other
combinations of types. The only requirement is that the arguments and results be of types that can be

manipulated in PostScript. There is no formal requirement about how well the result of the MetaPost

macro should approximate the result of the PostScript procedure. It just needs to be good enough to

achieve reasonable results when used for things like path construction. Anything comparable to the

half-pixel accuracy in the above example should be sufficient.

It remains to be tested in practice, but it sLems very promising to be able to delay some com-

putations until the Postscript interpreter is run on MetaPost's output. It wauld certainly be very

flexible and would impose no hard and fast limitations on the techniques to be used to cope with the
discreteness of the pixel grid.

4. Conclusion
We have outlined a language based on METAFONT with modifications to make it more suited to
PostScript output. Except for the extensions discussed in Section 3, the implementation should be a

relatively straightforward modification to the public domain code for METAFONT.

The language is designed for generating graphics such as figures for technical papers, but it could be
used for almost any application involving graphics and the generation of PostScript programs. Because

the language is so much like METAFONT at the user level, it is tempting to consider taking existing
METAFONT programs for a typeface such as Computer Modern and rewriting some of the macros so

that the programs could be processed by MetaPost.

Bibliography

[1] Adobe Systems Incorporated. Postscript Language Reference Manual. Reading, Mass.: Addison-

Wesley, 1986.

[2] Carr, Leslie. "Of METAFONT and ~ o s t ~ c r i ~ t . " l W n i q u e s 5:141-152. 1988.

[3] Kernighan, Brian W. "PIC-A Language for Typesetting Graphics." Software Practzce and Expe-
rzence 12(1):1-21, 1982.

[4] Kernighan, Brian W. PIC-A Graphics Language for Typesetting. Computing Science Technical

Report 116. Murray Hill, New Jersey: AT&T Bell Laboratories, 1984.

[5] Knuth, Donald E. The METAFONTbook. Reading, Mass.: Addison- Wesley, 1984.

[6] Knuth, Donald E. METAFONT: The Program. Computers and Typesetting, Vol. D. Reading, Mass.:

Addison-Wesley, 1986.

[7] Yanai, Shimon. Environment for Translating METAFONT to PostScript. M.Sc. Thesis. Faculty of

Computer Science, Technion: Haifa, Israel, 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Migration from Computer Modern Fonts to Times Fonts

R.E. YOUNGEN, W.B. WOOLF, AND D.C. LATTERNER

American Mathematical Society

201 Charles St.
Providence, RI 02904

reyQmath.ams.com

Mathematical Reviews
P.O. Box 8604

Ann Arbor, MI 48107-8604
wbw@math. ams .com

dcl@math.ams.com

ABSTRACT

After several years of publishing in Tj$ and (Almost-)Computer Modern, the Amer-
ican Mathematical Society has switched to and the Autologic Times family of fonts.

This paper discusses the steps taken by the AMS to access Autologic's proprietary type-
faces through 2)$ and some of the difficulties encountered, particularly the problems as-

sociated with spacing in the math italic font. Although the procedures described are spe-

cific to the Autologic fonts, the principles outlined are applicable to other non-METRFONT
fonts on other typesetters or printers.

1. Introduction and Background
In the early 1980s, the American Mathematical Society (AMS) and Mathematical Reviews (MR)

(a division of the AMS which produces the secondary journal Mathematical Reviews1) were using
a proprietary computer-driven typesetting system called ST1 (from Science Typographers Inc.) to

typeset their publications, utilizing the Times fonts available on STI's Harris Fototronic typesetters.

Around 1983, the AMS began using TJ$ and the Almost-Computer Modern (AM) typeface for a small
portion of regular journal production. For several years papers typeset with m in AM fonts and

those typeset with ST1 were incorporated into the same journals. This was true of the MR journal
and Current Mathematical Publzcations (CMP) - MR's early awareness journal - as well: several of

the indexes to these publications were set in TJ$ while the main body was set in STI.

From 1983 to 1987, the percentage of papers typeset in a t the AMS gradually increased, to

the point that by mid-1987, ST1 had been completely phased out and 100% of the AMS's books and

journals were being typeset in Tj$. Starting with the January 1985 issue of MR and Vol. 17, no. 1

of CMP, MR switched to TEX exclusively. A history of MR and the reasons for that switch to TFJ
(including the resulting efficiencies in multiple output formats from the common database and in user

control of the journal design) are described in another paper presented to this conferen~e.~

Although the AMS was a strong supporter of the TJ$ project from its inception, a major drawback
in using TEX in production was the severe limitation on choice of typeface (only AM, and later CM.

were available). There remained in the minds of several managers of MR and the AMS the concern that

the AM fonts did not provide quite the right match of aesthetic qualities with efficient space utilization.

A secondary journal carries abstracts and/or reviews (with bibliographic information) of articles published in primary

journals and collections, as well as of monographs.

"'TpJ at Mathematzcal Reviews" by Latterner and Woolf.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 513

This concern (coupled perhaps with a bit of nostalgia) became the impetus for the eventual return to
publishing in Times.

2. The Switch Back to Times
When the AMS purchased an Autologic APS-p5 typesetting machine in the spring of 1987, the entire
family of Autologic Times fonts was acquired. Negotiations with Autologic led to an agreement allowing

the AMS to obtain character widths for the Autologic fonts, as well as raster versions of the fonts, from

which low-resolution fonts could be created.3 Using the character width information, tfm files could be
created for use with TEX, and the low-resolution versions of the Autologic fonts could be converted to

a standard METAFONT output format (pxl format) for use on the laser proofing devices in the AMS

headquarters office in Providence, Rhode Island, and the MR office in Ann Arbor, Michigan.

Coincidentally, MR was reviewing the typogr~phic design of the MR journal, with Richard F.
Southall serving as a consultant. Fortunately, Southall was at home in both the W/METAFONT
environment and in the typographic considerations implicit in adapting the Autologic Times family to

being driven by TEX. The team assembled for the conversion was led by Southall; major contributions

were made by Ron Whitney of the AMS Providence staff, Dan Latterner of the Ann Arbor (MR) office,

and (later) by Ralph Youngen of the Providence staff.

3. Creation of Times Text Fonts
A number of problems had to be overcome in order to create Autologic Times fonts for use with 'I)$:
(1) Autologic fonts did not contain all the characters found in their Computer Modern counterparts;

(2) characters within an Autologic font were ordered differently than TjjX fonts; (3) the Autologic fonts

needed to be "tuned" for use with (i.e., kerning information had to be provided to w) .

To overcome these problems, a utility called APStoPXL, written by ArborText of Ann Arbor, Michi-

gan was used. APStoPXL allows for the creation of "composite" or "virtual" fonts, which are fonts that
are composed of characters from several different fonts. This composite font scheme solved each of

the problems listed above by: (1) allowing characters to be imported from other Autologic fonts or

Computer Modern fonts; (2) providing a method to establish the correct correspondence between Au-
tologic character positions and l)$ character positions; and (3) providing a mechanism for kerning

the Autologic fonts when used with TJ$.
APStoPXL calls for the creation of a map file for each composite font. Each line in the map file

contains information for a single character in the composite font. If a character is to be imported

from another font, the name of the px l file containing that character is given. The composite fonts

created a t the AMS were primarily composed of characters from one of the Autologic Times fonts,

but characters were also imported from other fonts (Autologic and Computer Modern) to fill in the

gaps. Autologic Times Roman, for example, does not contain the uppercase Greek characters found

in cmrl0, so these had to be imported from the Autologic Times Greek. Other characters, such as

some of the accents and the dotless j, were brought in from cmrl0. Ordering of the characters in

the font was accomplished simply by listing in the map file the Autologic or imported characters in

the order expected by w . Fine-tuning the inter-character spacing for the Autologic Times fonts
required major efforts. The procedure used was essentially an iterative one in which the left and right

sidebearings (the amount of space to the left and right edges of the "bounding box" for a character)
were increased a small amount at a time and tested with all character combinations until suitable values

were found. Although this process was somewhat automated, it was nonetheless time-consuming, since

every combination of characters had to be viewed by human eyes.

APStoPXL takes as input the map file for the font and an Autologic Edscan-format file (which
contains raster images of the Autologic fonts) and produces a standard METAFONT pxl file, as well as

a p l file and an xpl file. The pxl file can be converted to a gf or pk format file for use with a standard
laser proofing device. The p l (Property List) file can be run through the standard 'I@ utility PLtoTF

to produce a tfm file. Finally, the xpl file (extended Property List) is run through another ArborText

Unfortunately, to the best of our knowledge, the AMS is the only site that has been able t o obtain raster versions
of Autologic fonts.

514 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

utility called PLFONT to produce an a m f file (Autologic Metrics File). The a m f file is similar to a t f m file

except that it contains device-specific information for every character in the font. This a m f file is read

by the device driver, DVIAPS; its purpose is to assign TEX character calls in the dvi file to the correct

font and character position on the Autologic typesetter. Figure 1 illustrates this entire procedure.

The key to this system lies in the differences between the p l file and the xpl file. A character entry
in the x p l file may contain any of the following device-specific parameters which control exactly how

that character is to be typeset:

Parameter

DEVWD

DEVXOFFSET
DEVYOFFSET

DEVFONT

DEVCHAR
DEVXMAG

DEVYMAG

Meaning

Specifies the width of the character.

Adjusts the horizontal placement of the character.
Adjusts the vertical placement of the character.

Specifies the font in which the character is to be found.

Specifies the character position in the DEVFONT.
Specifies the amount to magnify the character horizontally.

Specifies the amount to magnify the character vertically.

The following excerpts from the p l file and the xpl file for the AMS's Autologic Times Math Italic
font show the addition of device-specific information to the xpl file:

(CHARACTER 0 17

(CHARWD R 0.46273)

(CHARHT R 0.495769)

(CHARDP R 0.021397)

(CHARIC R 0.075)

(COMMENT

(KRN 0 177 R 0.055555)

1
1

(CHARACTER 0 20

(CHARWD R 0.5)

(CHARHT R 0.745255)

(CHARDP R 0.18)

(CHARIC R 0.055)

(COMMENT

(KRN 0 177 R 0.083333)

p l sample

(CHARACTER 0 17

(CHARWD R 0.4627304)

(CHARHT R 0.4957685)

(CHARDP R 0.0213966)

(CHARIC R 0.0749998)

(COMMENT

(KRN 0 177 R 0.0555553)

1
(DEVFONT D 28801)

(DEVCHAR D 16)

(DEVWD R 0.4674005)

(DEVXMAG R 1.1400003)

(DEVYMAG R 1.1400003)

1
(CHARACTER 0 20

(CHARWD R 0 .5)

(CHARHT R 0.7452554)

(CHARDP R 0.1800003)

(CHARIC R 0.0550003)

(COMMENT

(KRN 0 177 R 0.0833330)

(DEVFONT D 14201)

(DEVCHAR D 32)

(DEVWD R 0.5100002)

(DEVXOFFSET R -0.0100002)

x p l sample

METAFONT font designers have the ability to adjust the placement of each character within the

t f m boundary. When typesetting with a manufacturer's native fonts, however, the placement of the
character within its bounding box is not normally adjustable. However, using the parameters described

above it is possible to attain complete control over how characters are to be typeset in relation to one
another.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 515

PLtoTF r!l
file

file Q
PLFONT Q

file r;
APS (ICL)

file

PXtoPK rl
file L

Figure 1: Overview of creation of Autologic fonts for use with Tj-$

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Creation of a Times Math Italic Font
The AMS and MR had two options for a math italic font to use with the Autologic Times text fonts:
simply use the Computer Modern math italic (cmrnilO) or create a new Times math italic. Because of

the significant differences in the style and weights of CM and Autologic Times, as well as the fact that

Times had a greater x-height than CM, the creation of a Times math italic font was essential. At the
same time, however, the difficulties of creating a math italic font were clear. The proper tests to run

and parameters to change in the process of creating a math italic font were not as straightforward as

they were for the creation of the text fonts, since w follows a different set of rules in math mode than

it does in text mode. Italic correction, in particular, plays a very different role in a math italic font,

since italic correction is added between adjacent characters from a math italic font.4 In addition, the

interaction of a math italic font with characters from the variety of different fonts that w processes

in math mode (such as symbol, extension, and roman) has to be taken into account.

4.1 Spacing of Adjacent Math Italic Characters
To illustrate the difficulties involved, suppose that the spacing of the math italic character combination

xy needs to be increased. There are four different ways that this could be accomplished: (1) increase
the right sidebearing on the x, (2) increase the left sidebearing on the y, (3) insert a kern into the

ligtable for the xy pair, or (4) increase the italic correction on the x. Note that all but option (4)

would also apply for normal text fonts.
To determine which of these options to use, it is necessary first to decide whether the space should

be added to the x or the y on a global basis, or whether this particular character combination is a

special case that should be handled with a kern. For example, if other character combinations with
the x also look too close, then space should probably be added to the right of the x. However, either

option (1) or option (4) above would accomplish this in a math italic font.
To choose between these two options, it is necessary to look at how superscripts interact with the

x character. This is because italic correction is added before a superscript is placed on a math italic
character in math mode. If superscript placement on the whole looks good with x , then option (1) -

increasing the right sidebearing on the x - ought to be done. If, however, superscripts are also too

tight, then using option (4) - increasing the italic correction on the x - would solve both problems.

4.2 Spacing between a Math Italic Character and a Character from Another Font
Aside from math italic, TEX frequently uses characters from the symbol fonts and the math extension
fonts when constructing math formulas. When the AMS and MR decided to create a Times math

italic font, it was also decided that the symbol font cmsy and the math extension font cmex would be
used in conjunction with the Times math italic. While the difference in x-height and weight between

the Computer Modern characters from these two fonts and those of the Autologic Times fonts was still

apparent, it was not considered to be as much a problem, since the symbol and extension characters
are already quite different from text characters. In practical terms, there was actually no other choice:

Autologic did not provide a set of math characters that covered the range of mathematical characters
required to typeset mathematics. The decision to use cmsy and cmex, however, meant that if spacing

problems arose between 3 Times math italic character and a character from one of these fonts, the

Times math italic character had to be changed, and not the cm character.

Since kerns cannot be used between characters of different fonts, this means that the only options
available are to change either the right sidebearing or the italic correction of the math italic c h a r a ~ t e r . ~

Figure 2 shows a comparison of mathematics typeset using all Computer Modern fonts, versus

mathematics typeset with the Computer Modern symbol and extension fonts and Times math italic.

Note that if a kern is also specified between two characters in a math italic font, then both the kern and the italic

correction are added between adjacent characters.

Italic correction will still work since it is also applied when switches from math italic to another font.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 517

Figure 2a: Math output with CM fonts Figure 2b: Math output with Times fonts

4.3 Other considerations
The inherent problem in adjusting the spacing of a math italic font is that there is an order of magnitude

of difference between the number of visual spacings to adjust and the number of parameters available
to make these adjustments. Every character can potentially be typeset against every other character

either as adjacent characters, or with one or the other in the superscript or subscript position. This

leads to a large number of possible character combinations with relatively few parameters to make the

necessary adjustments.

As a result, changes to a single parameter cause visual changes to a great number of spacings, as

in the case where adjusting the italic correction on the x to obtain more spacing between the xy pair
would also adjust the space between every character combination using x on the left and all superscripts

typeset on the x. Therefore, a constant game of compromise must be employed when adjusting any of
the parameters.

The tendency may be to use kerns too frequently to solve specific spacing problems. This approach

is valid, except for the fact that each font in 'IJjX can only have up to 255 LIG and KRN commands
in the l i g tab l e . Thus, careful decisions must be made to classify every spacing problem as either a

"global" problem with a single character, or a "specific" problem with a pair of characters.

5. Conclusion
While the difficulties of training to set non-METFIFONT fonts are great (though not insurmount-

able), the results are certainly worth the effort. Other Autologic fonts that were purchased by the AMS
have since been made available to 'IJjX, and the procedure is becoming easier with more experience.

The appearance of many of the AMS books and journals and of MR is, in the opinion of many involved,

greatly improved. The purely aesthetic question of which typeface is more attractive is too subjective
for quantitative evaluation, and, in the case of the MR journal, separating the contribution of macro

design changes from those of changes in typeface is difficult. The reader is invited to make her/his own

choices: Figure 3 displays the same MR review set in Almost-Computer Modern using the old design
format and in Autologic Times using the new design format.

6. Update
During the TUG conference sometime after this paper had been presented, Prof. Knuth endorsed the
use of the xpl/arnf system, and challenged implementors of dvi drivers to utilize the design. David

Rodgers, president of ArborText, also announced that he would make the specifications of the xpl and
amf format available to the 'IJjX community in a future issue of TUGboat.

TUGboat, Volume 10 (1989), No. 4-- 1989 Conference Proceedings

60J Markov processes

Knuth, D. E. (1-STF-C) 86c:60112
An algorithm for Brownian zeroes. (German
summary)
Computing 33 (1984), no. 1, 89-94.

Let B(t) be the Brownian motion on [O,1] starting at a # 0, and
B(") (t) its polygonal approximation, formed by setting B(") (t) =
B(t) for t = i/2", i = 0,1, . . . , 2n, and interpolating linearly else-
where. This paper is concerned with an efficient algorithm for
simulating the number and positions of the zero crossings of B(n),
without necessarily simulating B(") itself. Briefly, the idea is as
follows: divide [O,l] into two equal parts, and "decide", with the
appropriate hitting probability, whether B might have a zero cross-
ing in either. An empty interval is ignored. If there is a zero
crossing, divide that interval into two equal parts, and proceed as
before, until the required level of resolution is reached. Simulation
of B at each interval end point that enters into this procedure is
required. The algorithm requires 0(2"f2) simulations of Gauss-
ian variates, as opposed to O(2") required by the obvious direct
method of first simulating all of ~ (" 1 . Robert J. Adler (Haifa)

Figure 3a: Sample review from Mathematical Reviews set in Almost Computer Modern

605 Markov processes

86c:60112 60565 6 5 ~ 1 0

Knuth, D. E. I I-STC-C)

An algorithm for Brownian zeroes. (German summary)

Computing 33 (1984), no. 1, 89-94.

Let B(t) be the Brownian motion on [0, 11 starting at a # 0, and
B(")(t) its polygonal approximation, formed by setting ~ (") (t) =

B(t) for t = i / 2 " , i = 0, 1,. . . ,2", and interpolating linearly else-
where. This paper is concerned with an efficient algorithm for
simulating the number and positions of the zero crossings of B(n),
without necessarily simulating B(") itself. Briefly, the idea is as
follows: divide [0, 11 into two equal parts, and "decide", with the
appropriate hitting probability, whether B might have a zero cross-
ing in either. An empty interval is ignored. If there is a zero
crossing, divide that interval into two equal parts, and proceed as
before, until the required level of resolution is reached. Simula-
tion of B at each interval end point that enters into this procedure
is required. The algorithm requires 0(2"12) simulations of Gaus-
sian variates, as opposed to O(2") required by the obvious direct
method of first simulating all of ~ (" 1 . Robert J. Adler (Haifa)

Figure 3b: Sample review from Mathematical Reviews set in Autologic Times

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 519

TEX Users Group
Stanford University, August 11-14, 1985

Terman Engineering Center Auditorium

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Fine Typesetting with TjjX Using Native Autologic Fonts

Menil Foundation
1519 Branard Street
Houston, TX 77006
accQrice.edu

ABSTRACT

T h e Image of t h e Black in W e s t e r n Art: Volume 4 , Parts 1 and 2, by Hugh Honour,
plus its companion French translation L ' l m a g e du n o i r duns l'art occidental, t . IV (in
two parts) were set with TJ$, and represent 1,200 final pages of high-quality typesetting
and fine book design. These books are the latest in a series published by the Menil
Foundation as part of an ongoing 30-year research and publishing project. Previously
published volumes in the series dictated conformity to an existing design and the classic
Monotype Baskerville fontography.

1. Introduction

For almost thirty years Menil Foundation has been conducting and publishing research on the
representations of black Africans and Afro-Americans in Western art. The enclosed brochure
gives a brief description of our publications and the scope of our efforts.

So reads one of the Menil Foundation Black Image Project introductory letters, referring to a monu-
mental publication series: T h e Image of t h e Black in W e s t e r n Art.

Economical and timely publishing of this research was the driving force behind the decision to
adopt to typeset the most recent volume in this series.

Volume 4 was set at TJ$Source in Houston. Texas in running galleys to the specifications of
a designer in Switzerland using TJ$ and output in Autologic Baskerville I1 on an Autologic APS
Micro5. Accuracy and economy were key factors in the decision to have typesetting for this project
controlled by the editorial offices in Houston, where the two editors using emacs directly coded the
manuscript in TEX running on two Sun-3 workstations.

Economy was realized by producing a minimum number of silver film galleys during the course
of the project. Production of inexpensive but conformant laser galleys became essential. Crucial to
this economy and visual conformity was the ability to emulate the native phototypesetter font family
with the laser fonts. During the design phases, laser proof-galleys acceptable to the designer were
produced using special emulation features in a dvi-to-Postscript convertor designed by Stephan von
Bechtolsheim. Toget her with its companion utilities, this dvi2ps convertor /driver allows emulation of
any native typesetter font with any Postscript outline or pixel font.

This paper discusses this process, some of the problems encountered and their solutions, and some
lessons learned: the results are available for all to see.

2. W ' s Role
w , " a new typesetting system intended for the creation of beautiful books" (Knuth 1984:~) could
provide the necessary sophistication for high-quality work that is expected in the Foundation's pub-
lications. Examples of W ' s finesse and facility at addressing complicated typesetting problems are
well-known in the world of technical typesetting. However, until recently the only fonts available for
use with TJ$ were those derived from METRFONT descriptions. While for some purposes this presents
little problem for a publisher, it often imposes restrictions unacceptable to the graphic designer. In

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 521

classical typesetting environments, there are literally thousands of fonts available. A general solution
to fine typesetting using rn must rationally address the requirements of all designers. Locally, except
for documentation, it is unlikely that we would ever use Computer Modern for any publication.

3. Fine Fontography, '&X, and the Graphic Designer
A fine book is more than type, graphics, and photos; it is a pleasing, coherent combination of these
elements. The graphic designer is responsible for this coherency and beauty. The graphic designer has
been around longer than the typesetting process and it sometimes seems that his main objective is to
make a job less profitable for the typesetter by demanding what is often called quality typography. It
is the designer's job to "direct" the typesetter to produce his typeset output in a way that will make
the finished product, usually in print, fulfill its purpose. The ultimate purpose of the work may be
visual attractiveness and readability, or it may have other, multiple goals.

4. Image of the Black in Western Art: A Case Study

4.1 Production Environment
The first books in The Image of the Black series were prepared and printed in Europe on second-
generation (50 lines-per-minute) phototypesetting equipment (Monotype). The most recent volumes
were prepared in 'TEX on Sun workstations and proofed on Apple Laserwriter Plus and Apple Laser-
Writer I1 NTX laser printers. The final galleys were output on an Autologic Micro5 CRT (1,000 lpm)
output device located at WSource 's plant a few miles from the Foundation's facilities. The dvi
files were transferred to PC diskettes or tele-communicated to a PC running the TextSet (ArborText)
DVIAPS driver.

4.2 Font Matching
The overall design parameters were driven by the previous volumes in the series. The new typography
needed to be consistent with the preexisting type. Volumes 1 and 2 had been set in Europe using
a Monotype Baskerville face. To achieve the closest match many samples were required. Having an
output device that is capable of producing type output in tenths of a point (10.1, 10.2, etc.) made
it possible to find a "look," or appearance, that visually matched the weight and size of the previous
volumes.

One of the f i s t problems encountered was the classic difference between manufacturers: the up-
percase alphabet and its dimensional relationship to the lowercase alphabet. If the paragraph was set
to match capital height, then the text ran too long and if it was reset to match the lowercase alphabet,
the "color" of the paragraph (the visual appearance of a page or paragraph) was undesirable. "Good
color" means there is nothing about the preparation of the page that detracts from one's original ob-
jective: to read and retain the information on the page. "Bad color" results in a lower comprehension
and retention. Words too close together or too far apart (especially a combination of both in the same
paragraph), too much or too little leading, the presence of "rivers" (wordspaces that make vertical,
white gullies through a page of print), all produce "bad color."

The ultimate solution was to define the range of point sizes for the copy to be set in (10.8 through
11.4), then set the paragraph in all possible point sizes (tenths of a point increments) and with different
leading values. The results were then compared, on an individual basis, with the paragraph from
the published books. The result was a choice that allowed the new volumes to match as closely as
possible the previous volumes. The magnification function available in 'QjX lent itself well to solving
a problem which arose late in the design phase. The original manuscript was in English, then the
French translation was produced from it. French tends to run longer for the same thought. Since
both language versions were to use the same mechanicals, the equivalent running length of the typeset
sections became a critical factor. Through more laser type and photo galley tests it was determined
that if a global magnification of 985 (i.e., a 1.5% reduction) was applied to the French chapter text,
the overall effect would not be annoying and it would, on average, act to resynchronize the English and
French mechanicals. After numerous tests and conversations the production staff agreed upon some
basic font calls for the structural elements of the book.

522 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4.3 Laser Proofing: Font Emulation
The cost of typesetting a book depends on the number of galleys to be produced and on the number of
changes required before the final mechanical boards are pasted up. If preliminary silver galleys can be
kept to a minimum and laser proof galleys utilized for the design and editorial stages, then significant
cost savings are possible. Typically laser proofs cost a tenth to a twentieth of equivalent film galleys.
If this approach was to be successful, the laser proofs would need to mimic the final galleys as closely
as possible. These laser galleys would be all that the author, editors, and designer would have to work
with until the final stages of paste-up. Acceptable representation of the Autologic font face at the laser
stage would be critical.

4.4 Laser Resolution Pixel Representation of Autologic Fonts
One solution to laser proof galleys is to produce pixel representations of the typesetter proprietary
font outlines in .pxl format for downloading to the Laserwriter. For many reasons, not all related
to technical considerations, this was not possible within the cost and time constraints imposed by the
production schedule.

4.5 PostScript Laser Fonts
A more interesting and general solution was to substitute PostScript outline fonts for the proprietary
fonts during laser proofing. In brief, this process derives width information from the proprietary font
to produce a set of standard . tfm files for the font. This facility is included in the ArborText dviaps
software package. The resultant . tfm files are loaded into the local font path environment. Next
in the installation procedure, these . tfms are used to produce a corresponding .pdr file which includes
the font mapping information and width values. At the time of dvi-to-Postscript conversion this .pdr

file is referenced by the convertor to produce the font width vector which acts to impose the Autologic
native widths on the Postscript outlines.1 A major practical advantage of this method over that of
pixel representation is the freedom offered by the scalable nature of Postscript outline fonts. During
the "color" trial galley stages this greatly facilitates the easy changes of font sizes which would not be
possible with pixel representation where each new trial size would need to be generated and stored.

5. Proof of the Pudding
Examples of both laser proofs and tear sheets are included in the Appendix. Sample 1 and Sample 2
are equivalent chapter pages (in both laser proof and tear sheet form) from the English and fiench
publicatons. The endnotes shown in sample 3 and sample 4 illustrate the extremely tight setting which
had to be achieved.

6. Acknowledgements
These are all books which are success stories partly because of the facilities developed over the last
three years within the Menil Foundation publications arm. Much of this success is due to the talents
and patience of highly skilled professionals in the fields of book design, fine typography, and computer
science.

Specifically, the designer of record for The Image of the Black series, Hanspeter Schmidt, oversaw
the production of a truly beautiful set of volumes. Steve Bencze, proprietor of WSource , provided
much more than the output of the final galleys. His knowledge of fontography and classical typesetting,
as well as his exemplary patience during the type-matching trials, were the technical basis for the
success.

None of this would have been possible without the talents and generosity of Donald Knuth and
the TEX community. Finally, the publications program owes much of its success to the talents and
efforts of Stephan von Bechtolsheim for the development of the dvi-to-Postscript convertor software.
Without the font emulation facilities incorporated into this convertor, utilization of arbitrary fonts
would not have been possible.

For full appreciation of the font emulation processes one needs to refer to Bechtolsheim's W P S manual and

installation document, which is a very complete description of the system and currently runs to more than a hundred

pages with examples.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 523

Ultimately responsibility for quality publications rests with management decisions. In the case
of the Menil Foundation and Black Image Project, many far-reaching decisions had to be formulated
before actual results could be demonstrated. It is to their credit that this project took the direction
that it did and that the final books represent high levels of quality in all aspects.

Bibliography

1. Technical reference titles used in the process described in the paper:

Bechtolsheim, Stephan v. Another Look at m, West Lafayette, IN (self-published), 1986, 1987,
1988.

-. i n Practice. Heidelberg: Springer-Verlag. Forthcoming.

---. Documentation for the ~V~-~O-POSTSCRIPT Convertor, 1986, 1987, 1988. Final version in-
cluded in the current W P S distribution, available from Stephan von Bechtolsheim.

Knuth, Donald E. The m b o o k . Reading, MA: Addison-Wesley, 1984.

2. Titles produced using the process and techniques described in the paper [technical colophon infor-
mation pertaining to volume in square brackets]:

Barnes, Susan J. The Rothko Chapel, A n Act of Faith. Houston: Rotbko Chapel, 1989, 128pp.
[Designer: Don Quaintance; font: Autologic Galliard.]

Camfield, William. Marcel Duchamp Fountain. Houston: The Menil Collection and Houston Fine Art
Press, 1989, 184pp.
[Editor, W compositor: John Kaiser; Designer, hands-on m e r : Don Quaintance; font: Auto-
logic Caslon.]

Davezac, Bertrand. Spirituality i n the Christian East, Greek, Slavic, and Russian Icons from The
Menil Collection. Houston: The Menil Collection, 1989, 134pp.
[Designer, editor, m compositor, John Kaiser; font, Adobe Palatino and Greek pixel fonts de-
rived from Silvio Levy's Greek METAFONT descriptions.]

Guidieri, Remo, F. Pellizzi, and S.J. Tambiah. Ethnicities and Nations: Processes of Interethnic Re-
lations in Latzn America, Southeast Asia, and the Pacific. Houston: The Rothko Chapel, 1988,
408pp.
[Designer: Harris Rosenstein; 'I)$ compositor, Geraldine Aramanda; font: Autologic Times New
Roman.]

Honour, Hugh. The Image of the Black in Western Ar t , Volume 4, Parts 1 and 2. Cambridge, MA:
Harvard University Press, 1989.
[Designer: Hanspeter Schmidt; font: Autologic Baskerville 11.1

Honour, Hugh. L71mage du noir dans l'art occidental, t. IV [two parts]. Paris: Gallimard, 1989
[Designer: Hanspeter Schmidt; font: Autologic Baskerville 11.1

. Karageorghis, Vassos. Blacks i n Ancient Cypriot Art . Houston: The Menil Collection, 1988, 63pp.
[Designer: Don Quaintance; font: Autologic Times New Roman.]

Printz, Neil and Remo Guidieri. Andy Warhol: Death and Disasters. Houston: The Menil Collection
and Houston Fine Art Press, 1988, 136pp.
[Designer: Marilyn Muller; font: Autologic New Times Roman.]

Wood, Peter and Karen C.C. Dalton. Window Homer's Images of Blacks: The Civil W a r and Recon-
struction Years. Austin: University of Texas Press, 1988, 144pp.
[Designer: Don Quaintance; compositor: Geraldine Aramanda; font: Autologic Bembo.]

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

HONOUR TEXT PROOFS Text:Il/ 3

and perhaps still more the way in which it was painted. And yet, from

an iconographical point of view. this black woman could hardly be more

traditionally conventional, cast in the "narrative" role of a servant and the

pictorial role of a figure whose dark complexion sets off the pallor of a white
woman. There is also a striking contrast between the way in which Manet

depicted Olympia herself with chilly realism suggesting portraiture, and the

black woman with generalized featurescarrying a bouquet of flowers painted

in delicately fresh. one might almost say rococo. colors.
Manet painted Olympia for exhibition in the Salon hoping. no doubt.

that it would help to establish his place in and also mark his development

of the great tradition of figure painting. Hence its very obvious debts to

artists he admired-to Courbet, Delacroix, Ingres. Goya, and especially

Titian. It presented a contrast with and also a kind of critical comment
on the innumerable images of odalisques provocatively flexing their ample

thighs, displayed in practically every European art exhibition of the time.
By depicting sincerely his own vision of the contemporary world, comparing
and contrasting what he saw before him with reminiscencesof artistic images

of similar subjects. Manet was attempting to return to what he considered
essential principles. The scene is set in France in the 1860s. Olympia is, Zola

wrote,

a girl of sixteen. doubtless some model whom Edouard Manet has

quietly copied just as she was. Everyone exclaimed that this nude body

was indecent. That is as it should be since here in the flesh is a girl
whom the artist has put on canvas in her youthful, slightly tarnished

nakedness. When other artists correct nature by painting Venus, they

lie. Manet asked himself why he should lie. Why not tell the truth?He
has introduced us to Olympia, a girl of our own times. whom we have
met in the streets pulling a thin shawl over her narrow shoulders.40

Representing Olympia as a common prostitute. he stripped away the

subterfuges by which images of the naked female body, as an object of

male desire and possible purchase, had been given respectability. I t was well
known that there were black women in Parisian brothels. At the same time

the Goncourt brothers, gathering material for a realist novel. jotted in a
notebook a reminder to "make the prostitute's friend a Negress, study the
type. and incorporate it in the story."" But it was in Orientalist paintings
that white women were most often accompanied by blacks. And Olympia's
attendant might seem to intrude from this fantasy world to present a contrast

between falsity and truth as well as skin color.

FLESH FOR SALE

The Scottish painter David Roberts iound the slave market in Alexandria

"peculiarly disquieting" when he inspected it shortly after arriving in Egypt

in 838. "The slaves were mostly girls; some from Circassia were well dressed;

others, negroes, squatted on the ground with scanty bits of matting thrown

round them. and in a sun that would have killed a European" he told his
daughter. "It was altogether a sickening sight. and I left it proud that 1

and perhaps atill more the way in whirh it was painted. And yet, from
an iconographical point of view, this black woman could hardly be more
traditionally conventional, cast in the "narrative" role of a servant and the

pictorial role of a figure whose dark complexion sets off the pallor of a white

woman. There is also a striking contrast between the way in which Manet
depicted Olympia herself with chilly realism suggesting portraiture, and the

black woman w ~ t h generalized features carrying a bouquet of flowers painted

in delicately tresh, one might almost say rococo, colors.
Manet painted Olympia for exhibirion in the Salon hoping, no doubt,

that it would help to establish his place in and also mark his development

of the great tradition of figure painting. Hence its very obvious debts to
artists he admired-to Courbet, Delacroix, Ingres, Goya, and especially

Titian. It presented a contrast with and also a kind of critical comment
on the innumerable images of odalisques provocatively flexing their ample

thighs, displayed in practically every European art exhibition of the time.
Ry depicting sincerely his own vision of the contelnporary world, comparing
and contrasting what he saw before him with reminiscences of artistic images

of similar subjects, Manet was attempting to return to what he considered

essential princples. The scene is set in France in the 1860s. Olympia is. Zola
wrote,

a girl of sixteen, doubtless some model whom Edouard Manet has

quletly copied just as she was. Everyone exclaimed that this nude body
was indecent. That is as it should be since here in the flesh is a girl

whom the artist has put on canvas in her youthful, slightly tarnished

nakedness. When other artists correct nature by painting Venus, they

lie. Manet asked himself why he should he. Why not tell the truth? He
has introduced us to Olympia, a girl of our own times, whom we have

met in the streets pulling a thin shawl over her narrow shoulders.40

Representing Olympia as a common prostitute, he stripped away the

subterfuges by which images of the naked female body, as an ob,ject of
male desire and possible purchase, had been given respectability. It was well

known that there were black women in Parislan brothels. At the same time

the Goncourt brothers, gathering material for a realist novel, jotted in a
notebook a reminder to "make the prosritute's friend a Negress, study the
type, and incorporate it in the story."41 Rut it was in Orientalist paintings
that white women were most often accompanied by blacks. And Olympia's
atrendant might seem to intrude from this fantasy world to present a contrast
between falsity and truth as well as skin color.

FLESH FOR S A L L

The Scottish painter David Roberts found the slave market in Alexandria
"peculiarly disquieting" when he inspected it shortly after arriving in Egypt
in 1838. ".l'he slaves were mostly girls; some from Circassia were well dressed;

others, negroes, squatted on the ground with scanty bits of matting thrown
round them, and in a sun that would have killed a European" he told his

daughter. "It was altogether a sickening sight, and 1 left it proud that 1

HONOUR TEXT PROOFS French Part 2 Chapter3

f r a n~a i s conservateur par son sujet - une prostitute - el plns encore pent-

&re par son extcution. Pourtant, au point de vue iconographique. elle est

aussi conventionnelle que possible dans son r&le una r r a t i f ~ de servante et en

tan1 qu'tltment pictural destind par son physique B faire ressortir la pPleur

de la femme hlanche. Le contraste est frappant aussi, dans le traitement des

deux figures. entre le froid rtalisme dDlympia, qui fait penser 1 un portrait.

et la hanalitd des traits de la femme noire. portant un bouquet de fleurs aux

couleurs ddlicates. presque rococo.

Manet avait peint Olynpiapour I'exposer au Salon en esptrant tvidemment

qu'elle h i permettrait de prendre place dansle grand art, tout en y imprimant

sa marque. D'od une rtftrence manifeste aux artistes qu'il admirait. Courbet.

Delacroix. Ingres, Goya e t plns encore Titien. Olympia se difftrencie des

innomhrables odalisques anx lonrdes cuisses provocantes qu'on pouvait voir

pratiquement dans tontes les expositions europtennes de I'tpoqne et dont

elle constitue en meme temps une sorte de commentaire critique. En trans-

crivant sinc2rement sa propre vision du monde contemporain, en comparant

et en opposant ce qu'il avait devant les yeux avec ses rtminiscences d'ceuvres

sur des sujets semblables. Manet voulait revenir aux principes essentiels selon

h i . La scdne se passe en France. dans les anntes 1860. Pour Zola. Olympia est

uune jeune fille de seize ans, sans doute un moddle qu'Edouard Manet a tran-

quillement copit tel qu'il ttait. Et tout le monde a crid : on a trouvd ce corps

nu indtcent ; cela devait Etre. puisque c'est Id de la chair. une fille que I'artiste

a jette sur la toile dans sa nuditt jeune et dtjd fante. Lorsque nos artistes

nous donnent des Vtnus. ils corrigent la nature. ils mentent. Edouard Manet

s'est demand6 pourquoi mentir. pourquoi ne pas dire la vtritd; il nous a fait

connaitre Olympia, cette fille de nos jours. que vous rencontrez sur les trot-

toirs et qui serre sesmaigrestpaulesdansun mince chPle de laine ddteinte. ~ 4 ' 3

En faisant d'olympia une banale prostitute, il dtpouillait la reprtsentation

du corps ftminin. objet masculin de dtsir et d'amour v6nal tventuellement.

des subterfuges qui avaient permis de lui donner une certaine respectabilitt.

La presence de Noires dans les maisons closes parisiennes ttait notoire. A

la meme tpoque sensiblement, les frdres Goncourt, rassemblant les t l tments

d'un roman rtaliste. notdrent dans un carnet: ufaire de I'amie de la pros-

titute une ndgresse. t tudier le type et I'inttgrer P I'histoire *'I. Mais c'est

surtout dans la peinture orientaliste que I'on trouve rtunies femmes blanches

et noires; et la servante d'olympia semble surgie de ce monde factice pour ap-

porter non seulement le contraste de sa couleur mais aussi celui d'une figure

artificielle, contraire P la vtri t t de I'autre.

LA CHAIR I\ L'ENCAN

Le peintre Qossais David Roberts trouvait le marcht d'esclaves d'Alexandrie

aparticulidrement troublanta quand il le visita peu aprds son arrivte

en Egypte. en 1838: uLes esclaves ttaient pour la plupart des jeunes

filles; quelques-unes. des Circassiennes. ttaient bien vetues; les autres, des

ntgresses, se tenaient accroupies, quelques rares nattes jettes autour d'elles

et sous un soleil qui aurait ru t un Europten n. tcrit-il d sa fille. uC'ttait un

spectacle vraiment rtvoltant que je quittais. fier d'appartenir d un pays qui

avait aboli I'esclavage >aZ. Un peu plus tard, Roberts rencontra le proprittaire

d i m bateau d'esclaves et regretta de uconnahre trop peu de mots arabes

f ran~ais conservateur par son sujet - une prostituee - e t plus encore peut-

&re par son extcution. Pourtant, au point de vue iconographique, elle est

aussi conventionnelle que possible dans son rBle cnarratif .~ d e servante e t en

tant qu'element pictural destine par son physique P faire ressortir la peleur

de la femme blanche. Le contraste esr happant aussi, dans le traitement des

deux figures, entre le froid realisme d'olympia, qui fait penser a un portrait,

et la hanalite des traits de la femme noire, portant un bouquet de Heurs aux

couleurs deticates, presque rococo.

Manet avait peint Olympia pour I'exposer au Salon en esperant kvidemment

qu'elle lui permettrait de prendre place dans le grand art, tout en y imprimant

sa marque. D'ou une reference manifeste aux artistes qu'il admirait, Courbet,

Oelacroix, Ingres, Goya et plus encore Titien. Olympia se differencie des

innombrables odalisques aux lourdes cuisses provocantes qu'on pouvait voir

pratiquement dans toutes les expositions europkennes de I'kpoque et dont

elle constitue en meme temps une sorte de commentaire critique. En trans-

crivant sincPrement sa propre vision du monde contemporain, en comparant

e t en opposant ce qu'il avait devant les yeux avec ses reminiscences d'ceuvres

sur des sujets semblables, Manet voulait revrnir aux principes essentiels selon

h i . La scene se passe en France, dans les annees 1860. Pour Zola, Olympia est

* une jeune fille de selze ans, sans doute un modele qu9Edouard Manet a tran-

quillement copik tel qu'il etait. FS tout le monde a criP: on a trouve ce corps

nu indecent; cela devait ktre, pnisque c'est la de la chair, une fille que I'artiste

a jetee sur la tode dans sa nudite jeune et deja fanee. Lorsque nos artistes

nous donnent des Venus, ils corrigent la nature, ils mentent. Edouard Manet

s'est demande pourquoi mentir, pourquoi ne pas dire la verite ; il nous a fait

connaitre Olympia, cette fille de nos jours, que vous rencontrez sur les trot-

tons et qui serre ses maigres epaules dans un mince chile de laioe deteinte. >>"'

En faisant d'Olympia une banale prostituke, il dkpouillair la representation

du corps ferninin, objet masculin de desir et d'amour venal Cventuellement.

des subterfuges qui avaient permis de lui donner une certame respectabihte.

La presence de Noires dans les maisons closes parisiennea etait notore . A

la mkme Ppoque sensiblement, les freres Goncourt, rassemblant les elements

d'un roman realiste, noti.1-mt dam un carnet: << faire de I'am~e de la pros-

tituee une negresse, etudier le type e t I'integrer P I'histoirenfl. Mais c'est

sui-tout dans la peinture orienraliste que I'on trouve rkunies femmes blanches

et noires; et la servante d'Olymp~a semble surgie de ce monde factice pour

apporter non seulement le contraste de sa couleur mais aussi celui d'une

figure artificielle, contraire a la verite de I'autre.

LA CHAIR A L'ENCAN

Le peintre ecossais David Roberts trouvait le marchi. d'esclaves d'Alexandr~e

aparticuliPrement troublant,> quand i l le visita peu apres son arrive?

en Egypte, en 1838: aLes esclaves etaient pour la plupart des jeunes

filles; quelques-unes, des Circassiennes. etaient bien vC-tues; les autres, des

negresses, se tenaient accroupies, quelques rares nattes jetees autour d'elles

et sous un soleil qui aurait tile un Europeen,,, ecrit-il a sa fille. aC'6tait un

spectacle vra~ment revoltant que je quittais, fier d 'apparten~r a un pays qui

avait aboli I'esclavageo"'. Un peu plus tard, Kob~r t s rencontra le propr~etaire

d'un bateau d'esclaves et regretta de ~connai r re ti-op peu dr mots arabes

Keynote Address

Donald E. Knuth
Computer Science Department
Stanford University
Stanford, CA 94305

Notes on the Errors of T)ijX

At this 10th TUG meeting, my goal is to describe a longish paper that I recently had some fun
writing.l That paper [6] contains a complete listing of the errors I noted down as I was developing
and maintaining the 7&X system during a period of more than 10 years. I've always believed that
one of the best ways to learn is by a process of trial and error; hence I decided that the presentation
of a true-to-life list of errors might be the best way to help other people learn the lessons that my
experiences with have taught me. And I suspected that the people at this conference might be as
interested in this history as anybody is.

Of course no single project can be expected to illuminate all the aspects of software development.
But the error log of TEX seems to provide useful data for understanding the problems of crafting a
medium-size piece of software. It's hard to teach students the concept of "scale" - the enormous
difference between textbook examples and larger systems - but I think that a reasonable appreciation
of the complexity of a medium-size project can be acquired by spending about two hours reading
through a complete log such as the one in 161.

My error log begins with all the corrections made while debugging the fmt version of TFJ, which
was a program consisting of approximately 4,600 statements in an Algol-like language. The log ends
with all the changes I made as rn was becoming a stable system, as rn began to have more than a
million users on more than a hundred varieties of computers. By studying the log you can see all the
stages in the evolution of TEX as new features replaced or extended old ones - except that I did not
record the changes I made when I re-wrote the original program m 7 8 and prepared the final one,
m 8 z 2

Altogether the error log contains 865 entries so far. I've tried to analyze this data and to introduce
some structure by assigning each of the errors to one of 15 categories:

Algorithmic Anomaly
Blunder, Botch
Cleanup for Consistency
Datastructure Debacle
Efficiency Enhancement
Forgotten Function
Generalization, Growth
Interactive Improvement
Language Liability
Mismatch between Modules
Promotion of Portability
Quest for Quality

The preparation of this paper was supported in part by National Science Foundation grant CCR-86-10181.

Those changes were summarized briefly in another publication for early users [l].

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

R Reinforced Robustness
S Surprising Scenario
T Trivial Typo

Categories A, B, D, F, L, M, R, S, T are bugs, which definitely needed to be removed from the code;
categories C, E, G, I, P, Q are enhancements, which improved but were not obligatory. I consider
both bugs and enhancements to be errors, for if I had designed a perfect system in the beginning
I would not have made any of these changes and my error log would have been empty.

The most important lessons I learned can be summarized in the following theses, which my paper
[6] defends and explains in detail:

1. TEX would have been a complete failure if I had merely specified it and not participated fully
in its initial implementation. The process of implementation constantly led me to unanticipated
questions and to new insights about how the original specifications could be improved.

2. would have been much less successful if I had not used it extensively myself. In fact, when
'fEX was new I thought of 100 ways to improve it as I was typesetting 700 pages over a period of
several months, at a nearly constant rate of one enhancement per 7 pages typed.3

3. rn would have been much less successful if I had not put considerable effort into writing a user
manual for it myself. The process of explaining the language gave me views of the system that
I never would have perceived if I had merely designed it, implemented it, and used it.

4. 'fEX would have been much less successful if I had not scrapped the first system and written another
system from scratch, after having the benefit of several years' hindsight.

5. T)$ would have been much less successful if I had not had the voluntary assistance of dozens of
people who regularly gave me feedback on how to improve everything. The network of volunteers
eventually became worldwide, perhaps because I decided that 'fEX should be in the public domain.

6. I recommend that everybody keep an error log such as the one I kept for TEX. The amount of
extra time required is negligible (less than l%) , and the resulting records help us to understand
ourselves and our fallible natures.

7. The methodology of structured programming reduced my debugging time to about 20% of what it
was under my habits of the 60s. Furthermore, structured programming gave me enough confidence
in my code that I did not feel the need to test anything for six months, until the entire system
was in place and ready for testing. Therefore I saved considerable time by not having to do any
prototyping.

8. Although certain features of programming languages can justly be considered harmful, we should
not expect that eliminating such features will eliminate our tendency to err. For example, 12 of
my errors can be ascribed to misuse of goto statements [3]; but that accounts for only 1.4% of the
total, and I also made mistakes when using while, case, if-then-else, etc.

9. 'fEX proved to be highly reliable and portable because it was subjected to a "torture test," which
is quite different from anything a sane user would write but which really tries hard to make the
system fail. We should strive energetically to find faults in our own work, even though it is much
easier to find assurances that things are OK.

My experiences agree well with Peter Naur's hypothesis [7] that programming is "theory building,"
and they strongly support his conclusion that programmers should be accorded high professional status.
But I do not share Naur's unproved assertion that "reestablishing the theory of a program merely
from the documentation is strictly impossible." On the contrary, I believe that improved methods of
documentation (which I have called "literate programming" [4, 21) are able to communicate everything
necessary for the maintenance and modification of programs. I think it's fair to claim that more than
100 people, perhaps more than 1000, now understand the "theory" of the rn program after merely
reading its documentation [5]. For I have seen numerous examples of electronic communications in
which many people have demonstrated such knowledge by making excellent special-purpose extensions
to the existing code and by giving highly appropriate advice to users.

Therefore I now look forward to making further errors in my next project.

On the other hand, the new ideas ceased when I went on to type hundreds of additional pages; 700 was enough!

I got most of the later suggestions from other people, and I was able to appreciate them because of my own experiences.

530 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Bibliography

[I] Beeton, Barbara, ed. ''W and METAFONT: Errata and Changes," (dated 09 September 11,
1983). Distributed with TUGboat 4, 1983.

[2] Bentley, Don. "Programming Pearls." Communications of the ACM 29:364-369, 471-483, 1986.

[3] Knuth, Donald E. "Structured Programming with go to Statements." Computing Surveys 6:261-
301, December 1974. Reprinted with revisions in Current Trends in Programming Methodology,
Raymond T. Yeh, ed., 1:140-194, (Englewood Cliffs, N.J.: Prentice-Hall, 1977); also in Classics
in Software Engineering, Edward Nash Yourdon, ed., pp. 259-321, (New York: Yourdon Press,
1979).

[4] Knuth, Donald E. "Literate Programming." The Computer Journal 27:97-111, 1984.

[5] Knuth, Donald E. 'I)$: The Program. Reading, Mass.: Addison-Wesley, 1986.

[6] Knuth, Donald E. "The Errors of m." Software Practice & Experience 19:607-785, 1989.

[7] Naur, Peter. "Programming as Theory Building." Microprocessing and Microprogramming
15:253-261. 1985.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Users Group
Tufts University, July 20 -23, 1986

P. T. Barnum Auditorium

Of the Computer Scientist,

by the Computer Scientist,

for the Computer Scientist

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
R3T 2N2 Canada
mdoobQuofmcc.bitnet
mdoobQccu.umanitoba.ca

ABSTRACT

Having been in existence for almost ten years, is ?'EX being used by the writer of
mathematics who may have little or no interest in the beautiful programming properties
of 'I$$ and only wants a tool to write papers? What about the use of 'l&X in other
disciplines? Is the structure of the (mark-up) language too complicated for the casual
user? What can be done to help new users adjust to the extra demands of w?

This presentation is meant to motivate some discussion along these lines. In particular,
the lack of appropriate learning aids is addressed. Some of the needs will be presented
using the author's recently written introduction to p la in w (Doob 1989). In particular,
the question of appropriate instructional levels and methods will be discussed.

1. What's the Problem?
We users of m have no doubt of the beauty of our resulting documents. This feeling of beauty is
allowed by the fine control available to the writer of the Q$ input file; this control enables different
writers to produce documents to their own very exacting standards. The combination of the precision
of viewed as a computer program and the aesthetic appeal of the resulting document is certainly
a powerful attraction and part of the excitement of using w. It may come as something of a shock
when 7$$ is met with less than total enthusiasm by others. The claim of this paper1 is that a major
cause of this lack of enthusiasm is the large amount of material that must be absorbed before
may be used for even relatively simple jobs, and that there are insufficient tools available to ease the
new user through this difficult period. If we look at the recent changes in the.T~X world, we can see
why this has become increasingly significant.

One of the interesting developments during the past few years has been increasing variety of
users. Only five years ago it was necessary for users of 7$$ to install it themselves. This involved

sending for a computer tape and having, to some extent, systems-level knowledge of a mainframe
operating system. Users also had to write the device drivers necessary since they were readily available
in prototype only. Until just a few years ago, the primary users of w were principally computer
scientists, their students, and a few other computer literate (or at least computer enthusiastic) users.
TUGboat, the journal of the Users Group (TUG), consisted almost entirely of technical articles
devoted to T)i$ implementation. The use of Tji$ by mathematicians was exceptional. Occasionally
a mathematical preprint would be prepared using Tji$, but not much more; AMS-Tji$ was still very
young. By contrast, is now commonly seen in the mathematical community. Several publications

This research has been supported by NSERC grant 0G0007457.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

of the American Mathematical Society are published using TEX. Mathematical Reviews, also published
using TEX, now accepts reviews from mathematicians via electronic mail in AMS-T@ format, and
these reviews in turn are now available as a database on compact disc (see Latterner and Woolf (1989)
in this issue).

We have also seen T@ used for non-mathematical purposes. The published Proceedings for the 1987
and 1988 Annual Meetings2 contained articles showing TpX being used to typeset linguistics material
(Thiele 1988), for in-house use by TV Guide (Barnhart and Ness 1988) and eventual typesetting of
their weekly TV Guide), and even to keep a database of canine histories (Harris 1988).

Given that w is being used by newer and more varied groups, are there any significant problems?
A further claim of this paper is that there is at least one important problem that needs to be solved;
namely, the existing level of user documentation is so limited in scope that it is seriously impeding the
migration of w from areas that are highly computer-oriented to even closely related areas. And what
is the solution? Since TUG has been so active in promoting the distribution of TJ$, at organizing both
elementary and advanced classes at the annual meeting and elsewhere, and at communicating newer
developments in TEX, and at announcing the existence of new products, it (or, rather, its members) is
the natural source of the solution.

As a small step towards the solution, I have written a self-study manual called A Gentle Introduction
to TjjX (Doob 1989), which is freely available. I found the writing of this manual, the subsequent
teaching from it, and reactions to it quite interesting and to some extent surprising. Some of these
experiences will be interspersed within the following sections. Some of the suggestions may seem self-
evident and superfluous; having looked at a number of manuals, however, I would say that they are
still worth putting down on paper. There is a lot of work to be done if T&l is to be widely used; I
hope that this will be a start.

2. From Where Are We Coming?
At the 1987 meeting of TUG in Seattle, a group of members interested in 'QX training met for the
first time. At that time it was (naively) thought that a generic introduction to 'l$jX might be created
by taking the main sections from existing manuals and glueing them together. I volunteered to gather
things and to put together a first attempt at a general manual.

As the manuals arrived, it became clear that, while all had some good points, it was simply
impossible to put them together. Many of them were highly site-dependent; others were obviously
re-cycled lecture notes; some had clearly been put together in haste. In short, what existed was a
series of learning aids that were designed for and could only be used in conjunction with a (human)
tutor.

And then there is The w b o o k . The amount of information in that book continues to amaze me;
its organization is wonderful for the experienced user. But no book can be all things to all people. The
very enthusiastic can learn all they need to know from The w b o o k . For the less enthusiastic or less
skilled, it is a rather unpleasant experience to try to do so. It is not a good starting point for most
TEX users (as, I'm sure, it was never intended to be).

The problem has been further exacerbated by the methods TUG has used to teach w. By far
the greatest technique has been what might be called the "university approach." A lecturer gives a
course over one or two days, perhaps with a little lab time, and the student madly takes notes. In
some undefined future spare time, the student is supposed to go over the notes and then know how to
use TJ$. Of course, this is not a good way to learn something like 'QX where concomitant practice is
such an important part of the learning process. And so I wrote the aforementioned self-study manual
in which students could both practice and learn at their own pace.

At present, the great American manual is still waiting to be written. Of course, there may be
just such a manual sitting on a file server somewhere in the far reaches of the electronic net. If this
is the case we need to give it more exposure. In any event, the creation of appropriate manuals that
may be widely used is surely an important concern of TUG.

The Proceedings for the TUG meetings of 1987 and 1988, although published separately, both carry a 1988 publication

date. The Proceedings from the 1987 conference appear in the series m n i q u e s 5, edited by Dean Guenther; the 1988

conference papers were published in W n i q u e s 7, edited by myself -Ed.

534 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

3. Who Wants It?
There would be little point in creating a new manual unless there were a need for it. It is, then,
reasonable to ask if there is really any demand for such a manual, and if so, how great is it. Earlier
this year, unknown to me, a one-sentence statement indicating that I had written a self-study guide
appeared in the American Mathematical Society Notices (Barwise 1989); it also gave my electronic
mail address. It was something of a surprise to me when, with no warning, dozens of requests for the
manual cascaded into my mailbox3. It would seem that there are many mathematicians who would
like to use but for some reason cannot do so with the available materials. If there is this unrnet
demand among the mathematicians, it is safe to say that there is a similar need among other physical
scientists and also among the social scientists.

Why is there such a sudden demand? In the last few year, the T)$ world has completely changed.
Up to 1985 the user needed to be a somewhat sophisticated computer user. But once T)$ migrated
to the microcomputer and laser printer enviroment, it became trivial to run and print w documents.
Our teaching methods in TUG have not really adapted to this change.

It should be self-evident that different audiences need different manuals. So our need is not for just
one manual but, in fact, for a series of manuals, each one to target a different potential group of users.
Some manuals have tried to be both an introduction for the new user and a reference manual for the
experienced user; the results are not usually satisfactory. In particular, it is necessary to know the
computer experience, the sophistication, and the level of knowledge of your audience before starting
out.

With the large number of sophisticated TUG members, it should be possible to create such manuals.
To make it a little easier, I have included in the next section a dozen suggestions that might make
the writing a little easier. Needless to say, this is not exhaustive, but it might make the way a bit
smoother.

4. A Dirty Dozen

4.1 The Right Definition (for you)
As we mentioned before, the nature of any manual is influenced by the target group. When writing
a TEX training manual, the target group must be well defined before starting. This group will then
determine things like topics covered, examples, exercises, and even writing style.

I Suggestion 1: Know your user I

Many of the manuals that I received were far too broad in the attempted scope. The pace and
background must be different for manuals aimed at a typical mathematician as opposed to a computer
scientist. The user with other backgrounds needs to be handled still differently. The amount of space
to be devoted to each topic needs to be adjusted in each case. For example, in one case it might be
preferable to cover the different types of mathematical typesetting in great detail while in another, it
might be better to see how to generate appropriate footnotes and endnotes. In any case, the topics
covered must be controlled and appropriate. The object is not to display all that the writer knows.

A good list of different topics has been given by Childs et a1 (1988) in their discussion of possible
course syllabi, and further suggestions were given by Childs (1989).

I Sunnestion 2: Know all of the t o ~ i c s to be covered first I

A huge manual is truly intimidating. Although most manuals were of reasonable size, there were
signs that they grew (like Topsy) as they went along. If you want to write a work that is encyclopedic
and is several hundred pages long, that's fine - just don't consider it an introductory manual. If
you want to write a reference card which fits on two sides of a sheet of paper, that's fine too. An
introductory manual probably should be well under 100 pages. Don't be surprised if you find it

3 Added in proof: the number of requests is now approaching 250.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 535

difficult to stick to the exact number of pages; in fact you should probably plan for a 10% margin of
error. But it is certainly necessary to have some kind of limit in mind.

I Su~~cestion 3: Decide on the document size first I

4.2 Getting the User Going
There is a huge hump in the beginning of the learning curve for T@. Priority must be given to easing
the new user into the intricacies of I$$. In particular, the w source of the your manual should be
available easily, and it should be straightforward to produce hard copy at a typical T)$ installation.
This probably means that the source should be in one file with no auxiliary files being used. This also
implies that the index and table of contents will be written directly into the document. It's possible,
of course, to write the table of contents at the end of the document in one pass, but the index is more
troublesome. For my introductory manual, I put in the index and table of contents directly into the
w source file, but left the hooks in the introductory macros so that the knowledgeable user could
generate new ones easily. And it's better to avoid documents that require two passes of the w
program to generate and read auxiliary files, since this tends to have site-dependent restrictions.

I Suggestion 4: Make it easy for the user to get a hard copy I

It is inevitable that some site-specific information will be needed. For the new user, it is hoped
that this is kept to a minimum. In any case, if at all possible it should be in one place, either as a
separate section or as an appendix. This allows for greater portability of the document; it also lets the
reader know what is part of I$$ and what is part of the site implementation of I$$. It's easy for the
new user of T)$ to confuse them.

muggestion 5: Isolate site-specific instructions I

4.3 How and What To Include?
Now for the real nitty-gritty. In planning an introductory T@ manual, it is often helpful to use the
analogy of the structure of a foreign language text. A first-year text of this sort has rather limited
goals. There is just enough information given to start using the language. It is certainly not expected
that the student will write sonnets after the first few weeks of study. An introductory QX manual
must also have limited goals. As with a foreign language text, sections need to cover a relatively small
amount of material, with successive sections being cumulative. Similarly, when material from different
sections is used for a new idea, this should be explicitly pointed out.

I Suggestion 6: Make evident the interdependency of different sections I

The first steps to learning TEX are rather difficult. Parks (1988) and McCaskill (1988) have both
noted that it may take extended periods of time before a real facility is attained. No one would expect
a person to learn a foreign language without reviewing each lesson carefully. Normally this is done
with exercises, translations, and tables.

I Suggestion 7: Have lots of exercises and examples I

It is useful to have exercises which review material from the immediately previous section, as well
as new concepts. Later exercises in one section can reinforce the earlier exercises in the same section.
The point of the exercise should be clear to the student.

It is, of course, necessary to give lots of examples. When doing so, it is useful to have a \verbatim

or \ l i t e r a l macro that will allow you to use exactly the same code for the example and the listing
that generated the example. In a surprisingly large number of cases, examples were given where the
supposed TEX input source was wrong. This is, of course, disastrous.

536 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

In a foreign language text there are often tables of the following sort:

Present tense of the verb to be:

Such tables give an overview of the material covered and are often useful for manuals, too. They
also serve as a useful quick reference once the reader has mastered the material.

Here is an example of a similar table from the beginning of my manual. It follows a discussion of
characters that have special purposes in the T@ input file.

1st person
2nd person
3rd person

Characters requiring special input

Character

Singular
I am

You are
He/she/it is

Purpose

Special symbols and instructions
Open group
Close group
Comments
Tabs and table alignments
Unbreakable space
Starting or ending math text
Math superscripts
Math subscripts
Defining replacement symbols

Plural

We are
You are

They are

Input for literal output

\backslash

$\a
\I
\%
\&
\-o
\$
\-o
\-0
\#

Suggestion 8: Use tables to recapitulate sections 1

As mentioned before, it is important that a manual have definite limits to its scope. It's quite
useful to let the reader to know where to get further information when desiring to go beyond that
scope. Not surprisingly, The W b o o k is often the most useful reference. Here is a macro that I used
to point the reader towards further information:

o o o o o * o o o o o o L L L L L L L L L L macro to put TeX references in right margin %%%%%%%%%%%%%%%%
\newdimen\theight

\def \TeXref#l{%

\vadjust~\setboxO=\hbox(\sevenrm\quad\quad\TeX book: #I)%

\theight=\htO

\advance\theight by \dpO \advance\theight by \lineskip

\kern -\theight \vbox to \theight(\rightline(\rlapC\boxO))%

\vss)%

I)%
s o o O * o * s o s 0 o o o o o o e o ~ e . o o ~ e * * e o o o # * e . . I * o e o e o e . o o * o o # * e ~ . e . e e ~ * e o o * e o o o e o o LLLLALLLLLLLLLLLLLALL

Then \TeXref (1--9) will cause a reference to appear in the right margin (now look to the right). The
macro is obviously easy to adapt to different references.

I Suggestion 9: Tell your reader where to find more information]

Sometimes it is better to give an explanation that is not fully complete than to get lost in details
that are not important. By mathematical analogy, consider two possible definitions of the real numbers:
(1) real numbers are all possible decimals, and (2) real numbers are all possible greatest lower bounds

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 537

of sets of rational numbers. The first definition is (at best) rather loose and glosses over details such
as non-uniqueness and repeating decimals; however, it does have the advantage of having a direct
connection to familiar objects. The second definition is mathematically better than the first, but
without the insight of the truncated decimals of the first definition, the second one has less intuitive
understanding. When introducing a new topic, it is sometimes better to bend the truth a little (needless
to say, it is hoped that the bending of the truth will be intentional). In particular, it is necessary to
set a depth to which the material will be presented and then to consistently work to that level. As an
example, in the manual I wrote, there is no mention of horizontal or vertical modes. Now it is obvious
that a lack of knowledge about modes is very limiting. It is also clear that many error messages will
be totally incomprehensible (so what's new?). Some topics, vrules and hrules for example, can only
be discussed in a rough way, much as with the first definition of the real numbers. Nonetheless, in
my (somewhat arbitrary) opinion, the neophyte TJ$ user can learn how to do lots of good documents
without knowing about modes. Many decisions of this type were necessary for my manual; they require
more time and thought than might be expected.

[Suggestion 10: Some judicious fibs are O.K. I

4.4 A Few Final Comments
As has been mentioned earlier, it is important to have many exercises; as with learning a foreign
language, it is necessary to do as well as to read. Give some thought as to whether or not the answers
should appear directly after the exercises. It is evident to me that the typical reader wants them there;
whether or not it is the best thing to do is a matter of debate. It really depends on whether the
perspective of the manual is to be that of a teaching document or that of a reference document. There
are at least two other possibilities: the answers can be put in an appendix, perhaps with a switch to
determine whether or not they are actually printed, or they can be put into the TEX source code.

The TEX source code is also instructive. You may be assured that any macros that you write will
be observed at some time by the readers of the manual. It is worth the trouble to comment your
macros well.

(Suggestion 11: Make your TJ$ source code self-documenting I

The easiest way to distribute the w is via electronic mail. In principle, this should pose no
problem; one of the strong points of TEX is that it uses only standard characters. My experience is
that there are (EBCDIC-to-ASCII) problems. In one case, all the curly brackets disappeared (I leave
it to the reader to imagine what this did to the output). It is prudent to give a sample set of characters
as a comment at the beginning of your source file; sometimes it is possible to reverse the damage by
simple global editing. I do something like the following:

%% Thanks for your interest in A Gentle Introduction to TeX. At the

%% moment it is in draft form, i.e., subject to correction, but it
%% is pretty close to the final copy. Any comments on this manual

%% would be appreciated: these may be typesetting, English, or
%% TeX criticisms.
%%
%%% Michael Doob

%% Department of Mathematics

%% The University of Manitoba

%% Winnipeg, Manitoba R3T 2N2

%% Canada

%% mdoob@uofmcc (bitnet)

%% mdoob@ccu.umanitoba.ca (internet)

%%
%% Here is a character listing to check to be sure that no

538 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

%% unwanted t r a n s l a t i o n s took p lace within t he bowels of t h e n e t .

%% Upper case l e t t e r s : ABCDEFGHIJKLMNOPQRSTWWXYZ

%% Lower case l e t t e r s : abcdefghijklmnopqrstuvwxyz

%% paretheses , b racke ts , braces: 0 [I C)
%% Exclaim, a t , sharp, d o l l a r , percent : ! Q # $ %
%% Caret, ampersand, s t a r , underscore, hyphen: - & * - -
%% v e r t i c a l ba r , backslash, t i l d e , backprime, p lus : I \ ' ' +
%% plus , equal , prime, quote, colon: + = ' " :
I I A / , l e s s than , g r ea t e r than , s l a s h , quest ion, comma: < > / ? ,
%% period, semicolon: . ;
%%

1 Sunnestion 12: Make vou source code available via electronic mail 1

There are other manuals waiting to be written. We have already seen that there is a need for
different elementary manuals. More advanced ones are non-existent. Most of the suggestions for
elementary manuals also apply to advanced ones. Would someone, for example, like to write one on
how to write output routines (that work)? How about introductory QX wizardry? And maybe one
on efficient QX programming? How about METAFONT? I feel that I've done my part by writing an
introductory manual - what about the rest of you TUG members?

Bibliography

Barnhart, Elizabeth, and David Ness. "Layout for QX." w n i q u e s 7:97-115, 1988.

Barwise, Jon. "Computers and Mathematics." Notices of the American Mathematical Society 36:241-
243, 1989.

Childs, S. Bart. "Teaching ?jEX" TUGboat 10(2):156-163, 1989.

Childs, S. Bart et al. "Syllabi for m and METAFONT Courses." TEXniques 7:117-127, 1988.

Doob, Michael. A Gentle Introduction to w. Available from author, 1989.

Harris, Robert L. "Using QX to Produce Kennel Club Yearbooks." W n i q u e s 7:97-115, 1988.

Knuth, Donald E. The W b o o k . Reading, Mass.: Addison-Wesley, 1984.

Latterner, Dan, and W.B. Boolf, "QX at Mathematical Reviews." TUGboat 10(4):639-654.

McCaskill, Mary K. "Producing NASA Technical Reports with QX." w n i q u e s 7:l-10, 1988

Parks, Berkeley. "m Tips for Getting Started." T&Yniques 7:129-138, 1988.

Thiele, Christina. "QX, Linguistics, and Journal Production." T)#niques 5:5-26, 1988.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

QJC Users Group
University of Washington

August 23 - 26, 1987

Mastering with Templates

National Center for Atmospheric Research
P.O. Box 3000
Boulder, Colorado 80307
hamilton@mmm. ucar . edu

ABSTRACT

Large scientific laboratories and government research sites, with from 1,000 to 5,000
employees, are the natural domain of m. However, the degree of secretarial (i.e., key-
boarding) motivation for learning TEX in such an environment, is far below what is gen-
erally found in business, commerce, and industry. One such national laboratory, NCAR,
has avoided near mutiny by the support staff and decreased learning reluctance by pro-
viding on-line templates for all frequently used types of correspondence. Statistics of the
learning curve, comparisons of teaching techniques, and examples of templates illustrate a
hard-earned victory for TJ$, at long last the preferred scientific word processing software
of NCAR scientists as well as support staff.

1. Introduction
The National Center for Atmospheric Research (NCAR)l is located in Boulder, Colorado. Its origins,
some twenty-five years ago, involved a small group of scientists - physicists, mathematicians, engineers
- whose common interest was the natural phenomena of the atmosphere and oceans. It was their
hope that, by collaborating and combining efforts and expertise, they could work toward a better
understanding of those aspects of weather that endangered lives and destroyed property. Inherent in
this mutual goal was the critical need to improve weather prediction, for the benefit of mankind. This
national atmospheric research center was, and is, sponsored by the National Science Foundation in
Washington.

Today, NCAR has close to 1,000 employees. Its most outstanding product takes the form of
scientific papers, carefully refereed by colleagues throughout the world, and published in some twenty
monthly American and international journals. These papers and articles must be produced, frequently
in camera-ready form, by secretaries and clerical personnel, most of whose word processing knowledge
began with the IBM electric typewriter.

2. 'Ij$C Arrives
Four years ago, l')$ came to the attention of several NCAR scientists. Admired for its typeset appear-
ance and praised for its ability to produce any and every type of mathematical equation needed for
technical research reports, was acquired and installed on the VAXes of several scientific groups. A
few scientists with programming background began to use it. None of the support staff, i.e., secretaries,
had seen or heard of 'I)$.

One of the more creative scientists placed a copy of The l)jKboolc on my desk with the comment
"See how you like this word processing program!" I scanned through the book, made a mental note to
try to make some sense of it if and when I had the time, and returned to our state-of-the-art stand-alone
workstations, Micoms and NBIs.2 Returning a week later, the scientist inquired if I had started using
Tj$ in our office production. I stammered: "No, not yet." I had been too embarrassed to follow up

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Two years earlier, the IBM Selectric had reigned supreme; and many long-term secretaries still resisted the upgrade

to the large and cumbersome stand-alones.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 541

with "Why should I? I can't understand the book. There's no one to help me. I'm not a programmer

or a computer scientist." But the episode remained in my mind as a challenge. I decided to see our

VAX system manager. He gave me brief instructions, taught me a few VAX DCL commands, showed
me the location of the new laser printer, and promised to bring a terminal to my office.

The struggle began! I managed at last to hammer out a letter that resembled, lamely, the crisp NBI

format we had all become accustomed to. I had no experience with which to equate my knowledge of

typewriters and NBIs to the commands and output of w. Margins? Double spacing? Tabs? Indented

paragraphs? Equations? And I had no one to ask.
I saved that first letter and stapled it to the input page of TEX commands. Grimly, I twisted

and tweaked T@ into giving me a two-page memo. An abstract containing several equations finally

appeared, to my amazement. My collection of samples increased. But it was painfully slow. At the

slightest hint of a one-hour deadline, I returned to my simple and predictable NBI.
A breakthrough occurred about six months later. I met a secretary, Eileen Boettner, from another

NCAR site seven miles away. We discovered that we had reacted to the TEX challenge in the same
way. My new friend had also saved her samples, and we began to discuss our T@ problems. Each

of us, in her own location, had become a resource to other secretaries. Our samples were hopelessly
chained to typewriter terms and NBI keyboard procedures. Glue? Boxes? Modes? Those concepts

were obviously meant for programmers and hackers. We would have to manage without them.

Management soon began to make it clear that w was highly desirable, if not absolutely necessary,
for all scientific output.

3. T@ Templates Arrive
My friend and I, remembering how hard it had been for us to produce the most primitive correspondence
in w , combined our samples into an NCAR technical report. By sharing copies, we could make it

easier to guide others through those early months of discouraging trial and error.3 We organized our

material along the lines of NCAR's needs and uses. We created a table of contents; we color-coded

the examples and their hard-copy input pages. Every example or template was given a number. Each
template appeared in its final output form, attached to which was the corresponding page of T@
commands that produced it. Our "Index," as we titled it, quickly became an in-house best seller!

Lines formed outside of our offices; numerous phone calls and mail requests interfered with our regular

work. To date, our 350-page effort - primitive through it is - has undergone three printings totalling

about 5,000 copies. Many users have reported that they, in turn, have made countless photocopies
for their friends, staff, and colleagues. Requests have been filled from users as far away as Denmark,

Australia, China, Japan, Germany, and Brazil.

We asked our VAX system personnel to make the Index available electronically. For example, if
Item 15, "References", was needed by a user, he or she "copied" the corresponding template into his

directory from the system. This eliminated the much dreaded keyboarding of a series of confusing

- and impossible to debug - TJ@ commands, with the obvious certainty of typos and mistakes. It
was simple to delete the words on the example and enter the current words. Users were much too

mystified by the ubiquitous commands to touch anything preceded by a backslash. Our VAX system

manager began to make tapes of the Index and mail them to users in universities and institutions upon

request. To date, at least 6,000 7&X users have been able to start using w without computing or
programming knowledge but, unfortunately, without understanding some of w ' s unique and basic
concepts.

As Management gave TEX the executive nod of approval, rumors of discontent from the tenured,

senior secretaries were rampant. At several sites of our organization, groups of secretaries met; they
aired and drafted their complaints. The core of this discontent centered around the fact that there had

been no mention of re-classifications or salary increases for the staff who felt "pushed" into learning

this difficult new word processing software. T)$ obviously required skill and capabilities that had

not been requisites in the traditional secretary's job description. TJ$ was different, better, and only
programmers were able to master it. In short, the gauntlet thrown down was "We'll learn w if
Management makes it worth our while."

3 A T)+ preview device was not available at our research site during this time.

542 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

NCAR1s budget at that time did not include mass salary raises for the support staff. Management's
hope may have been that W ' s efficiency and speed would reduce the number of support staff needed.
To complicate the issue, more scientists could now TJ$ their own lengthy, equation-filled papers. The
secretaries' complaints and petitions were fended adroitly, and TJ$ began to appear on job descriptions
as a Required Skill instead of an Optional Skill. Motivation to learn the new software, however, was
visibly lagging.

Meanwhile, news of the Index began to spread by word of mouth: a typist's tutorial for W-
no formal training nor programming experience necessary. The scientists had enthusiastic praise for
anything produced in TEX by the staff. T m ' s superior output resulted in an elitist competition between
scientists and supervisors. "My research paper is being produced in Tj$." "My office is now using
Tj$ for all output." "Our secretary is leaving to get married. We need to replace her with someone
who knows w . "

At this point, many doubts and questions began to give me increasing concern. Was the Index
a satisfactory vehicle for teaching W? Did the Index succeed in motivating nonscientific personnel
to learn m? Could this Index be used as effective documentation for learning TJ$? My answer, as
would be the answer of any experienced teacher, was "If it works, use it."

The title of this paper is "Mastering with Templates." I have three years of experience that
back up my claim that anyone without computer or programming experience can learn TEX by using
a system of on-line templates. An important provision states that the examples, or templates, be of
high-frequency use within an organization. Either Preview software or a nearby printer, preferably
both, are highly desirable. The Index has the advantage of not being unnecessarily verbose, such as
the conversational style and running format we find in traditional software documentation. Folksy
and lengthly explanations of commands and exceptions serve only to frustrate the beginner. The
oft-seen documentation breach of avoiding any representation of what appears on the user's screen
is side-stepped by the input/output pages of the Index. Another critical factor for the learner is his
environment of stress or pressure; if an impatient supervisor is anxiously awaiting the output, no
learner can be receptive to new T@ concepts and detailed explanations.

4. TEX by Osmosis
Inevitably there are calmer, quieter hours in the secretary's day. Aware that h represents horizontal
and v vertical, the learner's perception of the meaning of all commands beginning with h and v can
result in cautious explorations:

"Change \vskip l t rue in to \vskip2truein if twice the space is needed. An \hf ill can shift the
location of the date in a line, depending on its placement."

A sense of control rewards the keyboarder who timidly experiments with variations in the base-
lineskip. Commands such as \hsize/ \vsize, \hf i l l / \ v f ill, \ e jec t , \ center l ine , \indent,
\hskip/ \vskip, \nopagenumbers, \raggedright, and \hoffset / \voffset are not difficult to un-
derstand. Greek letters and mathematical symbols are as close as Appendix F in The T ~ X b o o k .
\obeylines and \obeyspaces are a boon to those who still wistfully hold out for WYSIWYG.
\ s e t t abs are a welcome discovery when problems arise with the cc: after the closing of a letter.
Font changes may require a visit (but only once) to the system manager, and aligned columns in tables
may possibly be the last frontier in TEX mastery.

With the Index in hand, beginners can start w i n g without delay, and this early success is the
most motivating factor of all. There is a maxim that all teachers heed: No one can learn until he or
she is ready to learn. And as far as learning 7$J is concerned, a learner is not ready until he wants to
learn.

In my experience, the language itself used in ?jEX commands encourages the learner to experiment
with altering the templates to serve his needs. This kind of learning is self-rewarding. An encouraged
learner can evolve into a curious, audacious learner who may even decide to defer his doubts to the
heretofore neglected W b o o k . The occasional familiarity of commands found within its pages continues
the cycle of curiosity and reward. In a matter of weeks, the learner is ready to consider the more discrete
concepts. It occurs to him that a formal Tj$ class might be helpful. He has unconsciously begun to
shed the old typewriter habits; he realizes that the flexibility and power of TEX can elevate him to

TUGboat. Volume 10 (1989), No. 4- 1989 Conference Proceedings 543

levels and standards of production that will be recognized and praised by peers and supervisors.

5. Conclusion
If you have yet to succeed in motivating reluctant personnel to break away from out-moded word
processing methods and begin experimenting with m , I suggest that you consider this approach.
Tenured administrative staff, because of a lack either of self-confidence or of technical education, can
surprise us by their enthusiastic support of m . Extend such a opportunity to them. Meet them
half-way with a collection of templates based on familiar output. There may be costly consequences,
however. It may be necessary later to budget for their advanced TEX classes. In time, there may also
be a need to cover all of their expenses to annual TUG meetings.

Bibliography

Boettner, Eileen, and Hope Hamilton. Definitive NCAR Index for for NCAR Scientists. Boul-
der: National Center for Atmospheric Research, NCAR Technical Note, NCARJTN-266+1A,
1986.

Knuth, Donald E. The 5!&Xboolc. Reading, Mass.: Addison-Wesley, 1984.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

Appendix A: Customized TjjX Templates

The following table of contents reflects my organization's word processing activities:

Abstracts (See Manuscripts)

Contents, Table of (See Tables)

1. Equations

Within text (see also Manuscripts)

Centered/displayed

2. Figure Captions

Examples

Fonts (see Typefaces)

3. Footnotes

Examples

Forms (see Reviews, Spacing, Tables)

4. FormatlDefault

w ' s built-in settingslno commands necessary

(See also Spacing, Letters)

Hyphens (see Spacing)

5. Indenting

Paragraphs

Quotations/narrower margins

Numbered items

Outline

Columns (see also Lists, Tables)

6. Letterheads

7. Letters

Business (letterhead included)

Business (letterhead, address, cc:,

2nd page heading)

Business (multiple addresses)

Business (use with letterhead)

Personal

cc: (see Tabs)

8. Lines/underlines/overlines

9. Lists (see also Tabs)

10. Manuscripts

Journal publication

Conference, cameraiready

Journal, cameraiready

AGU abstract

Book, typeset,

11. Margins (see also Format)

Examples

12. Memos

Examples

13. Minutes

Notices (see Seminars)

14. Page Numbers

Bottom, centered

No page numbers

Roman and arabic

Discretionary

Corner

Top, centered

Begin with Introduction

Roman and arabic

Discretionary

Corner

Book/chapter headings

15. References

Examples

RBsumBs (see Vitae)

16. Reviews

Manuscript/article

NSF

SCD

17. Seminars

Examples

18. Spacing

Horizontal

Centering

Flush left/right

Between words/letters

Word breaklhyphen

Vertical

Single/double

Between paragraphs

Line skippinglpage break

Examples

19. Tables (see also Tabs)

Budget

Manuscript

Ruled

Typeset

Forms

Flow Charts

Routines

Contents

20. Tabs (see also Tables)

21. Title Pages

Examples

Transparencies (see View-graphs)

22. Typefaces (Fonts) and Sizes

Typefaces (Fonts)

Sizes

23. View-graphs

Examples

24. Vitae, Curriculum

Examples

APPENDICES

A. Greek/symbols

B. Error Messages

C. Quick Command Shortcuts

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix B: Samples of a Title Page and a Memo

The examples that follow illustrate early steps in the transfer from typewriting or stand-alone word
processor usage to simple TEX output.

Example 1: Title Page

Output:

AIRBORNE LASER AND DOPPLER RADAR SYSTEMS

PART 11: DESIGN CRITERIA

K. L. R O E

Arles National Laboratory, Denmark

and

D. L. Adrian

National Center for Atmospheric Research*
P. 0. Box 3000, Boulder, CO 80307

Input:

\vskip.3truein

\centerline(\bf AIRBORNE LASER AND DOPPLER RADAR SYSTEMS)

\vskip .2truein

\centerline(\bf PART 11: DESIGN CRITERIA)

\vskip .4truein

\centerline (by)

\vskip .26truein

\centerline CK. L. Rolff)

\vskip .17truein

\centerline (Arles National Laboratory, Denmark)

\vskip .3truein

\centerline (and)

\vskip .3truein

\centerline (D. L. Adrian)
\vskip .17truein

\centerline (National Center for Atmospheric Research\footnote*(The National

Center for Atmospheric Research is sponsored by the National Science

Foundation, 1)
\centerline CP. 0. Box 3000, Boulder, CO 80307)

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

546 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Example 2: Memo

Output:

1 October 1987

MEMO TO: Algernon P. Esworthy

FROM: Mary R. Stuart

SUBJECT: Definitive NCAR Index for

This Index does not pretend to be an extension of Donald Knuth's comprehensive W o o k .
It contains, instead, a condensation of the text-formatting output most frequently used by the scien-
tific community of NCAR. Also, as a special lagniappe, each example includes its own NCAR com-
puter location; scientists can access and thus copy our "templates" to their directories where they
can be used and altered to accommodate their needs.

The authors thank our many w - u s i n g friends who have shared their discoveries - serendip
itous or otherwise. Their generosity has contributed greatly to the wide range of examples included -
in the Index.

End of Memo

cc: W.C. White
University of Illinois

Input:

\parskip=4pt

\parindent=30pt

\nopagenumbers

\raggedright

\hsize=5truein

\vsize=6truein

\hf ill {I October 19873

\vskip .2truein

\settabs\+\noindent&MEMO TO: \qquad&\cr

\+&MEMO TO : &Algernon P. Esworthy \cr
\medskip

\+&FROM : &Mary R. Stuart \cr

\medskip

\+&SUBJECT: &Definitive NCAR Index for \TeX \cr

\bigskip

This (\it Index) does not pretend to be an extension of Donald Knuth's

comprehensive {\it \TeX book). It contains, instead, a condensation of the

text-formatting output most frequentlyusedbythe scientific community of

NCAR. Also, as a special {\it lagniappe), each example includes its own NCAR

computer location; scientists can access and thus copy our ' 'templates' ' to
their directories where they can be used and altered to accommodate their

needs.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

The authors thank our many \TeX -using friends who have shared their

discoveries --- serendipitous or otherwise. Their gener\-osityhas contributed
greatly to the wide range of examples included in the Index.

\bigskip

\centerline {End of Memo)

\vskip .3truein

\settabs\+\noindent Bcc: \quad & \cr

\+&cc : &W .C. White \cr
\+&& University of Illinois \cr

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Using WordPerfect 5.0 to Create and UTEX Documents

University of Delaware
002A Smith Hall
Newark, DE 19716
anita0vaxl . acs . udel . edu
ACS031740UDACSVM

ABSTRACT

This paper addresses the issues associated with using WordPerfect 5.0 on PCs to
create rn and UTEX documents. WordPerfect macros and keyboard layouts are used as

an interface to aid in the input process of 'I)ijK and UTEX control sequences. As a result,
a major portion of this paper is devoted to discussing the basic concepts of WordPerfect
macros, keyboard layouts, and the macros specifically developed to produce TEX and
14TEX control sequences.

1. Background
In 1984, the University of Delaware's administration decided that WordPerfect would become the
faculty's standard word processing package, and so they initiated a grant program which allowed
faculty to purchase IBM PCs with WordPerfect at a considerable savings. By 1987 a similar decision
had been made for the secretarial staff; near the end of 1988 the actual implementation of this decision
was completed, and WordPerfect became the standard word processing package for PCs throughout
the University.

During the last year, however, many departments, such as Engineering, Computer Science, Math
and Physics, realized that producing technical documents was beyond the scope of WordPerfect, es-
pecially those documents that contained complicated mathematics. Many faculty members in these
departments had heard of the high-quality mathematical typesetting that TI$ and UTEX produced
and thought that either of these packages would be an appropriate tool for producing their documents.
It was this interest that brought l$$ and BT$ to the PC environment here at the University of
Delaware.* But the problem was to train the secretaries to use these packages. As usual, documents
needed to be typed by yesterday, and the secretaries became overwhelmed and frustrated by having to
learn both WordPerfect and the proper control sequences for !l&X and/or UT$ in a hurried manner.
Many questions began to surface, for example, "Why do I have to type \alpha to get a when I used
to type only Alt-A on my E x x o ~ system?"

In trying to answer such questions, I realized that WordPerfect macros could be used to help speed
up the learning and typing process by automatically providing the basic control sequences for setting
up a TJ$ or UT$ document. The more common math control sequences, such as those that produce
lowercase and uppercase Greek characters, are defined in a WordPerfect keyboard layout that contains
a number of predefined macros. I should note that it is not my intention to tell a new user of or
UTEX to go out and buy a PC with WordPerfect in order to use the macros I developed to produce l$$

'In trying to reproduce this paper at other sites, it was brought to my attention that it would not T@ successfully
because the save size was exceeded. Our site requires a large version of TEX for producing books, but I did not think
this paper would cause any problems. However, upon closer examination I realized that the figures used to create the
keyboard layouts (4 and 5) proved to be quite complex and thus required a save size of 800 or larger. I decided to
use our time-sharing system V a l (VAX 8650 running version 4.3 Berkeley UNIX) to make communication easier for
submitting this paper, so I have not actually run this on a small system and therefore you may experience difficulties
due t o memory and processor speed limitations.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 549

and UTEX control sequences. However, these macros do provide new users of T@ and BT$, already
familiar with WordPerfect, with a good starting point for creating high-quality technical documents
in and/or UTEX format.

2. WordPerfect Macros
A WordPerfect macro provides a way of assigning a name to a series of keystrokes you often repeat. If
you need to perform the same operation frequently, you can enter the keystrokes once and save them
in the form of a macro. When you want to repeat the operation at a later time, you need only tell
WordPerfect the name of the macro (the file where the keystrokes are stored), and WordPerfect will
"replay" the keystrokes, automatically performing the task. This concept is common to most software
packages that provide macros. For example, WordPerfect macros work much like 'I@ and UT$
macros, which are are shortened forms of your most commonly used control sequences or combined
control sequences that you use repeatedly. So it seems that putting T ' and UT$ control sequences
into WordPerfect macros is not as unrelated as it may have appeared upon first inspection.

It is quite easy to create a WordPerfect macro if you follow three basic steps:

1. Plan the macro.

2. Save any files before you start writing the macro.

3. Write the macro.

2.1 Plan the Macro
You should have a clear idea of what you want the macro to accomplish before actually writing the
macro. If you are creating a simple macro, such as one that produces \alpha, only a few keystrokes
may be required. However, if you are creating a more complicated macro, such as prompting the user
for an environment name in UTEX in order to produce the output shown in Figure 1, it becomes more
important to write down the basic steps and actions necessary in order for the macro to work correctly
in both new and already existing documents.

\begin{envzronment name entered3

-
\end<envzronment name entered3

Figure 1: Macro output

2.2 Save the Current File
As you create a macro, the functions you use are actually performed on the text on your screen.
WordPerfect is a WYSIWYG word processor, so while you can create a macro on a blank screen, having
a document on the screen enables you to see the effects of each function you include in the macro.
Since your text will be altered by the keystrokes you enter, you should always save your file before
creating a macro.

2.3 Write the Macro

1. Press the Macro Def key (~ t r l - ~ l ~) t The message Define Macro: appears in the bottom-left
corner of the screen.

t~onvent ions used in this document: Text appearing in typewriter font refers to text you type or a key sequence
you press, text appearing in bold is a descriptive name of a macro or key definition. Remember, what one writes is not
always what one means, so I hope you will not find typewriter font where bold should be and vice versa. Just keep in
mind that when you see the word hold, press, or type, then I want you to carry out the action that follows, otherwise I
am just referring to that macro or key definition by name.

550 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

2. Name your macro; this can be done in two ways:

(a) Type a name 1-8 characters long (conforming to the standard rules for naming DOS files)
and then press the Enter key. This will create a file name with the extension .WPM. All named
macros for this project were of the form M-xxxxxx. This was done in order to eliminate
confusion with user-defined macros. For example, m-be is a named macro, stored in the
file M-BE. WPM, that prompts the user for an environment name and produces the output in
Figure 1; see Figure 2 for the description and WordPerfect codes of this macro.

Many macros can be created using this method. For this project, named macros were
created for the following circumstances:

If the control sequence is more than three characters long, including the backslash
character (\) .
The reason for limiting what control sequences should be defined as named macros is
based on the naming convention chosen for this project. If the control sequence name
is too short, it is not advantageous to have to type a longer name for the macro.

If the control sequence is made up of two separate control sequences, as in a UT$
environment; for example, \begin(equation) followed by \endCequation).
This would save time typing, plus help prevent errors which arise when an ending
environment control sequence is forgotten.

See Table 1 for a listing of the named macros defined for this project and a short description
of each.

(b) Hold down the A l t key and press a single letter to create an Alt macro. This will create
a file name with the extension WPM. For example, if you were to hold down the A l t key
and press the letter A, then you would create the macro Alt-A and the file name would
be ALTA.WPM. The basic lowercase Greek characters were assigned to the Alt macros in
this project. For example, Alt-A is a macro that produces the \alpha control sequence.
Such key assignments are very common on multi-function keyboards. See Figure 3 for the
description and WordPerfect codes of this macro.

3. Enter a description of the macro (up to 39 characters). Most macro descriptions for this project
stated whether the macro was designed for TEX and/or U T S and the control sequence(s) it
produces.

2.4 Comments
Using the naming method described above, all lowercase Greek characters were defined as Alt key
macros (Alt-A. . . Alt-Z). Therefore, uppercase Greek characters had to be given 1-8 character names.
However, it became obvious that a WordPerfect keyboard layout could expand the current number
of single-keystroke macros. By using a WordPerfect keyboard layout, you can assign macros to the
Ctrl key as well as the Alt key. Therefore, the uppercase Greek characters could be assigned to the
Ctrl keys, plus other frequently used T&$ and UTfl control sequences could be assigned to the other
available Alt and Ctrl keys (for example, Alt-; and Ctrl-\). In order to proceed with this task, we
need to examine the following:

What is a keyboard layout?

How do you create a keyboard layout?

0 How does a keyboard layout work?

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Macro: Edit

File C:\MACROS\M-BE.WPM

1 - Description LaTeX \begin{env name). . . \end{env name)

2 - Action

I

CASS1GN)O-'
(TEXT)O-Enter environment name: -
CEnd)CEnter)CDel)Cup>{End)CEnter)

\begin{CVAR 0))
{Enter)(Enter)
\end€CVAR 0))
CHorne)(Left)CUp)
(DISPLAY ON)

I I

Selection: 0

Figure 2: WordPerfect macro for any UTEX environment control sequence

Macro: Edit

File C:\MACROS\ALTA.WPM

1 - Description TeX and LaTeX \alpha

I 2 - Action

I Selection: 0

Figure 3: WordPerfect macro for and UT$ \alpha control sequence

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

NA = Not Available as a Ctrl key

Normal Key El

Figure 5: Key definitions for all other possible Alt and'ctrl keys

and is in stored in the file TEXLATEX. WPK. See Figure 6 for an example of the Setup: Keyboard
Layout screen.

You are now ready to enter your key definitions.

3.3 Define the Keys
At the Keyboard: Edit screen, there are two ways to define a key. See Figure 7 for an example of
this screen.

1. Press 4 to select the Key: Create option.

This option is used for creating new key definitions.

2. Press 6 to select the Macro: Retrieve option.

This option is used for creating new key definitions by assigning a macro to the key.

The message Key: appears in the bottom-left corner of the screen. Press the key to be defined. -
In this project, only the Alt and Ctrl key combinations will be re-mapped. These key combinations

can be entered by holding down the A l t key and pressing a single letter or by holding down the Ctrl

key and pressing a single letter. There are some keys that do not provide a Ctrl key definition. If
nothing happens after entering a key combination, then you have probably stumbled across one of the

unavailable Ctrl key combinations. See Figure 5 above for the listing of these keys.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Setup: Keyboard Layout

I TEXLATEX

11 Select: 2 Delete: 3 Rename: 4 Create: 5 Edit: 6 Original: N Namesearch: 1

Figure 6: WordPerfect Setup: Keyboard Layout screen

Keyboard: Edit

Name: TEXLATEX

Key Macro Description

Key: 1 Edit; 2 Delete; 3 Move; 4 Create; Macro: 5 Save; 6 Retrieve: 1

Figure 7: WordPerfect Keyboard: Edi t screen

3.4 Comments

Now that the keyboard layout is in place, it is necessary to assign to the Alt keys the macros that are

already stored in macro form as ALTx.WPM and to the C t r l keys the macros that are already stored
in macro form as M-xxxxxx.WPM. This is done quite easily by using the Macro: Retrieve option

described on the previous page. For example, to assign ALTA.WPM as the Alt-A key definition, at the

Keyboard: Edi t screen do the following:

1. Press 6 to select the Macro: Retr ieve option.

2. The message Key: appears in the bottom-left corner of the screen. Hold down the Alt key and -
press the letter A.

3. The message Macro: appears in the bottom-left corner of the screen. Type the name of the macro

to be assigned to this key and press the Enter key; for this example, type alta.

You will now see an entry made on the Keyboard: Ed i t screen defining the Alt-A key. See

Figure 8 for the updated screen.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 555

I Keyboard: Edit

Description

TeX and LaTeX \alpha

I K e y : 1 Edit; 2 Delete; 3 Move; 4 Create; Macro: 5 Save; 6 Retrieve: 1

Figure 8: WordPerfect Keyboard: Edi t screen with the Alt-A key defined

Once the macro has been integrated, you may or may not need to edit it. If you do, it is not

difficult: press 1 to select the Key: Edi t option from the Keyboard: Edi t screen and notice that
the key edit screen for key definition is exactly the same as the macro edit screen for macro definition.

See Figure 9 for the description and WordPerfect codes of this key definition.

4. Using WordPerfect Macros and the Keyboard Layout
It is important to keep in mind that the use of these macros and this keyboard layout is no different
from the normal WordPerfect environment. However, two steps must be taken in order to use the

macros and the keyboard layout:

1. Define where the keyboard layout and macro files will reside.

(a) Press the Se tup key (Shift-FI).

(b) Press 7 to select the Location of Auxiliary Files option.

(c) Press 3 to select the Keyboard/Macro Files option.

(d) Type the directory name where the macros files and keyboard layout files are located

(e.g., C : \MACROS) and press the Enter key.

If you already have defined a directory to store macro and keyboard layout files, then you
must install the macros and keyboard layout to create TEX and UTEX documents in that

directory.

(e) Press 0 ("zero") to return to the Se tup screen.

2. Select the keyboard layout defined for creating and UT$ documents.

Macros have been defined to select the TEXLATEX keyboard layout automatically and also to

switch back to the original keyboard layout which is needed when creating normal WordPerfect

documents. See Changing Keyboard Layouts in Table 1 for these macros.

(a) Press 6 to select the Keyboard Layout option.

(b) Use the up and down arrows to highlight the TEXLATEX keyboard layout. Press I to
select this keyboard layout.

(c) Press 0 to return to your document.

You are now ready to use the keyboard layout and macros.

556 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Key Alt-A

1 - Description TeX and LaTeX \alpha

2 - Action

Selection: 0

Figure 9: WordPerfect key definition for and UT$ \alpha control sequence

5., Conclusions
The intent of this project was to help speed up the learning and typing process for setting up a rn
and/or UTEX document by automatically providing the basic control sequences. The project appears
to have accomplished both of these with several interesting points:

1. The control sequences that were assigned to the Alt and Ctrl keys are common in most word

processing systems, so there was very little time required to memorize which control sequences

were produced by which key.

2. The amount of typing was drastically reduced as a result of being able to use a single keystroke

in place of long control sequence names.

3. Using named macros also saved typing, but more importantly helped prevent errors when a

multiple line control sequence such as those used to begin and end UTEX environments were

used in a document.

4. Repetitive use of the defined keys and named macros helped in the process of learning the actual

control sequences for and UTEX. Creating a TEX and/or UTEX document would be possible

without the help of these aids; however, the overwhelming consensus of those who have used

these WordPerfect macros and the keyboard layout is that the document would take more time

to create as a result of having to type out all of the control sequences.

5 . Don't get carried away! The control sequences assigned to keys or defined as named macros

were carefully chosen in order to optimize typing time, reduce errors, and enhance learning.

Make sure you take the time to evaluate whether or not a key definition or named macro for a

particular control sequence will enhance the productivity of the user rather than make it worse.

For example, why have the user type ALT-FIO and m-11 to produce << when they could type \11

instead.

In general, typing time was reduced, learning capability was enhanced, and the number of errors

caused by misspelled control sequences or forgotten control sequences diminished.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 557

5.1 Comments
This project was a success for two reasons.

1. The macro and keyboard layout feature of WordPerfect provided an easy-to-use interface for w
and IATEX.

This concept can be applied to other word processing packages, providing technical secretaries

with similar advantages who need to use Tj$ and UTEX in their jobs.

2. and UTEX became less intimidating to the technical secretaries, which allowed them to put

aside their frustrations and concentrate on their jobs.

This is a very important part of why non-technical users shy away from w and UT$. We need

to reach out and identify such tools to give these users the power and beauty of QX and IATEX
without the frustration. It will be the non-technical users who will shape the future of Tj$ and

UTEX and broaden its scope of use.

6. Acknowledgements
I would like to thank Kenneth E. Gadomski of Academic Computing Support for his help in reviewing

this paper, Karen M. Kral of Academic Computing Support for sharing her wealth of knowledge about
WordPerfect macros and WordPerfect keyboard layouts, and Doris A. Wood and Denise J. Brzoska of

the Physics and Astronomy Department for their help in choosing the l&X and UTEX control sequences

that were mapped on the keyboard layout. I would especially like to thank Denise J. Brzoska for the

time she spent evaluating the macros and the keyboard layout.

7. Update
It has been brought to my attention that several key definitions in the keyboard layout did not work.

After investigating the problem, I discovered that the keyboard being used was not an IBM keyboard,

but in fact a Keytronic Professional Series KB515 (supposedly an IBM compatible). The key definitions

that did not work were Ctr l- \ , A l t - [, Alt-1, Alt- ; , A l t - ' , A l t - ' , Alt-, , A l t - . , and Alt-/.

Bibliography

Academic Computing Support. Creating and Using WordPerfect 5.0 Macros. University of Delaware,

Newark, October 1988.

Academic Computing Support. More About WordPerfect 5.0: Macros. University of Delaware,

Newark, May 1989.

Knuth, Donald E. The W b o o k . Computers and Typesetting Vol. A. Reading, Mass.:
Addison-Wesley, 1986.

Lamport, Leslie. aTEX: A Document Preparation System. Reading, Mass.: Addison-Wesley, 1986.

McComb, Gordon. WordPerfect 5.0 Macros and Templates. New York, NY: Bantam Books, 1988.

WordPerfect Corporation. WordPerfect for IBM Personal Computers. Version 5.0, May 1988.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

m-eqa

m-ob
m-ub

m-ul

m-ctr
m-1st

m-part
m-chap
m-sec
m-ssec
m-sssec
m-par
m-spar
m-ft
m-fig
m-tab
m-vs
m-hs
m-doc

m-font
m-size
m-tex
m-latex

Math Macros

Text Macros

\begin{env name you enter) ... \end{env name you enter)

\begin{center> ... \end{center)
\begin(enumerate) ... \end{enumerate)
\begin{itemize) . . . \end{itemize)
\begin{description) . . . \endCdescription)
\part{ 1
\chapter{ 3

\section{ 3

\subsection{ 3

\subsubsection{ 3

\paragraph{ 3
\subparagraph{ 3

\footnote{ 3

\begin{figure) ... \end{figure)
\beginitable3 . . . \enditable)
\vspaceC 3

\hspaceC 3
\documentstyle [1 { 3
\beginCdocumentl . . . \end(document)
font type changes
font size changes
T@ logo \TeX
BTEX logo \LaTeX

Changing Keyboard Layouts

Table 1: Wordperfect macros by name

m-spec
m-orig

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Selects the TEXLATEX keyboard layout
Selects the ORIGINAL keyboard layout

TEX USERS GROUP

McGill University, Montrdal

August 21-24, 1988

T)jX for the Word Processing Operator

ORINCON Corporation
9363 Towne Centre Drive
San Diego, CA 92121

ABSTRACT

The purpose of this paper is to illustrate the need for a training program for word
processing operators, secretaries, general management support staff, e t a l , in the use of
p la in . t ex without intimidating them with v ' s programming language.

The paper will describe a technique developed by this author to train those familiar
with word processing software, such as Microsoft Word, in the basic use of by com-
paring T@ commands to word processing commands and functions. This type of training
concentrates on operations alone - the philosophy being that it is possible to learn
to drive the car without knowing how to put the engine together.[l] By the use of parallel
language, it will be shown that it is possible to have support personnel unfamiliar with

producing basic text manuscripts (letters, memos, etc.) and simple math within a
few hours' worth of training.

1. Introduction
The subject matter of this paper was born after several years of frustration over the non-availability
of T@ training at a local level, in an easily understandable form, and geared toward secretar-
ial/management support personnel who don't have degrees in physics, engineering, mathematics, or
computer science - but - are expected to type and format technical papers as if they did, and - by
the way - should be fluent in Greek as well!l

Investigation in my local area has shown that exists on the VAXes and PCs of many high tech
R&D firms and at the universities, but is no t supported internally by the Information Systems Support
Division of any company or taught as a class at any school. w use seems to be largely confined to
the technical professionals with degrees in the fields listed above, who have taught themselves with
only the 7)jjYbook to guide them (and wouldn't have a clue as to how to teach anyone the program
who doesn't speak at least three programming languages). For those of us who had to look up the
word "algorithm" several times in the dictionary and still wouldn't recognize one even if it asked us to
dance, a major dilemma arose when faced with the prospect of learning "by the book". Not only
is the m b o o k oriented toward programming, but a lot of the commands don't even look like they're
in Eng l i~h !~

Furthermore, Tj$ really has nothing to do with word processing, per se. It is not a word pro-
cessing software package like Wordperfect or Microsoft Word; it is not a computer language such
as FORTRAN or Pascal; and then there are funny words associated with like \baselineskip,
\parskip, \ h a l i p , \vbox, etc. (and let's not forget all those #!$%* curly braces). In other words,
w doesn't look like anything a secretary or word processing operator has ever seen before in her/his
life! Unfortunately, the very fact that w looks so foreign is the major reason many support personnel
pass on the opportunity to learn it; and, coupled with the fact that there is no formal support network
where the T&X trainee can turn when she runs into problems (which is often in the beginning), makes
w a very intimidating program to tackle. It is true that "the best software in the world is useless if

If you made it all the way through this sentence/paragraph, it is advisable to breathe now!

Examine the spelling of \eqalign and \eqalignno. Where is the u that's supposed to follow the q?

TUGboat, Volume 10 (1989), No. 4 1 9 8 9 Conference Proceedings 561

you don't know how to use it11'[2] and probably explains why w resides inside so many computers
but is sadly underutilized. Another misconception is that w is only used for math.

So how do we, the T@ community, go about introducing our ferocious looking friend (who is really
a pussycat, once you get to know him) to the word processing community at large? If you follow along,
I will explain my in-house "Tl@nique1' of introducing T@ the quick and semi-painless way to the
Word Processing Operator.

2. Training Wheels
The first big hurdle in teaching TEX to anyone is convincing them that (a) no matter what they've heard,
7$$ cannot bite,3 and (b) that while all those \backslashes do look a bit bizarre, T@ commands
really do make sense. Once you've accomplished that, begin to familiarize your student with the basic
'J$$ commands.

2.1 The Preamble
The preamble (the first several lines at the top of a file) is the best place to start comparing
commands to their equivalents in the word processing software. Below is an abbreviated list that I
give to my 'I)$ trainees of typical preamble commands and their meanings.

\magnif ication=\magst epl

Magnifies the font 1.2 times. If you are using a 10-point font, this magnification will
make the type appear at approximately 1 2 points, which looks like 10 pitch (pica) on
a typewriter. If you do not specify magnification, the default is \magstepO. 10 points
with no magnification looks like 12 pitch (Blite) on a typewriter. Note: On Macintosh,
the TEX fonts do not magnify well past \magstepl. If a larger font is called for, use a
Postscript font.

\font\cm=cmrl2 at 12pt

Font definition for 12 point Computer Modern Roman ('I@ font). Note: The normal
T@ default font is cmrl0. Any font that is not the default MUST be defined and called
out prior to use.

\footline=~\hss\folio\hss)

Your footer. \hss stands for Horizontal Stretch or Shrink and is "infinite glue". By
having \hss on either side of \folio (which is the macro for the page number), your
page number will be centered at the bottom of your page. Note: This \footline is the
default setting in T)i$ and doesn't have to be placed in your preamble unless you are
changing the font size, putting the number in either the right or left corner, or adding
other information.

\pageno=l

Self-explanatory. If your page number is to begin with a lowercase roman numeral (for
tables of contents, acknowledgement pages, etc.), you would give \pageno a value of -1,
-2, etc. - whatever number you wish to start with (-1 = i, -2 = ii, -3 = iii, and so
on). Note: The \folio macro in your \foot line defines any \pageno less than 0 as a
lowercase roman numeral.

\hsize=6.5in

This is the horizontal size of the page. Unlike ordinary word processing (where you set
the margin space), in W y o u set the text space. \hsize=6.5in is the default horizontal
setting in Tj$ and does not have to placed in your preamble. However, until you become
comfortable with the differences between T@ and ordinary word processing, it is a wise
idea to list the differing commands up front.

\vsize=8.9in

This is the vertical size of the page. Again, text space is being set rather than margin
space. This \vsize is the default setting and does not have to be set in the preamble,
but, like \hsize, it is a wise idea to keep it up there in the preamble until you become
comfortable. Note: With an \hsize of 6.5in and a \vsize of 8.9in1 you will end up

Well, maybe nibble a little, but not hard!

562 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

with a 1-inch margin on all four sides of your paper (and isn't that what you would
have set your margins to anyway?).

\baselineskip=12pt
\basel ineskip is the amount of space between lines, or, more precisely, from the bottom
(or base) of a line to the bottom of the next line. In regular typesetting and some desktop
publishing software, "leading" is the term used, and means the same as \baselineskip.
In general, the leading or \basel ineskip should be 2 points greater than the font for
single-spaced text - or 12 points for a lOpt font. For space-and-a-half and double-
spacing with a lOpt font, the math is simpler: a 15pt \baselineskip on a lOpt font for
space-and-a-half, and a 20pt \basel ineskip for double-spacing.

\parskip=6pt plus 3pt minus 2pt
Additional space between paragraphs - but not as much as "two returns". The plus
and minus points give '&X additional shrink and stretch "glue" to use at its discretion.

\parindent=20pt
This is the paragraph indent. 20 points is approximately the same as 5-space indenting.

\over fu l l ru le=lp t
The \overfu l l ru le command is a handy little device that has no real equivalent in
ordinary word processing. This command, when set for a value greater than 0, will put
a black line beside any text that exceeds the \hsize on any line. Note: You will receive
an Overfull \hbox message in your log when you send your document to typeset, but
if your L'overfullness" is less than 5 points, you probably will not be able to see it on the
page, and thus not be able to fix it, without the line generated with the \overful lrule
command.

\raggedbottom
No, this is not a description of how you will feel after a day of QX training! This
command tells T@ to permit a small amount of variability in the bottom margins on
different pages in order to make the other spacing uniform (p. 111 of the rnbook). If
you choose not to use \raggedbottom, the default is \normalbottom, which will make
all of your bottom margins the same on every page - even though it means stretching
the text space on the page and making it look funny.

Word Processing - First Pass
Once you've established the preamble, it's a good idea to have your student type the commands into
a document. Not only does this get her into the feel of typing \backslash in fiont of just about
everything, it's also a good opportunity to show her that she can use any editorlword processing
application that suits her fancy. On a VAX, EDT is my editor of choice, but I've also input TpJ files
in Word-11, TEDI, and on Macintosh, in Microsoft Word.

One word of caution in regards to inputting T@ with a word processing application. You may
use all of your "gold" key applications, editor keypad, and user-defined keys (UDKs) as you normally

would to move around in your document, cut and paste, etc. However, you may not format in
that application. No bolding, underlining, tabbing, super- or subscripting, etc. If you are using an
application that puts in internal formatting (such as Version 4.0 and above in Word-11), you must
strip the file of the formatting before sending it to w. Your best bet is to simply type in block
paragraphs and let the text word wrap. While in a word processing application, you can still type
your TEX commands, \backslash and all.

On Macintosh I've found that, while typing in Microsoft Word is fine, it takes a lot more steps to get
it into Textures (the Mac version of p l a in . tex). First, the document must be stripped of formatting
by saving as a text-only file, then copied into the clipboard. Textures must then be opened and the
clipboard pasted in. If the document is too large to move with one cut and paste, Textures has to
be closed, the text-only Word document re-opened, and the whole cut-and-paste procedure performed
again. Consequently, when teaching TpJ on a Mac, I wholeheartedly encourage the student to just
type in Textures - which operates similarly to EDT.4

Of course, if she's stubborn, I'll let her type in Word and go through the whole horrid procedure of moving the

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

2.2 Macros
Once you've gotten past the preamble (and the dreaded first document), macros are a real snap. Macro

simply means definztzon. Macros work a lot like UDKs or cut and paste. Instead of storing a string of

keystrokes, commands, etc. in memory under a key or in a buffer, you simply define your string (\def)

and assign it a label (\cc). The definition of the keystrokes is then enclosed in curly braces (0). For
example:

\def\cc{\centerline{)} This macro defines a \phantom (invisible) \ cen te r l ine the depth of

1 \basel ineskip (or, in plain English, a blank line). The empty set of curly braces next to
\cen te r l ine means the set is empty.

The preamble commands are made up of macros (z.e., \map i f i c a t i o n , \f oo t l i ne , \pageno, etc.).

The Wbook lists all of the macros that come with 7&X (hundreds of them). In addition, you can write
your own macros (just like \cc above). Macros can be abbreviations for typing complex commands,

or simply for words. phrases, or sentences that are used over and over again. They can contain font

changes or formatting such as bolding, italicizing, underlining, and the like. By writing a macro, you
can save yourself untold number of keystrokes (or "mouse clicks" or dragging down menus. etc.). You

can even "nest" macros within macros. For instance:

\def \bbC\cc\cc\cc)

By using the macro \cc inside your definition, you've now got a macro for 3 blank lines. Some other

macros that I have found helpful are:

\def \ ie{{\ i t i . e . \/) ,) macro for italicized "i.e.," with ztalic correction5

\def \ea{{\it e t a l \ /) ,) macro for italicized "et al," with ztalzc correctzon

\def \eg{{\it e . g . \/) ,) macro for italicized "e.g.," with italic correctzon

\def \underscore#l{$\underline{\smash{\vphantom{y)){\hbox{#l)))$) macro for underlining
text so that the underline goes below a lowercase descender6 rather than through it.

Regarding \underscore, above, I am unaware of any word processing application where this feat is

possible using the underline key/command. This is also one macro where it is wiser to quote Joe Isuzu7
rather than to try and explain to a l)$ first-timer the meanings of all the commands in the definition.

Word Processing - Second Pass

Once your student has grasped the concept of macros, have her go back to her document (the one with

the preamble in it), and create some of her own macros for it. If you want to get her really crazy, show
her how to write a whole document using nothing but macros! See Figure 1.

2.3 (The Dreaded) Math
Now that you have your student (a) thoroughly confused, and/or (b) totally in awe of your incred-
ible genius and unique abilities, it is time to drop the "Big One"8 on her - Typing Mathematics
Equations!!!!!

Contrary to every word processing operator's belief, math typing does not have to be one of those

situations where, if given a choice between typing the math and hurling yourself in front of train -

you'd choose the train!g The key to typing math in is to "walk (and talk) yourself through the

equation." In other words, if you "say" the equation, you can type it. The hardest part of math

typing, style, is remembering all those #!$%* curly braces!
The answer to all of your student's questions, when it comes to math typing is "'IjEX will take care

of that." will:

document. I can guarantee she'll abandon Word entirely for the second document, and I won't even have to nag.

Italic correction squeezes in a liitle bit more space between the last italicized character and the next "normal"

character. Otherwise, the slant of the italics could make the letters/characters overlap one another or make them appear
too close together.

Fancy terminology for the part of the letter which extends below the baseline: g, j, p, q, and y.

"Trust me".

A little organ music would be nice right here, preferably with very deep bass chords.

That is, if you can type the math in w. If I had to type math in ordinary word processing, I too would choose the
train!

564 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

\def\mom(\par Dear Mom, I love you forever.)
\def\cookiesi\par Please bake me some chocolate chip cookies.)

\def\butterC\par You're the best Mom in the Whole Wide World!)

\def \junki\par Can we go to MacDonald's tonight for dinner?)

\def\psC\par By the way, if my teacher calls, I really didn't throw

the whole can of red paint on her!

\medskip

({\it It was only half a can\/))

\def\snow(\mom \cookies \butter \junk \ps)

\snow

Dear Mom, I love you forever.
Please bake me some chocolate chip cookies.

You're the best Mom in the Whole Wide World!
Can we go to MacDonald's tonight for dinner?

By the way, if my teacher calls, I really didn't throw the whole can of red paint on her!

1 (I t was only half a can)

I Figure 1: A macro to go crazy by . . . and the end results!

center

proportionalize all the delimeters
0 change font size for super- and subscripting

0 do Greek and symbols (all symbols!)

put equation numbers where they belong

put equal space above and below a displayed equation and text

not change your line spacing when typing math in a text sentence
0 make your equal signs line up in a complex equation

change the baby and get dinner started before you get home!lO

Instruct your student that all she needs to do to invoke math mode is type a dollar sign or two; one
$, and she can type math inside of a text sentence. To leave math mode, she simply types another $

(a lot easier than having to use code keys, alternate font codes, or leaving the document altogether,
going into another program to type, and then having to port the equation back). If she wishes to type

a displayed equation, she uses two dollar signs ($$) to get in and two $$ to get back out. Of course,

with math, you can instruct until you turn blue, but the best way to teach the concept of math typing
1s. . .

Word Processing - Third Pass

The hands-on method is the only way to go when it comes to math typing. Have your student create a

document (or use the same one she's been practicing in), and give her some very simple math equations

to start out with. For example:

- - - -
2 P '

e = mc" , and x =
2a

Of course, you will have to give her the commands for f and c. The next thing is to tell her

that whenever she sayes a command (such as "over") that she will use a \backslash in front of it.
Tell her to think of superscripts as "up" and to use the caret symbol (-); subscripts are "sub and

the command is the underline symbol (-). Curly braces are also something that need to be walked

lo No, no -just checking to see if you're still with me on this one.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

through. Learning their placement just comes with a little time and practice. It helps if, in talking

the student through, you tell her to say LLbegin" and "end" with each equation and its parts, and to
put a { with the "begin" and a) with the "end". Furthermore, tell her to type (in regular English

words) everything that she says in the equation (numbers, of course, can be typed in regular English

numbers). Thus, the equations above, would look like this:ll

$(begin) Cl\over 2) (end) = (begin) {\alpha\over\beta), (end) $

$e = mc (up>"2,$

$$x = (begin){-b (p lus o r minus)\pm

(square roo t) \ sq r t (begin) {b (up) -2-4ac)(end)

\over 2a). (end) $$

3. Conclusion

. . .and at the end of the training session, 7j# said ' ' \ r e l a x J ' , and i t was good.

By now, you've given your student a smattering of the things that can do. This is by no means

a complete smattering. It is, however, enough for an afternoon's worth of training - and enough to

get your student's appetite whetted for more 'I)$. It is enough to get your student thinking about all

the things she might be able to accomplish with w . And it is enough to make the first few chapters

of the m b o o k semi-understandable in one reading.
There are quite a number of basic w skills that have not been touched upon here. Those

include t a 6 fields for tables; itemizing for outlines; commands for underlining, bolding, and italicizing;

and commands such as \ l e f t l i n e , \ r i g h t l i n e , and \ cen t e r l i ne (not to mention how to read error
messages, or get back at TEX for some of the snotty comments he's prone to make). But stop and think

about what has been accomplished here. The training, as outlined above, has taken a program that has
generally been perceived as mysterious, forbidding, and unfamiliar, and made it more understandable

and accessible. It has given your student enough to get started in w, and enough to produce a basic
text document - and be comfortable doing it. It has shown her that math math typing can be pretty

straightforward and much simpler than in any other software application that she may be familiar

with. Your student will, of course, have many questions over time, and more than once will require

your assistance. She will not know what makes tick, or really why w works at all. But, she will

be able to LLdrive the car."

There will, of course, be other afternoons to show your student (and presumably, co-worker) how

to set up tables. You can walk her through \item and \itemitem over the phone. The same holds true

for \ l e f t l i n e , etc. But, hopefully, you can see where this technique of in-house training can lead, and
you will be able to go about setting up your own training program to meet the needs of your company

and its employees.

One word of warning, however; once you have taught a word processing operator the basics of w.
she may not want to type in WordPerfect, Microsoft Word. Word-11, or any of the myriad assortment

of ordinary word processing applications, ever again. She may develop an extreme disdain for ragged

right margins and non-proportional spacing. She may even begin to talk funny (offering the opinion
that an "overfull \hbox is by far a worse problem than an underfull \vbox!"). Furthermore, the more

she learns about TEX, the more she's going to want to learn. She may no longer be content to merely
"drive the car" - she's going to want to know how to put the engine together. You just may be

creating a monster!lZ

Bibliography

[l] Knuth, Donald E. T h e w b o o k . Reading, Mass.: Addison-Wesley. 1984.

[2] Rees, Clair. "The Training Issue." WordPerfect , T h e Magazine March 1989, p. 4.

l1 The "(begin)", "(end)", "(up)", etc. (all the words enclosed by parentheses) that you see typed in the equation

commands are only to show what you want your student to say while she is typing. In the actual file, these words would

not be typed.

l2 Grrrrr!

566 TUGboat, Volume 10 (1989). No. 4- 1989 Conference Proceedings

TFJ and Its Versatility in

Department of Mechanical and Materials
Washington State University
Pullman, WA 99164-2920
Bitnet: jarhicksQwsuvm1

Office Production

Engineering

ABSTRACT

Probably the two most challenging situations an office administrator faces are: 1)
strategies to maximize the efficiency, and 2) planning for increased output. Over the
past ten years, tremendous changes have occurred: the PC has literally replaced the
word processor which previously had replaced the typewriter; fax machines can now send
documents faster than special overnight mailing services; photocopiers, built for speed
and efficiency, are overwhelming as they devour tons of paper in mere seconds. In the
face of all these advancements, secretaries have been expected to adapt to and accept all
these changes.

But with the various types of PCs came the problems of selecting the right type of
software, drivers, printers, and fonts. The costs alone for upgrading software and equip-
ment are high - especially when an office needs three or four different software programs
for word processing, graphics, spreadsheets, and databases. When the Department of
Mechanical and Materials Engineering at Washington State University was in the process
of upgrading their existing computer and word processing facilities, much thought was
given to these problems. It was decided to utilize a program which was already installed
on the mainframe, TJ$, and build everything else around w. The department has been
using TJ$ and W T 1 (a program developed by WSU based on TEX) for the past four
years. The focus of this paper is on the integration of T)@ and W T l into the office
workplace.

During the early 1980s, the Department of Mechanical and Materials Engineering at Washington
State University developed a comprehensive Strategic Planning Guide. This Guide reflected the goals
and strategies necessary to meet the demands of a growing department. One of the fundamental issues
was that of academic computing (i.e., research and instruction), and the need for more computers and
modern computer facilities for faculty and students. As monies were appropriated for computer growth
and expansion, the Department began to hire new faculty with strong backgrounds in computers.
However, it was soon apparent that the existing word processing facilities were not adequate to handle
the large typing loads. At that time the Department owned several IBM typewriters and an IBM Mag
Card I1 which was shared by the department's two technical secretaries. The Department decided to
upgrade to state-of-the-art word processing equipment and purchased two IBM Displaywriters.

The impact was felt immediately as secretarial workloads were handled more efficiently and the
processing time for typing requests were cut nearly in half. The new equipment was relatively easy to
use and the staff were very enthusiastic about working with the new word processing stations. How-
ever, the Displaywriters were cumbersome when it came to typing mathematical equations and other
technical material, and there was very little written documentation available on this topic. Through
trial and error, the secretarial staff devised a method for typing equations on the Displaywriter, but
the technique was awkward and tedious.

In 1984, the Department conceded that its office equipment was antiquated. The personal computer
industry had completely replaced the more conventional word processing systems. The only possible
solution was to integrate personal computers into the office system. However, there were so many

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 567

different models of personal computers on the market, along with the various types of software, drivers,
printers, and other hardware. The variety in software opened up new areas of office development:
databases for compiling mailing lists and reports, spreadsheets for budgets and other accounting needs,
and graphics for tables, charts and slides. The Department realized it needed to re-evaluate the role
of its administrative office and address these new areas. The faculty also voiced their opinions about
what types of software and hardware they wanted the office staff to use, and it soon became apparent
that this was going to become very expensive. It was about this time that one of the secretaries, Jo
Ann Rattey, discovered a solution to the personal computer problem.

She had agreed to type a 45-page appendix containing complex equations and tables for a doctoral
candidate's dissertation. The doctoral student had been using a program on the mainframe called
W T l to type his dissertation. He showed her samples of his work and she quickly realized that this
program could easily solve many of her own problems regarding technical typing. She showed these
samples to departmental chair and the office supervisor, and they agreed to give the program a try.
The secretary spent the next several weeks learning the fundamentals of l&X and w T 1 , and using
a computer terminal installed in her office, typed a few short proposals and papers. The faculty raved
about the professional quality of their proposals and papers, and insisted that training sessions be
conducted. Another feature that made w and W T l very desirable was the fact that all users had
free access to the software. This alone meant considerable savings since the only equipment needed to
use T@ and W T 1 was a computer terminal connected to the mainframe and the traininglreference
manuals. At this point in time, personal computers were still very expensive and the Department was
trying to equip every faculty and staff office with a connection to the mainframe.

When the personal computers were finally installed in the main office, they were linked to the
mainframe with a terminal emulator. This greatly added flexibility in that work could now be processed
either using Microsoft Word or the two typesetting programs on the mainframe. At first little, if any,
work was done using MS Word on the PCs because Word was not equipped to handle technical typing.
In fact, MS Word was behind the Displaywriter software when it came to technical typing. Of course,
there were additional software packages available to interface with Word and make technical typing
possible, but the main goal of the Department was to avoid spending a lot of money on different
software. Therefore, with free access to T&K and W T l on the mainframe, it did not make sense to
purchase additional software to interface with MS Word.

One particular problem did come up which made it necessary to decide whether all material should
be typeset on the mainframe. The Computing Center decided to install new IBM laser printers in
several locations on campus and to charge all users a flat rate per page printed. This resulted in the
Department incurring an average of $600.00 in monthly printing charges. It was decided to use Word
for non-technical material, i.e., letters, and memos. This decision was also beneficial to the majority of
the faculty who typed their own correspondence and submitted their disks to be formatted and printed
on the small HP LaserJets in the main office. All other material (reports, papers, proposals, slides,
and exams) would be typeset using l&X and W T 1 .

Interestingly, as the secretaries became more experienced using w and Z&XT1, they began to ex-
periment by typesetting brochures, programs, slides, bar charts, flow charts, and other things normally
sent out to the Publications and Printing Office (see Appendix A for sample formats). The department
quickly discovered that documents could be produced in-house approaching the quality available from
Publications and Printing. However, special needs quickly surfaced: for example, how to integrate
graphics into typeset documents. The department's Assistant for Computer Services, Mike Shook has
modified Tektronics' PLOT10-TCS subroutine package to generate files which can be used by W T 1
and printed on an IBM 3820 page printer. He has also been using PC image processing software in
conjunction with a TV cameralframe grabber which creates PSEG 3820 files which W T 1 can use to
produce full page images. Now text and graphics can be compiled into one file and printed. This
feature has resulted in less dependence on the College of Engineering's Design Office, and allows the
user to control the design content.

The department felt that a database software package was a good investment, and dBASE I11 was
purchased. However, it was soon discovered that w and W T l would not interface with database
software. This became critical when a faculty member wanted to send material to an extended list
of addresses stored on a 5.25" floppy. The addresses were uploaded to the mainframe and put into a

568 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

l)$ file. The file was quickly formatted using T@T1 commands and printed out on plain bond paper
in a three-column format (see Appendix B for sample file), and xeroxed onto address labels. dBASE
was used to add delimiters to the original address file on the floppy disk and merged into a shell letter
typed with Word. Although this process seems complicated, it actually took less than one hour to
print out over 100 letters and addresses.

Recently, the department purchased new HP LaserJet printers and connected them to the main-
frame via Gandalf boxes. These boxes make it possible to switch the printers from parallel to serial
ports at the touch of a finger, thus allowing the user to print from either the PC or the mainframe.
In order to print from the mainframe, the Computing Center had to establish each HP printer as a
separate print destination and an access file had to be established on each user's account. The access
file allows the user to print from the mainframe and controls who may use the printer.

The major advantage of printing on the LaserJets is that there are no monthly printing charges,
and this has resulted in a further drop in departmental printing charges. There are three problems,
however, in using the HP LaserJets to process TEX files: 1) Hewlett Packard does not support the IBM
Sonoran fonts; 2) the printers are slower than the IBM 3820 and 3812 printers, and 3) the texdvi file
does not allow selective printing of pages. As it stands now, the font that is supported by HP - the
Computer Modern font is adequate for most printing needs - but it is hoped that these problems will
be corrected within the next few years.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Appendix A: Sample TI Formats for Creating Flow Charts
..a.

\not it lepage

\drawboxmatClOpt)

\drawboxrulesizeCIpt)

\ l i n e ~ \ h f i l l ~ \ d r a w b o x (\ v b o x (\ h s i z e = l i n (A e \lbr \hs(lOpt) QP-CE-o) =

P-E@)>>)\hf ill)

\vs{-2pt3
\clCQ\downarrow@)

\lineC\hsC2.lin~\drawbox(\vbox(\hsize=l. 8inCalculate @\Delta P-(E-o)@

\lbr \hsCISpt) from @(\Delta P-E/\Delta P-CE-o))@)))\raiselSpt

\hbox to .7in{ \leftarrowfill@\Delta P-E@)\hfil)

\vsC-2pt)
\clC@\downarrow@)

\line{\hfill~\drawbox~\vbox{\hsize=1.8in~Calculate gas flow\lbr\hsC15pt)

velocity using @\Delta P-{E-o)Q))))\hf ill)

\vsC-2pt)
\clC@\downarrow@)

\lineC\hf ill{\drawbox~\vbox{\hsize=1. 8 i n C a c a t e @\Delta P-IT-o)@\lbr

\hsCl5pt) using gas velocity))))\hf ill)

\vs{-2pt>
\clC@\downarrow@)

\lineC\hsC2.lin~\drawboxC\vboxC\hsize=l. 9inCCalculate @\Delta P-T/

\Delta P_IT_o)@\lbr\hs{32pt) and evaluate Z)))\raise15pt

\hbox to .7in(\leftarrowfill @\Delta P-T@)\hfill)

\vsC4pt 1
\hs{lin) Z not converged

\vsC2pt)

\clC@\bigcirc@)

\lineC\hsC3.044in) @\Bigg\downarrow@ \raiselpt\hbox{Z converged)\hfil)

\lineC\hfillC\drawboxC\vbox~\hsize=linCStop and \lbr\hsC17pt) print out))))

\hf ill)

....
% Default page dimensions and margins

\pageformatC\pagelengthCllin) % 792pt = llin

\pagewidth{8.5in) % 612pt = 8.5in

\topmargin(lin) % 72pt = lin

\bottommargin~lin~

\leftmargin{.50in) % 86pt = 1.2in

\rightmargin{.50in)

\bindingadjust(Oin)

)% end pagef ormat

\normalbottom % text height will be the same for each page.
% Bottom lines will be even.

% Specific Font for Computer Modern Sans Serif
\ssf~cmss3C9~Cllpt)

% Markup for Document ==> \cmss9; (implies \iskClI))

7.
% Specific Font for Computer Modern Sans Serif
\ssf CcmssHlO~~l2pt3

% Markup for Document ==> \cmsslO; (implies \isk{l2))

%
\cmss9;

\def\boxit#1~\drawbox~\vbox to 40pt~\vfill#l\vfill)))

570 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

\hs{144pt)\boxit{\hsize=.56in \nin Develop\lbr Target \lbr Specs)

\vs{.50in)

\line{\boxit{\hsize=.Gin \nin Recognize \lbr a \lbr Need)

\hf ill

\boxit{\hsize=.Gin \nin

\hf ill

\boxit{\hsize=. Gin \nin

\hf ill

\boxit(\hsize=.Gin \nin

\hf ill

\boxit{\hsize=.Gin \nin

\hf ill

\boxit{\hsize=.Gin \nin

\hf ill

\boxit{\hsize=.Gin \nin

\hf ill

\boxit{\hsize= . Gin \nin
\vs{.50in)

\lineC\hs(lOOpt3

Set \lbr Design\lbr Objectives)

Create\lbr Alternative\lbr Designs)

Screen to\lbr Satisfy\lbr Objectives)

Select\lbr "BestN\lbr Design)

Prepare \lbr a \lbr Model)

Test and \lbr Evaluate \lbr Model)

Communi- \lbr cate the \lbr Design))

\boxit{\hsize=.Glin \nin Gather \lbr the \lbr Information3

\hsClOOpt)

\boxit{\hsize=.Glin \nin Improve\lbr the\lbr Design)

\hf ill)

\vs{lin)

\clCThe Expanded Design Process - 11 Step.)
....

\paragraphindent{l8pt)\paragraphskip{12pt plus 6pt minus lpt)

\justify \singlespace

\normalbottom

\selectfontset~cml2)~defaultprop~~default~ %
\def aultprop\rm

\selectfontset~cml03~tablefont~~default~ %
\selectmathset~cm97m~~mathdefault) %
\mathdef ault

\not itlepage

\sfs(cmsan1l){elevenptss)Ci3pt) \sfs~cmsan8){eightptss){1Opt~

\def\leaderfill(\leaders\hrule height2pt \hfill)

{\offinterlineskip

\t ablef ont

\halignC\strut\lftC#)\hfil& \vrule# &\hs{2pt)(#)&\hs{2pt)o&\hsi2pt){#>&

\hsC2ptIC#>
&\hf il \vrule# &\hs(3pt)(#)&\hs{2pt){#)&\hsC2pt)(#)&\hs{2pt>{#>&

\hfil\vrule#

&\hs{3pt){#)&\hs{2pt)C#)&\hs(2pt){#)&\hs2pt#& \hfil \vrule#\hfil\cr

&& \multispan{l4) Months & \cr

&& && && && && && && && \cr

Activity && J & F & M & A && M & JU & JL & A && S & 0 & N & D &\cr

&& && && && && && && && \cr

\noalignC\hrule)

&& &% && && && && && && \cr

ISC sub-project: && && && && 8& && && &&\cr

&& && && && && && && && \cr

A. feature abstraction upaate && \multispan5\1eaderfill &&&& \multispan5

\leaderfill && \cr

TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

B. engagement abstraction update && \multispan5\1eaderfill &&&& \multispan5

\leaderf ill&&\cr

C. run time environment design update && \multispan3\1eaderfill && && && && && &

&\ cr

D. run time environment hardware and software update && & \multispan6

\leaderfill && && && &&\a

E. control system design && \multispan3 \leaderfill && && && && && && \cr

F. implement control algorithm && && && &\multispan4 \leaderfill && && &&\cr

G. ISC system testing && && && && &&\multispan5\leaderfill&$\cr

&& && && && && && && &&\cr

Process models sub-project: && && && && && && && && \cr

&& && && && && && && && \cr

H. process model development && && &\multispan5\leaderfill && && && & \cr

I. mechanistic model parameter investigation &&\multispan(lO)\leaderfill && && &

\cr

J. control/process model system simulation&& &&\multispan8\leaderfill && && &

\cr

&& && && && && && && &&\cr

Sensor sub-project: && && && && && && && &&\cr

&& && && && && && && &&\cr

K. design of AE fluid coupled sensor for CNC mill &&\multispan3 \leaderfill && &

& && && && && \cr

L. fabrication of AE sensor && &&\multispan4\leaderfill && && && && & \cr

M. develop AE sensor monitoring environment for ISC && &&\multispan5 \leaderfill

&& && && %&\cr

N. investigate AE signal for end mill surface generation && && && && &

\mult is pan6

\leaderfill && \cr

0. fabricate OM-2 force sensing system && && && && &\multispan3 \leaderfill && &

85 &\cr

P. calibrate and test force sensing system && && && && && && \multispan4

\leaderfill &\cr

&& && && && && && && &&\a

OM-2 installation sub-project:&& && && && && && && &&\cr

&& && && && && && && &&\a

4. complete mechanical and hydraulic installation && \multispan2\leaderfill && &

& && && && && &\cr

R. install contollers && &\multispan5\leaderfill && && && && &\cr

S. initialize controller logic and test system && && && && &\multispan6

\leaderfill &&\cr

T. prepare final report && && && && && && &\multispan2\leaderfill &&\cr

&& && && && && && && &&\cr

\noalignC\hrule)))

....
% Default page dimensions and margins

\pagef ormatC\pagelengthCllin) % 792pt = llin
\pagewidth(8.5in) % 612pt = 8.5in

\topmargin(iin) % 72pt = lin

\bottomrnargin(iin)

\lef tmargin(.75in) % 86pt = 1.2in

\rightmargin(.75in)

\bindingadjust{Oin)

)% end pageformat

\normalbottom % text height will be the same for each page/

572 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

% Bottom lines will be even.
\not itlepage

\pinCopt 1
\cl{\bf{MECHANICAL \& MATERIALS ENGINEERING))

\cl{\bf{ORGANIZATIONAL CHART))

\vsIlOpt3

\drawboxmatClOpt)

\drawboxrulesize~2pt3

\line{\hfill{\drawbox{\vbox{\hsize=2.lin (\nin\bfCDEPARTMENT C~A~~)))))\hfill)

\vsI-5pt)

\cl{@\Bigg\downarrow@}

\vsi2pt)

\line{\hfill{\drawbox{\vbox{\hsize=.8in{FACULTY))~~\hfill~

\vsC2pt3

\newbox\arrow \setbox\arrow=\hbox(O\domarrowQ~

\def\da{\lower8pt\copy\arrow)

\line{\hfill\da

\hs{-1 .2\wd\arrow)

\vrule width 2in height .4pt depth Opt

\vrule width .4pt height 10pt depth Opt

\mule width 2in height .4pt depth Opt

\hs{-1.2\wd\arrow)

\da\hf ill)

\vs{2pt3

\line{\hs{l8pt)~\drawbox{\vbox{\hsize=l. 8inIGRADUATE STUDIES\VSCO~~)

COMMITTEE (ME)))))\hfill {\drawbox{\vbox{\hsize=1.5in{SECRETARY

IV33)) \hsC32ptlI

\vs{2pt 3
\line{\hf ill - Off ice Staff \hs{24pt))
\vs{8pt)

\line{\hs{l8pt){\drawbox{\vbox{\hsize=l. 8in{\nin GRADUATE STUDIES\vs{Opt)

COMMITTEE (MSE)))))\hfill {\drawbox{\vbox{\hsize=l.9in {ASSISTANT

FOR\vs{Opt)COMPUTER SYSTEMS)))) \hsC4pt))

\vsC8pt)

\line{\hs{llpt){\drawbox{\vbox{\hsize=l.9in{UNDERGRADUATE \vs{Opt) STUDIES

COMMITTEE)))l\hfill {\drawbox{\vbox~\hsize=2in {ASSISTANT

FOR\vs{Opt)RESEARCH FACILITIES)))))

\vsC8pt)

\line{~\drawbox{\vbox{\hsize=2.05in~LABORATORIES, EqUIP-\vs{Opt)MENT \&

FACILITIES\vs{Opt) COMMITTEE))))\hfill {\drawbox~\vbox~\hsize=l.75in

{PROGRAM \vs{Opt)ASSISTANT I11 : \vs{Opt) STUDENT SERVICES)))) \hsC13pt))

\vsC8pt3

\line{\hs{6Opt){\drawboxC\vbox(\hsize=l.2in{SAFETY \vs{Opt)

COMMITTEE))))\hfill {\drawbox{\vbox~\hsize=2in {TECHNICAL

SERVICES\vsCOpt~SUPERVISOR)~~~3

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Appendix B: m1 Output of Appendix A

Assume

PE, = PE

Calculate A PEo
from (APE /APE,) 1 -APE

Calculate gas flow

velocity using APE,

Calculate APT,
using gas velocity

Z not converged

Calculate APT/APTo
and evaluate Z

I Z converged

*APT

Stop and

print out

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Develop

Target

Specs n
/ 1 FlFlFF!FiFlFiFI Objectives Designs Objectives

Gather

Information

Improve

Design

T h e Expanded Design Process - 11 Step.

TUGboat, Volume 10 (1989), No. 4 - 1089 Conference Proceedings

I Months

Activity

ISC sub-project:

A. feature abstraction update
B. engagement abstraction update
C. run time environment design update
D. run time environment hardware and software update
E. control system design
F. implement control algorithm
G. ISC system testing

Process models sub-project:

H. process model development
I. mechanistic model parameter investigation
J . control/process model system simulation

Sensor sub-project:

K. design of AE fluid coupled sensor for CNC mill
L. fabrication of AE sensor
M. develop AE sensor monitoring environment for ISC
N. investigate AE signal for end mill surface generation
0. fabricate OM-2 force sensing system
P. calibrate and test force sensing system

OM-2 installation sub-project:

Q. complete mechanical and hydraulic installation
R. install contollers
S. initialize controller logic and test system
T. prepare final report

F M A M J U J L A S O N D

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

MECHANICAL & MATERIALS ENGINEERING

ORGANIZATIONAL CHART

DEPARTMENT CHAIR
A

.1

GRADUATE STUDIES

COMMITTEE (ME) L
GRADUATE STUDIES

(COMMITTEE (MSE) I

I UNDERGRADUATE

STUDIES COMMITTEE

LABORATORIES, EQUIP-

MENT & FACILITIES

COMMITTEE

1 1

SAFETY

- Office Staff

ASSISTANT F O R

COMPUTER SYSTEMS

ASSISTANT F O R

RESEARCH FACILITIES

PROGRAM

ASSISTANT 111:

STUDENT SERVICES

TECHNICAL SERVICES

SUPERVISOR

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Aurion Tecnologia, SA de CV

Arquimedes #219-1
Col. Polanco

11570 MBxico, DF
MEXICO

(52-5)203-2662, FAX 203-5170

ABSTRACT

Since 1985, Aurion has been a leading supplier of typesetting solutions in Mexico,

with applications ranging from simple word processing, to magazines and books, encyclo-

pedias, product catalogs, directories, and ending with the massive Presidential Inform.
Most of these are m - b a s e d solutions, where Aurion develops the macros, and accessory

programs, installs the system and trains the production personnel.

Examining some of these complex publications, we will show the problems encoun-

tered, and show how we go about making the whole cycle succeed: from convincing the
production managers to use m , to finally achieving the output they wanted. We will

also examine some cases where we do not recommend m , and mention the limitations

of l) jX we have run into.

1. Introduction
has had considerable success in Mexico, perhaps helped by the fact that it is pronounced exactly

like W I C O in Spanish: may'-he-coh.

In most cases, the success has been in understanding the users' needs, then providing them with
a complete solution: selecting and installing the system, writing special macros with documentation,

developing special utilities like word processor converters, training the production personnel, telephone

support, and anything else that is needed. The applications are varied and the solutions are quite
satisfactory.

Section 2 describes the more challenging and interesting l&X projects we have encountered; Section

3 talks about how we have managed to make them successful; and finally, Section 4 lists some of the
major limitations that l&X has for commercial applications.

2. Case Studies of Applications
The simplest application in Mexico is as a word processor, with a set of macros that allow fifteen

or twenty effects (center line, change font, etc.) and prevent the user from receiving any unpleasant

error message; this is of course a very limited system, but the easiest one to learn (training took

half an hour) for the very high typographic quality it gives. This is used by one of the secretaries

of the President of Mexico to type speeches, memos, invitations, to label envelopes, and other office
applications.

Many other applications are being pursued in Mexico, from magazines to advertisements to com-

mercial typesetters. We have selected the most significative and describe them in the next four sub-
sections.

2.1 Electronic Publishing - Databases
More recently, this has been called "database publishing". It is a technique to obtain a camera-ready
original as automatically as possible from a database, avoiding re-typing the text, eliminating manual

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 579

markup and pasteup, etc. The idea is very simple: given a format and macros, export the records from
the database with the macro calls embedded; then compose and do only minor manual corrections.
The important part is that the publishing part becomes more or less automatic and transparent, and
the user from then on has to worry only to keep his data updated.

We have developed a dozen similar applications, of which the more interesting are:

Bibliografia Mexicans, National Library of Mexico
This was the first database publication we undertook. It is a bi-monthly publication made from a
database in a minicomputer; originally, the text was printed on an impact printer, re-typed again on
a composer machine and then pasted up manually. When we started the project, the publication was
a couple of years behind schedule.

The solution was simple enough: connect a PC to the mini to download the data with the proper
markup, and then compose and print camera-ready output to a laser printer. The only difficult part
was to take care of the many rules of spacing, fonts and breaks to make the output resemble the Library
of Congress format (see Figure I) , then automate the running heads, index and table of contents. As
a mere experiment, we also produced catalog cards (see inset in Figure 1).

Membership Directory, American Chamber of Commerce of Mexico
The directory is similar to the previous one, but in the last phase the user had to add invocations
to macros to leave space for advertisements (quarter, half, whole page) and to balance the last page
of each section. There were many problems having to do with Overfull hbox, because uppercase
hyphenation was forbidden due to the mixed appearance of many proper names in Spanish or other
languages (see Figure 2).

The first year, the user complained sourly of the time it was taking to get the directory done, not
seeing that it required macro and database development. The second year, one operator produced the
whole 200-page directory in a few days.

J. T. Baker Catalog
This is a 400-page product catalog produced on an annual basis only, due to its complexity. Initially,
the user attempted producing it with an interactive DTPl program, only to discover it took him more
time than to do it manually, even though it required pen drawing and rub-on letters for some of the
symbols. This is a very good example of the kind of publication made best with automation,

although it appears to require a lot of manual tune-up.
Besides the obvious complexity of the pages (see Figure 3), there were other major challenges:
- Each group is a chemical product; it can be broken from a column to the next, but not over

pages.
- There are certain rules for vertical spaces, but not all groups have the same elements.
- Chemical formulas have links on top or below or both.
- The dot fill from Producto to Pureza must always appear; if either is too long, the line must

be broken and the dot fill begin at the left margin.
Currently, production of the whole catalog is truly a matter of hours, to the delight of the user:

not only for the incredible savings in typesetting, but also because it is the kind of publication that
needs to be done frequently, due to changes in products and prices.

2.2 Electronic Publishing - Automation

Calendar, Sistemex
This is a yearly calendar (see Figure 4) with space for appointments; it shows the current day and
week number, the days left, the current month's calendar on even pages, and next month's on odd. At
the top of each day, it shows events celebrated that day. Final printing takes place in two colors.

All of this is wholly automated, using programs that compute the calendar, pull out the events out
of a database, and with a special output driver that produces two pages for the different color plates.

"DTP" is the current acronym for "Desktop Publishing -Ed.

580 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The publisher reported spending two weeks of production time for every month of the calendar,
when it was done with traditional methods. He now spends two hours.

Study of Operations, Mex ican Associat ion of Stock Brokers
A monthly financial report with tables and histograms (Figure 5). Starting with a spreadsheet program
to print the data to disk, a collection of special programs take on from there. One parses the columns
and with a given scale (thousands, millions), computes the histogram, then the table shown at the
lower left is typeset, selecting the first five that are in turn set into the small table on the upper right
(overlapped onto the histogram). The programs produce a T@ file that is next \ input into a master
file, which is then processed and printed.

Current production currently takes literally a few minutes.

2.3 Standard Formats

Encyclopedia of Mexico
Although it is a fourteen-volume work, with six hundred pages per volume, this is actually a fairly
simple two-column publication, because for this edition relatively few photographs were inserted. It is
a good example of what can be automated with a set of two dozen macros, some of them even invisible
(such as boldface characters that were entered in the word processor); it is the most common kind of
application and solution that we have installed.

The difficulties for the macros were in the placement of figures (a space was left and the photograph
was pasted up latter), since it required, for instance, that a page with a two-column photograph would
not simultaneously contain a one-column photograph, and similar placement rules. It also required
that lines would match from one column to the other, forcing all vertical dimensions to be multiples
of the leading and preventing T@ from expanding \pa rsk ip glue, thus in turn creating widow lines,
which the user fixed by adding a word or two. It is worth mentioning that the user had a terrible time
trying to get tables done right; when they were typesetting the Encyclopedia, the Ampersand utility
mentioned in Section 3 was not available.

The whole work is now finished; it took the publisher one laser printer, three PCs, and about a
month to complete each volume from typing to proof correction to camera-ready originals.

2.4 Presidential Inform
This annual Inform2 is the most ambitious project we have undertaken. It consists of two thousand
legal size, landscape pages, with about 70% of them with intricate tables (see Figures 7 and 8), for
which W ' s \hal ign just would not work.

To complicate things further, the production of the whole report takes place in about two months.
The data comes in all formats imaginable, from typewritten text to any number of word processor
or spreadsheet formats, to mainframe databases. The markup had to be extremely simple, due to
the technical level of the operators involved in the project. Finally, both the processing and the
printing had to be very efficient, which did not permit using one of the few available macro packages
for tables.

There were a number of formidable challenges for T@:
- Table contents are many pages long.
- Table heads have over 60 different designs on several levels, with variable heading text.
- There are side notes, with automatic numbering somewhere in the table or heading, with

numbering reset to 1 on each page. Sometimes this note is repeated over several pages or the
whole chapter.

- In some columns (e.g., Unidad de Medida), when the word is repeated, a quote is inserted, but
at the begining of page the repeated word should appear wholly.

- Table contents sometimes have a simple linear structure (Figure 7), but others have a tree-like
structure (Figure 8), with main paragraphs (to the very left) having sub-items and these in
turn sub-sub-items.

2 Consisting of a speech read by the President of Mexico the first day of September, and nine annex volumes with

information about the Secretariats, budgets and similar information.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 581

The project was ready in time before September first last year after developing the following:
- A utility to design interactively the more than 60 table heads and be able to modify them

quickly to the user's specifications. This produced w files to be used later.
- About 30% of the work utilized 58 of those formats, with linear structure and a markup simple

enough to be made with a standard word processor.
- The other 70% was for 2 kinds of tables, that in Figure 7 (simple) and that in Figure 8

(complex); for one or other reason, neither could be marked up efficiently with a text editor
and so we developed database and data entry programs to aid in the process. This program
then automatically produced TJ$ files with all necessary macro invocations.

The necessary TEX macros are rather long and complicated to be even begun to be described here.

3. The Whole Cycle
At the dawn of Desktop Publishing, there was a joke about laser printouts. Production managers
would say they were plain "trash", while finance managers, learning of costs, would say they were "not
bad trash". Back in 1985, when we started showing TEX printouts to professional typographers, they
were very pleased with the many capabilities of TJ$ on pagination, justification, math typesetting,
and of course lower costs. But they were dismayed by other aspects: difficulty to learn, low quality
laser printouts, non-standard fonts, etc.

Some things that are obvious to academic users are not to commercial users. For example, entering
formulas like:

$\int-0-Q\infty f (x) \ , dx$

instead of entering symbols in a special keyboard, requires some knowledge of math, which many
excellent typists lack. Or the accents: having to type as\ l \ , instead of a s i , as it appears in a PC
screen, and as is handled by many word processors is unacceptable for production work. Or the fonts:
the Computer Modern fonts have their merits, but they are no substitute for the many classic and
widely-used font designs. We realized this and similar things when we installed the first systems outside
of universities.

The first task was to develop a hyphenation algorithm for Spanish, which turned out to be quite
simple, since accents do not affect Spanish hyphenation, and since the exception dictionary is small; it
works rather well, except for the fact that 'I'EX will not hyphenate words in the vicinity of an accent.
Next, for the accents, we managed to convince Personal w to produce a non-standard TEX that
could input files with PC extended characters and translate them to control sequences (a to \ ' a) , a
true relief to typists and correctors. We did not attempt to translate the thousands of TJ$ control
sequences nor the Wbook, since people technical enough to understand it would be proficient enough
in English to read it.

The second task was to develop a set of macros that had the basic things needed in any publication,
as an addenda to plain: all kinds of paragraph shapes, boxed text, multi-column (two to thirteen)
output with optional balancing, formats for letters, inclusion of images, optional but very precise crop
marks, etc. All of this is written in a way that allows easy customization for different applications;
for example, the \footnote macro is written with about ten parameters affecting the vertical spacing
between them, the font used for text and numbering, leading, paragraph shape, etc. As well, many
rather fancy \output routines can be written in 10 lines, with high precision in the positioning of
headers, text box and other elements of the page. This set of macros is essentially a re-write of the old
F B c i l - m macro package (written for m - 7 8 in 1980-81) that circulated in the public domain.

Documentation for this and for the basic control sequences of p l a in was written in Spanish, and
a three-day (12 hour) hands-on course was designed to teach it all. After this training, most users can
do simple things and can use the Wbook as a reference. Users ranged from university professors,
to phototypesetter operators, to people who had to be told how to insert a floppy disk into a PC. In
general, about 75% of these are still happily 'I&King, and many have trained other users.

Having finished this training, we started work with users on their particular applications, some-
times doing the macro development in their presence for their additional understanding. We usually
supervised closely the production of their first documents until both were satisfied. After this, we
seldom received further requests for major help, only occasional questions.

As for output drivers, in the early stages we developed the screen previewer MAXview, which

582 TUGboat, Volume 10 (1989)) No. 4- 1989 Conference Proceedings

is very simple to use, fast, handles high-resolution n~onitors, and has the enormous advantage from
the very first versions, to be able to use the laser printer fonts and reduce them for any screen. This
program was later adapted to drive high-performance laser printer video controllers (such as Tall Tree's
JLaser and LaserMaster's C APCard) ; these drivers have the same functionality as MAXview, and were
designed to be very fast (up to 5 pages per minute) and precise in sizes and margin positioning. They
also handle legal size, landscape printing (without special fonts), Paintbrush images, can reduce pages
to show 4, 9, or 16 pages per sheet for fast proofing, etc. A special version can handle a resolution of
600x300, when used with specially generated cmr fonts, or with Bitstream outlines. We also have in
the works a driver that takes advantage of the laser and screen controller boards ability to scale fonts
on the fly. MAXview made it outside of Mexico, but not the laser printer drivers.

As an outgrowth of the Presidential Inform project, we developed an interactive utility called
Ampersand that allows designing and filling very complex tables, to the extent that users will hardly
ever need to use \halip again for tables. To do it, one designs interactively the table layout, the
heading, rulers, sizes, fonts, leading, etc., producing a TFJ file, compatible with plain. Then with
another program, the table data is appropriately marked up for insertion into the table, which may
be more than one page long. Finally, both files are \input and the table is ready. The markup is
made simple enough that you can even easily edit those files to change something, without needing to
start over. The utility is so flexible, it even allows making flow or organization diagrams, as shown in
Figure 9. A first release will be available at the time of the TUG meeting.

4. TEX Drawbacks and Limitations
TJ$ is an extraordinary tool, but awfully hard to use if special page layouts or complicated elements
such as tables are needed. It is too much to ask a user in a commercial environment to undertake
reading the W b o o k to attack applications such as those described in Section 2, or to be happy with
the layouts found in a macro package such as L%TEX, whose styles are probably as hard to define as
in plain. We doubt that any of those applications would have been successful without extensive joint
work with the users and special training for the operators. For this same reason, the least successful of
our customers are in sites such as publishing houses, which constantly require many special definitions
and which cannot and will not depend forever on our help.

There are other inherent limitations of TEX that we don't see how to solve without considerable
effort, and are important in commercial applications:
- The \doublehyphendemerits takes care of two consecutive hyphens, but does not allow to set a

maximum of three or any given number of consecutive hyphens, for example, which becomes critical
in narrow text. Once, trying to set very narrow text (7 or 8pc), we had to allow more than two
consecutive hyphens, but then obtained a paragraph with 20 consecutive ones! A partial solution
is to increase the \hyphenpenalty and allow greater \hbadness and similar parameters.

- Even when allowing only two hyphens, TJ$ allows any number of adjacent lines ending in punctu-
ation signs, something that many typographers consider unacceptable.

- Many typographers in Mexico do not allow two lines to begin or end with the same (usually short)
word, like "the", and T& has no control over this (called alley streets or rivers). Fixing this kind
of thing, as the last two items, requires much effort, as you have to insert a \break, compose again,
preview, and so on.

- Although not considered a very good practice in fine typography, allowing variable interletter
spacing in lines is sometimes the only way to get a paragraph to right justify without re-phrasing.

- ?&X does not handle tracking (changing the character widths by a uniform predefined amount, to
make fonts tighter or wider), without generating a whole new tfm and fonts, or without special
extensions to the program itself and to the output drivers.

- If a publication is needed with, for example, side notes to the right on odd-numbered pages and
to the left on even-numbered pages, because of W ' s look-ahead algorithm, one is tempted to use
macros like \ i f odd \pageno. . . which naturally don't usually work near page breaks. Of course,
there are ways around it (as in the Presidential Inform side note numbering), but usually in rather
complicated and particular ways.

Other limitations of TFJ have been solved by Ferguson's Multilingual version of TFJ: for example,
being able to specify the minimum size of a word and minimum letters at begining and end, to allow

TUGboat, Volume 10 (1989). No. 4- 1989 Conference Proceedings 583

hyphenation, and the ability to hyphenate accented words.
Given a typesetting problem, in general if it is easier to describe how to do it than to do it, we

would still recommend w; such is the case with a straightforward text book, but not in the case
of a multi-column magazine whose layout changes from issue to issue. A recent example of the first
instance is the Department of Publications of the University of Mexico. Producing several dozen books
per month, these are part of about only 50 collections with the same page design; macros can then
be developed with similar syntax over different collections so that typists can be trained to do the
initial markup, with one or two moderately educated Tmperts composing, previewing and fixing final
details. Some of these collections, such as the art books, are too complicated to be handled by macros
and are being produced with an interactive DTP system.

However this is rapidly changing, as many other DTP systems allow defining page layouts in-
teractively, and markup of text with a text editor, but in the previewing phase, allow interactive
modifications without going back to the original text (Ventura Publisher, for example). Nevertheless,
for most applications and the solutions described in Section 2, ljijX is still a good choice.

Bibliography

Knuth, Donald E. The ~ b o o l c . Reading, Mass.: Addison-Wesley, 1984.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 1: Bibliografia Mexicana

Ciencias sociales (300)

Sociologfa (301)

Gonzl lez Loyola, P a b l o

Introducci6n a la teoria sociol6gica / Pablo Gonzb-
lez Loyola. - Querdtaro : Universidad Aut6noma de
Querdtaro, 1982.

237 p. ; 21 cm. - (Universidad Aut6noma de Queretaro.
Set. humanidaden. Colec. historia y sociologla)

Bibliogrdfa: p. 225-236.

1. Sociologia. I. Universidad Aut6noma de Queretaro.
11. t. 111. Set.

SO1 83-3968

P e l t o , P e r t i J.
E l estudio de antropologia / Pertti J. Pelto, George

D. Spindler. Con un capitulo final en que se sugieren
metodos a 10s maestros para la enseiianza primaria y
secundaria / por Raymond H. Muessig y Vincent R.
Rogers ; tr. Antonio Garza y Garza. - Mdxico :

UTHEA, 1980.
xii, 199 p. ; 17 em. - (Manuales UTHEA. Arte ; 356)

Traducci6n de: The study of anthropology.
Incluye bibliograffas
ISBN 968-438-356-8

1. Antropologla - Est. y ens. I. Spindler, George D.
11. Muessig, Raymond Henry. 111. Rogers, Vincent Robert,
1926-. IV. Garea y Garea, Antonio, tr. V. t. VI. Set.

SO1 83-3897

Gobiernos centrales (351)

M a d r i d H u r t a d o , Migue l d e la , Prea. de MCzico,

1984-

Palabras del Secretario de Programaci6n v Presu-
puesto Miguel de la Madrid H. en la R e u n i 6 n l
toria del Programa de Capacitaci6n de Empl'
la S.P.P. : ciudad de Mdxico, 22 de mayo
- Mdxico : SPP, Direcci6n General de Di
Relaciones Pdblicas, 1981.

6 p. ; 23 cm. - (Mexico. Secretarla de Progri
Presupuesto. Direcci6n General de Difusi6n y Relacio
can. Set. intei-vencionea y entrevistas ; no. 75)

ISBN 968-809-262-2

1. Empleados - Capacitaci6n - Mexico - Alo
conf. 2. Mexico. Secretarla de Programaci6n y Presr
Personal - Direcci6n. I. Mexico. Secretarla de Pro1
y Presupuesto. Direcci6n General de Difusi6n y Relat
blicas. 11. Reuni6n Evaluatoria del Programa de Ca.
de Empleadon de la Secretarla de Programaci6n y P I
(1981 : Mexico, D.F.). 111. t. IV. Set.

351.7220972 t L

Generalidades (571)

Univers idad Nacional A u t 6 n o m a d e Mexico.

D i r e c c i h Genera l d e Servicioe Medicos (7a
Jornadas Internas de Trabajo : 1982 : Me'zico, D.F.)

Memorias / VII Jornadas Internas de Trabajo. -
Mdxico : UNAM, Direcci6n General de Servicios MC-
dicos, 1982.

viii, 367 p. : il. ; 20 cm.

'25 y 26 de noviembre de 1982. Auditono de Centro Medico
Universitario, Ciudad Universitaria, D.F."

1. Universidad Nacional Aut6noma de M k i c o - Asuntos
sanitarios - Congresos. I. t.

371.710672 83-3558

Educaci6n elemental (572)

Beatriz : muiieca viva : con guardarropa para todo el
aiio [Modelo]. - Mdxico : Fernhdez, 1197-?]

1 muiieca de cart6n, 20 veatidos, trajes y abrigos, 11
sombreros y rapatos, 1 tijerss : cart611 y papel, col. ; en caja,
34 x 25 x 4 cm. - (FESA ; 4276)

Modelitos.

1. Actividades creativas y trabajos preescolares. I. Set.

372.55 3245

Erdndira y sus trajes regionales [Modelo] : muiieca
viva. - Mdxico : Fernbndez, 1197-?].

1 muileca de cart6n, [16] trajes, 1 tijeras : cart6n, papel y
p h t i c o , col. ; en caja, 34 x 25 x 4 cm. - (FESA ; 4276)

"Los m b vistosoa trajes tfpicoa de Mhxico'.
para solita'

1. Actividades creativas y trabajos preescolares. I. Set.

372.55 83-3308

-l
Wilcmr, Prancia Orlando, 1908- cd.

The Atlantic community: progress snd prospects. Edited
by Francis 0. Wilcox and H. Field Hsviland, Jr. New York.
Praeger [196S]

vUi. 294 p. 21 cm.

T h e .nay, ... origlndly appeared In a ~pecial Lsu. 01 Internationd
orpanirstlon ... voi. xvU, no. 3, summer, 1963.'

Bibiiorraphicai footnotes.

1. North Atlantic region - Politiu. I. H a v h d , Henry Field, 1919-

joint ed. 11. International orgsnhtion. 111. Title.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 585

Figure 2: Membership Directory

A

A SUS ORDENES, S.A. 578-9348
Av. Chapultepec 57, Mezzanine
Col. Centro
Del. Cuauhtirnoc
06040 MBxlco, D.F.
Lic. Fernando Yllanes Ramos, President; Paul P. Payne, Vice-
President; Lic. Gerardo Salinas Baigts, General Manager.
Employment agency.
Established 1968 Personnel 25

A CALDERONI. S.A. 51 0-3887
Ayuntamlento 161
Col. Centro
Del. Cuauht6rnoc
06040 Mixlco, D.F.
Alfredo Calderoni Garcla, General Director.
Manufacturers of industrial carbon.
Established 1962 Personnel 7

A. PALAZUELOS Y COMPARIA, S.C. 533-1430
Collrna 114, ler. Plso
Col. Rorna Sur
Del. Cuauht&rnoc
06700 Mbxlco, D.F.
Allredo Palazuelos, President; C.P. Felix Palazuelos, Director;
Andres Palazuelos, Manager.
Customs brokers, air freight, shipping containers.
Established 1920 Personnel 200

A.B. CHANCE DE MEXICO, S.A. DE C.V. 397-1 333
Camino Real de Santa Mbnica 238
Col. Vlsta Herrnosa
54080 Tlalnepantla, M Q r
Ina Julio T. Moreno. President and General Director: C.P. Helio

A.E. VON HAUCKE, S.A. DE C.V. 533-2762

Salarnanca 34, 20. Plso
Col. Rome
Del. Cuauhtimoc
06700 MQxico, D.F.
lng. Juan M. del Castillo, General Director; Ing. Jose del Castillo,
Comptroller; Lic. Pedro R. PBrez Orozco, Commercial Director.
Manufacturers of modular office furniture.
Established 1968 Personnel 110

A.F. ROMERO & COMPANY, INC.
477 Railroad Boulevard
P.0. Box 989
Calexlco, CA 92231
U.S.A.
Alex Rornero, Executive.
Customs brokers.

A.H. ROBINS DE MEXICO, S.A. DE C.V.
Autopista Mixlco-Querbtaro Km. 37
Apdo. Postal 71
54730 Cuautltlfin, M e r
Ennio Sdnchez Jasso. Vice-president and General Manager, Earle
A. Jurgensen. Market~ng and Sales Manager, Jose LUIS Pacheco
F., Purchasing Manager; C.P. Felix Ovando Venegas, Finance Man-
ager.
Manufacturers of pharrnaceutcals.
Established 1960 Personnel 200 Telex 171311

~ i d r i ~ u e z , ~inance' Director; Ing. Pedro Ochoa, commercial
A.S., S.A. DE C.V.

Director; C.F! Florentino Rodriguez, Adrninistratrive Manager; ing.
See Guadalalara M~~~~~~

Mario Viilavicencio. Materials Director.
Manufacturers of electrical capital goods.
Established 1952 Personnel 289 Telex 172634

A.C. NIELSEN COMPANY 395-0399
Josh Luis Lagrange 103, Desp. 11
Col. Chapultepec Morales
Del. M. Hidalgo
11570 MQxlco, D.F.
Apdo. Postal M-2638
06000 Mixico, D.F.
A. Traslosheros, General Manager; J. Oviedo, Administratrive Man-
ager; I. Chftvez. Finance Manager.
Retail audits, consumer panel, advertising expenditure measure-
ment, ad-hoc studies, special analysis.
Established 1967 Personnel 509 Telex 1773104

A.C. NIELSEN COMPANY DE MEXICO, S.A. 5-1 022
Av. Lerdo 251 Norte
Col. Centro
32000 Ciudad Juhrez, Chih.
Lic. Ovidio H. Enriquez, General Manager: Eduardo Valle, Comp-
trdler; William Nicolai, Finance Director.
Marketing services.
Established 1969 Personnel 10,000 . Telex 33880

AADELE TURISMO, S.A. 546-6971
Versalles 21-202 546-921 4
Col. Ju6rez
Del. Cuauht6moc
06600 M&co, D.F.
Adele Sabalette, Director; Lic. Delfor I. Sabalette Graf, Public
Relations Manager; C.R lgnacio Colin, Comptroller.
Travel agency.
Established 1979 rn Personnel 12 s Telex 1761144

ABA. S.A. DE C.V. 542-4435
 usti tin Delgado 39-A 542-7057

Col. Trinslto
Del. Cuauhtimoc
06820 MQxlco, D.F.
Mois6s Sidauy Cherem, President; I v h Chimal, Technical Director;
EdmundoV&quez, Plant Manager; Ernilio Kichik Sidauy, Assistant
Director.
Manufacturers of polyethylene bags.
Established 1960 Personnel 250

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 3: Product Catalog

J. T. BAKER Reactivos y Productos para Laboratorio 880 AL AQUAL

RF. 107-109°C ' esta es una nota irnpertinente esta es una nota impertinente esta
es una nota irnpertinente

Adecuado para Absorci6n de hurnedad pasa prueba
Adecuado para para para para para para para Absorci6n de
hurnedad etc etc pasa prueba
Adecuado para para para para para para para Absorcidn
... pasa prueba

A630-03 2 5 g l
A 6 3 0 - 0 5 1 0 0 g
9 0 9 4 - 0 7 2 0 L
T a m b i h viene en l a siguiente presentacidn
9094-R 1 8 1 Kg
CAS NO.: 83078-00-0
SPILL-KII 8
EPA-HW: @

ESCALA SAF-T-DATA:

Salud lnflarnable Reactividad Contacto
0 m

ALMACENAR E N AREA COLOR: Naranja (Almacbn gene-
ral).

o ABipyridine (p.30)

N:CHCH:CHCH:CC:CHCH:CHCH:N PA 5 6 4 5

ALMACENAR E N AREA COLOR: Verde patri6tico.

0 ACamphor (p.44)

CH~CCOCH~CH[C(CH~)~ICH~CH~ PG 2 4 3 4 7

ALMACENAR E N AREA COLOR: Amarillo bilis.

ARaya arriba y abajo 1

CH~NN(C~H~)H,OCCH~ P M 5 6 7 5 7

ALMACENAR E N AREA COLOR: Ninguno.

ACaffelne (p.39) -
CH3NCON(CH3)COC:CN:CHNCH3 P W 9 8 9 0

ALMACENAR EN AREA COLOR: Cafe.

ADichlorofluorescein (p.66)

c~H~coo~c~H~-~-cI-~-oHo&H~-~-oH-~-cI - PF 6 7

ALMACENAR E N AREA COLOR: Azul fosforescente.

I-AChloraiose (p.48)

OCH(CCI~)OCHCHCHOHCH (CHOHCH20H)0 PR 6 7 6

ALMACENAR E N AREA COLOR: Negro.

AA Estandares
Ver Listado AlfaMtico

ABX BAKERBOND
Ver La Seccidn de Productos de lnvestigacibn para Crornatografia

AClO Celulosa
Ver Celulosa AClO

para uso manual y uso en lavadoras ultras6nicas
A 4 6 1 - 0 5 1.8 kg
CAS NO.: - -

ESCALA SAF-T-DATA:

Salud lnflamable Reactividad Contacto

El Ql El 0
ALMACENAR E N AREA COLOR: Naranja (AlmacBn gene-
ral).

ANHYDRONA,'BAKER ANALYZED Reactivo (A.C.S.)
Para secado (desecante, perclorato de magnesio)
El anhlisis real del lote se reporta en la etiqueta

Mg(C104)2 P M 223 .21
Segljn especificaciones de A.C.S.
Adecuado para Absorcibn de hurnedad pasa prueba
Llrnites Mdxirnos de Impurezas:
Acido Libre Titulable >0.005 meq/g
Base Titulable <0.025 r n w g
Agua (H20) ... 8%

0 8 2 8 - 0 1 5 0 0 e
CAS NO.: 1 0 0 3 4 - 5 - 8 IMO: 5.1:1475
EPA-HW: @ NFPA: 1-0-0 0XY

ESCALA SAF-T-DATA:

Salud lnflarnable Reactividad Contacto
DI 0

ALMACENAR E N AREA COLOR: Amarillo (Reactivo).

AQUALME PLUS, Coctel LSC para muestras acuosas y biol6gicas
en ampolletas MILL1
Ver Coctel LSC y productos accesorios

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 587

Figure 4: Agenda Sistemex

AG OSTO

Loa Santoa Reyea (Epifania).
Ntra. Sra. de Alta Gracia

Dia del Ge6logo. DLa de la Eniermera. Fundaci6n de
Mbrida, Yuc. (1542). Fiesta en 10s Reyea, Mich.

SEMANA 32 DIA 219 FALTAN 146

MARTES 8 S. Raymundo de Peiiafort,
S. Luciano, S. Crispin ob.

I

Fieata en A c h b a r o , Gto. Eatalla la trigica
Huelga Obrera en Rio Blanco, Ver. (1907).

1 SEMANA32 DIA 220 FALTAN 145 1 I

8 Hrs

D L M M J V S > T O L M M J V S ~

13 14 15 18 17 18 19 AGOSTO

\ D L M M J V S J L

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 5: Study of Operations

Estudlo de Operallvldad Marro 1987

Activo Total con Reportos

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CASA DE BOLSA
INVERMMICO
ACCIVALMM
SOMM
OPERADORA
MULTIVALORES
INVERSORA
CREMl
BURSAMM
FINAMM
ARKA
CBI
IN~ERLAT
ESTRATEGIA
PROBURSA
MADRAZO
INTERVAL
AFlN

ACTIVO TOTAL.
X N REPORTOS

%
ACUM.
19.1 8%
30.00%
40.14%
47.00%
53.58%
59.43%
64.70%
69.78%
74.07%
77.82%
81.40%
83.90%
86.20%
88.35%
90.34%

Asoclaci6n Mexicana de Casas de bolsa, AC Pag. 1

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 6: Encyclopedia of Mexico

A-ABADEJO

A. Prefijo negativo en nbhuatl, con mismo valor

que la alpha privativa de 10s griegos. Cualli es

bueno y acualti, malo; neconi, licito, y aneconi,

ilicito; yell diligente, y aye1 perezoso; patiuh,

barato, y apatiuh, caro; tldcatl, persona, y atldcatl,

inhumano. De huehueti, envejecer, y la a privativa,

se forma ahuMuetl, el ahuehuete, k b o l longevo

"que nunca envejecen. Duplicada, la a connota las

ideas de perfecci6n y abundancia: aatzi es alcanzar

completamente una cosa; aahua'a, llenarse de alegria;

aai, hacer algo repetidas veces; aamapoa, leer mucho;

aarni, cazar en diversas partes. Como raiz de atl,

agua, a se encuentra en innumerables vocablos, segtin

se ve en etimologias de sustantivos y top6nimos.

Acdzul es alberca; ahue'zotl, sauz; arndzoc, donde

el rlo se ensancha; analco, en el otro lado del rio;

anepantla, en medio del agua; atia, licuarse algo;

acalpapano, recrearse navegando.

AATZIN. (Del nbhuatl atl, agua y tzin, reverencial:

"venerable agua".) Caudillo de una de las tribus

nahuas en su peregrinaci6n desde Aztlbn hasta el

valle de Mexico; se dice que fue el primero en llegar

a Chapultepec. Estd considerado como uno de 10s

fundadores de Tenochtitlan; con Tenoch, llev6 a cab0

la uni6n con Tlatelolco. Son variedades del mismo
vocablo adtlatl, dhatl, datl, ahuatzin, atzin. Algunos

autores suponen que no fue un personaje hist6ric0,

sino una personificaci6n mitol6gica del agua.

ABABABITE. (Poulsenia armata Stand.; igual

que Cousaapoa rekoi Stand.) Arb01 de la familia de

las morbceas, de 25 m de altura, con jug0 lechoso y

provisto de pequeiias espinas en las ramas, peciolos,

estipulas y nervaduras de las hojas. $stas son

grandes, ovales o elipticas, enteras, redondeadas en la

base y con el bpice corto y acuminado; miden 50 cm

de largo por 25 de ancho; y el peciolo, de 1.5 a 2.5 cm.

Tiene gores unisexuales: las masculinas se dan en

inflorescencias globosas, pedunculadas, de 1 a 1.5 cm;

las femeninas, en receptbculos sdsiles con tres a siete

ejemplares. El fruto, carnoso y comestible, parecido

a una chirimoya, mide de 2 a 3 cm de dibmetro.

La corteza tiene una fibra consistente, de aplicaci6n

industrial. Es comlin en las selvas muy htimedas de

Guerrero, Oaxaca, Veracruz, Tabasco y Chiapas. Se

le conoce tambien como abababi, chirirnoya, carnero,

carne de pescado y rnasarnorro.

ABACA. (Musa teztilia Need.) Planta filamentosa

de la familia de las musbceas, de 7 a 8 m de altura.

Las hojas, elipticas, de color verde oscuro y de

terminales angulosas, miden 2 m de longitud. En

el espddice, de posici6n inclinada, se contiene un

jugo lechoso y amarillento. Las brbcteas, ovales,

se enrollan hacia afuera y abrigan un promedio de

16 flores. hstas, de estambres comprimidos y con

cinco Mbulos, tienen 10s pdtalos exteriores dos veces

m L largos que 10s interiores. El fruto es verde,

duro, lento para madurar y no comestible. La

planta fructifica a1 tercer aiio, pero es antes de la

Boraci6n cuando debe extraerse la fibra denominada

cdn'arno de Manila; para ello, se rkmojan 10s tallos,

se prensan, lavan y blanquean en agua acidulada con

lirn6n, Bcido clorhidrico o una soluci6n de sosa. En

1958 fue traida de Filipinas, de donde es originaria.

Se inici6 su explotaci6n sistemdtica en Teapa, Tab.,

prirnero para utilizar las tierras que habian quedado

ociosas a1 ser devastados 10s platanares por el "ma1

de Panamb", y luego con el fin de obtener la fibra

que, desde 1904, se emplea en la producci6n de cables

trenzados para calabrotes. El jug0 que se extrae de la

base de las hojas tiene propiedades curativas contra

la tuberculosis, y el extract0 de la raiz se usa para

curar inflamaciones tiroidales.

ABADEJO. Nombre de varias aves pequeiias per-

tenecientes al orden Paseriformes, familia Muscica-

pidae, subfamilia Sylviinae, gknero Regulus.

(Regulus satrapa.) Ave que presenta plumaje verde

olivo en las partes superiores y verde grisdceo en las

inferiores. El macho tiene la corona color naranja

con bordes amarillos y negros; la hembra, en cambio,

la muestra amarilla con bordes negros. Ambos

presentan una linea superciliar blanquecina y dos

barras alares. Esta especie se encuentra en MCxico en

invierno, en las montaiias altas. Se le conoce tambien

como reyezuelo de oro.

2. (Regulus calendula.) Ave que tiene una coloraci6n

muy similar a la de la anterior, aunque la corona

en el macho lleva un parche bermell6n. A1 igual

que R. aatrapa, se alimenta de insectos que recoge

revolotelrndo por las rarnas. Durante el invierno se

le encuentra en todo el pais. Recibe igualmente el

nombre de reyezuelo rojo.

ABADEJO. Nombre de varios peces del orden Per-

ciformes, farnilia Serranidae, gCnero Mycteroperca.

(Mycteroperca bonaci.) Pez de cuerpo mediano,

robusto y largo, cabeza grande, boca oblicua,

opdrculo con tres espinas planas, y aletas dorsal y
anal cubiertas por escamas en la base. Es de color

ocre claro, con hileras de manchas rectangulares

m k oscuras. Las mejillas y 10s lados ventrales

presentan mdculas hexagonales color bronce. El

margen de las aletas verticales es negro y el de las

pectorales, naranja. Habita sobre fondos rocosos

y arrecifes coralinos. Los individuos pequecos

1

590 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 8: Presidential Inform I1

2
(I)

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 9: Ampersand Utility

Utility fo; making tables in T&

4: interactive design
and filling

design contents library TABLE. DAT

write

TABLE.TEX
master file I I TABLE.TBL TABLE.AMP I text file I Itable design/

translator &

(TRANS.EXE)

ASCII ASCII
Lotus TABLETBL

symphony
dbase Ill

6i macros F
u

input process output

TABLE.TEX
and/or
T$ file

+
& macros

+
TABLE.AMP

+
TABLETBL

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 593

IJQC Users Group Meeting and Short Course
Stanford University, July 25-30, 1982

for 30,000

James Haskell
Director of Information Systems
USDA-Forest Service
Intermountain Region
324 25th Street
Ogden, Utah 84405

Wally Deschene
Computer Specialist
USDA-Forest Service
Intermountain Fire Sciences laboratory
P.O. Box 8089
Misssoula, MT 59807

Alan Stolleis
Research Assistant
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
alanQcssun.tamu.edu

ABSTRACT

Quality documents are an integral part of the Forest Service mission. These doc-
uments include reports to the public, the Congress and other oversight agencies. The

integration of T'X into our existing word processing system (Data General's Comprehen-
sive Electronic Office - CEO) meets our goal of providing a consistent user interface and
does not require all employees to learn a new system.

1. Forest Service Organization and Mission
The Forest Service, which is the largest agency in the U.S. Department of Agriculture, is charged with
the responsibility of managing 191 million acres of National Forest System lands. Included on these
lands are more than 128,000 miles of streams and two million acres of lakes and reservoirs. Each year,
National Forests host more than 40 percent of all outdoor recreation in the country. Forest Service
programs include areas such as fire prevention, fire suppression, range, water, air, timber, mineral
leasing, oil and gas leasing, wildlife, recreation, engineering, forest pest management, and an extensive
research program.

To carry out these programs, the Forest Service employs nearly 30,000 people in 9 Regional Offices,
123 National Forest Supervisor Offices, 653 Ranger Districts, approximately 50 research locations along
with the National Office in Washington, D.C. The entire workforce is distributed over 45 states.

2. Forest Service Technology Environment
Beginning in 1983, the Forest Service embarked upon the installation of a comprehensive nation-wide
distributed processing system. The objectives of this system were to meet increasing demands placed
on the agency for timely and accurate information, and to provide a consistent office automation
environment throughout the Forest Service.

The computer hardware acquired includes more than 900 Data General MV/family super minicom-
puters. These systems communicate with each other and with mainframe systems at USDA National

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 595

Computer Centers at New Orleans and Fort Collins over an X.25 public packet switched network.
Included in the network are over 200 remote satellite locations, data channels on Forest Service-owned
microwave channels and other local area networks.

The office automation software being used is Data General's Comprehensive Electronic Office
(CEO). The systems are used for electronic mail, document preparation, electronic filing, spreadsheets,
database creation and maintenance, graphics, most business transactions, and a variety of other uses
that even include business management activities at forest f i e camps. The CEO word processing sys-
tem is the backbone and is a typical word processing system, including features such as format rulers,
centering, bold, underline, tabs, indents, footnotes, super/subscripts, and more.

Today, nearly every one of the 30,000 employees has access to a terminal somewhere in the system
to conduct their every day duties. Employees are able to travel or relocate to any other Forest Service
location and never need to learn a new system. The system enables the Forest Service to be more
productive and share information faster, all at reduced costs to the public. Independent consulting
firms have estimated a benefitlcost ratio of five to one.

3. Typesetting Needs
Quality documents are an integral part of the Forest Service mission. These documents include reports
to the public, the Congress and other oversight agencies. The Forest Service needs to produce the
highest quality printed documents. The research community has needed a system that is available to
everyone that can produce manuscripts with Greek letters and mathematical equations. Our desire is
to use our existing system and not implement another technology strictly to fulfill this need. 'l&X on
the Data General provides this capability. Integration into the CEO system has greatly simplified the
use of w. Forest Service employees can use rn to produce high quality printed documents knowing
little or nothing about 'l&X itself. CEO commands are translated into w while rn commands are
simply passed through as the document is exported to 'l&X. The conversion and export processes are
transparent to the user.

The integration of T)$ into our existing word processing system meets our goal of providing a
consistent user interface and does not require all employees to learn a new system.

4. Interface
'&$ is used by inserting commands into a document. These commands instruct the l$J system how to
produce the desired printed document. The results of the commands are not seen until the document
is printed. The CEO word processing system, on the other hand, is almost a WYSIWYG (What You
See Is What You Get) system: it performs functions by displaying the text in the selected format at
the time the function is entered. For example, a line centered in CEO is displayed with the center
symbol in column one and the correct number of spaces to make the text centered. In short, these
systems use two entirely different methods for processing textual information.

CEO-to-TEX is a program developed to convert a CEO document into a file to be processed by m.
This program will convert many of the CEO functions (e.g., center, text attributes, indents, etc.) as
closely as possible to equivalent or comparable rn commands. It is important to note that the rn
system, unlike the CEO system, uses proportional spacing to produce high-quality documents. The
conversion program gives the user as much control as possible via CEO functions without degrading
the quality of the 'l&X output. By doing this, the user can produce high-quality typeset documents
from CEO without having to know any of the T)$ commands. It can also be used by knowledgeable
'&$ users to convert existing CEO documents into rn format without having to re-type the entire
document.

For some users, the conversion program may be all that is needed to produce a final product. For
others, it may be just the first step in the process.

4.1 Features of the CEO-to-TEX Conversion Program
For many of the CEO features, the conversion to w is a straightforward process. However, there

are certain conversions that require special consideration. The following sections describe these special
considerations.

596 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Special !QX symbols
The T)i$ system uses the following infrequently used typewriter symbols in its command syntax:

\ { I $ % # - - % -
The \, { and) symbols are the most frequently used of these for basic QX commands and

infrequently used in most word processing documents. Thus, we made the decision to sacrifice these
symbols so that the CEO user could more easily embed TJ$ commands in a document. The remaining
symbols are converted to the equivalent TJ$ symbol. The system was designed with the flexibility
to allow the user to convert or not convert any of these symbols. By default, the \, { and) are not
converted; all others are converted. The fact that the \, { and) are not converted allows the CEO
user to embed TJ$ commands directly into a document. For example, the following will result in the
text between the brackets printing in a monospaced typewriter text font:

The use of {\tt monospaced fonts) can be quite useful for software documentation.

This example illustrates the fact that the three symbols are passed through to TJ$ with no conversion
to represent the appropriate Tj$ commands. Any of the special symbols can be converted or not
converted independently of one other. To do this, the user simply includes symbol/ON or symbol/OFF
in a CEO user note prior to using the symbol. For example, the following sequence illustrates how to
use TJ$ math mode in a CEO document:

! $/OFF!

$$ Y = \alpha + \beta X $$
!$/ON!

The exclamation points (!) represent a CEO user note. The user can turn any symbol conversion
off and on anywhere in the document. If a user wants to use the \, { or) symbols in a document,
the symbol/ON user note can be used to allow the symbol to be converted and not represent a w
command.

CEO tabs and inden t s
Tabs should only be used to produce tables, and as a paragraph indent. When tab stops are used, the
most recent format ruler (current) must specify the tab stops required and only those stops. They must
be used correctly in conjunction with the format ruler. Every tab stop in a line must be used when
typing text even if the column is blank. A common error made when inserting tabs or indents is to type
over existing tabs in one line and then tab past them in another line. This is a definite mistake when
using the conversion program because it uses the current format ruler to construct w-compatible
tab stops.

Tabs and indents were designed for specific functions and should not be used interchangeably.
Tabs are used to position information in columns of a table and to start the beginning of a paragraph.
Indents should never be used in a table. Indents are used to offset information from the left margin.
All information following an indent will be offset to the current tab stop until the end-of-line character
is encountered. Tabs and indents should never occur in the same line and/or paragraph of text.

Blank l ines in tables
Whenever the conversion routine encounters a tab character in any column other than the paragraph
indent column (column 5), it switches to table mode. If a table is to contain blank lines, they should
be entered with all tab stops specified. If the blank lines between lines of text in a table do hot have
tab stops in them, will switch in and out of table mode for every blank line of the table. It is
more efficient to specify null tabs in blank lines and maintain table mode than to switch T)iJ in and
out of table mode.

Spaces in tables
The TEX system normally compresses all spaces to one space and removes leading spaces in a table.
To allow some flexibility, the conversion routine converts all spaces in tables into hard spaces. Thus,
unlike T&$, CEO spaces can be used to align information within columns of a table.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 597

CEO hard space
The CEO hard space feature can be used to make sure words with spaces in them always print on
the same line. For example, the words "Dr. Childs" should always occur on the same line of print. TO
ensure that this always happens, insert the CEO hard space character between the two words. The
CEO hard space will be translated to 7JjX and will perform the same function as in CEO.

CEO block protect
In CEO a block of text can be marked with the block protect feature. If the block of marked text
cannot be printed on the current page, it will be started on the beginning of a new page. This feature is
useful to ensure that a complete table or other block of text is printed on the same page (provided the
entire table fits on one printed page). block protect can also be used to eliminate orphaned headings
(paragraph or section heading located at the bottom of a printed page) by marking the heading and
one or more lines of the section body. You should be careful not to mark large blocks of text with
block protect because it may cause unnecessary white space to occur on the previous page.

CEO end page
CEO has two end-of-page types; soft and hard. A soft end-of-page is represented by a dotted line
across the screen and automatically occurs every time the number of lines specified by the current
format ruler is encountered. A hard end-of-page is represented by a solid line across the screen and is
manually inserted by the end page function key. Soft end-of-pages are not converted to TJ$, as T@
will automatically page text based on the current page size specification. Hard end-of-pages will be
converted to 7JjX page ejects.

CEO include
The CEO include function is used to attach another document to the one currently being processed.
The document to be included does not get inserted into the current document at the time the include
function is invoked. Instead, the path name of the document is displayed inside the include symbols.
At print time, the contents of the include document are inserted into the current document at the
point where the include occurs. This feature is processed in the same manner by the 7JjX conversion
routine.

include documents can contain other include documents; this is called nested includes. For
example, a paper from the proceedings in the above example might contain five chapters and each
chapter might be a separate document specified by an include. So the main document contains
include documents of which one or more contains include documents. The conversion routine was
tested to 200 levels of nested includes before it was terminated.

CEO footnotes
The CEO system provides an option for specifying footnotes in a document. The conversion routine
will extract the footnote information from CEO and convert it to the TEX system.

CEO headers and footers
The CEO page headers and footers are used to put additional information, such as titles and page
numbers, at the top and/or bottom of a printed page. CEO allows you to put up to six lines of text
in both the headers and footers; however, it does not allow the use of text attributes, such as bold,
underline, etc., but does allow text to be tabbed and centered. Also, the user can specify any valid
T)$ command in a CEO header and footer, which will be transferred directly to the TEX headline and
footline.

CEO bold and underline
CEO provides a feature for bold, underline, bold underline, double underline and bold double underline.
Underlining, however, is generally not used in typesetting because it does not look good:

For example, underlining dosen't always look very good. --
The underline either smashes descenders or is ~ ~ a c e d too far from words without descenders t o com-
pensate for words with descenders. The convention we have used is to convert underlined text to

598 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

italicized text and double underlined text to slanted text. The conversion program uses this conven-
tion for underlined and double underlined text. In addition, bold underlined text is converted to bold
italicized text and bold double underlined text is converted to bold slanted text. Bold text in CEO is
converted to bold text in TfjX .

CEO center
The CEO center function is converted to a T)$ \ center l ine , which produces the same results.

CEO quote marks
In CEO, the double quotation is used for both the left and right double quote marks, whereas in
typesetting, there is a difference between the left and right quote marks: the left double quote marks
look like two backwards (and inverted) apostrophes (") and right double quote marks look like two
apostrophes ("). The conversion routine will keep track of CEO double quotes and convert them into
the appropriate left or right quotes. The conversion routine assumes a double quotation immediately
following a digit is an indicator for inches and does not convert it to either a left or right quote. If in
fact, the double quote following a digit should be either left or right quote marks, it can be specified
by turning Tj$ mode on and entering either ' ' for right double quotes or ' ' for left double quotes
and then turning w mode off again.

Dashes and hyphens
In typesetting, there is a difference between a hyphen and a dash. In fact there are three different
symbols. One is a hyphen, which is used for compound words like X-ray. The second is an en-dash,
used for number ranges such as "lines 3-20". The third is an em-dash (normal dash), which is used
for punctuation in sentences - like this. The difference is in the length of the line representing the
symbol. The conversion program will pass the hyphen characters directly to and w will treat
one typed hyphen as a hyphen, two hyphens as an en-dash and three hyphens as an em-dash.

CEO mandatory end-of-line
In CEO, the mandatory end-of-line is produced by either the NEWLINE or CR key. The CEO mandatory
end-of-line is used to end a sentence, end a line in a table, end a paragraph, exit indent mode or
produce vertical white space in the printed document. The conversion for a mandatory end-of-line will
depend on where it is encountered.

If the mandatory end-of-line is encountered at the end of paragraph, the conversion routine will
instruct w to terminate the current paragraph, produce a specified amount of white space
and begin a new paragraph. The new paragraph will be indented if the next line contains a
tab skip to column five; otherwise, the paragraph will not be indented.
If a mandatory end-of-line is encountered while in table mode, the current row of the table will
be terminated.
If a mandatory end-of-line is encountered while in indent mode, the conversion routine will
instruct w to exit indent mode.
When two mandatory end-of-lines are encountered in sequence, the conversion routine will
instruct T)$ to produce white space equivalent in vertical dimension to a line of text.

Superscripts and subscripts
CEO superscripts and subscripts will be converted to w equivalents.

Overstrike mode
CEO supports an overstrike mode that allow characters to be printed on top of other characters. The
conversion routine attempts to convert this feature to w; however, it is almost impossible to do
because T@ uses proportional spacing. This feature should not be used. Tj$ should be able to
produce any character needed.

CEO discretionary hyphen
CEO supports discretionary hyphens, which tell the software where a potential line break in a word

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 599

can be made. The conversion routine translates CEO discretionary hyphens to T@ discretionary
hyphens, which perform the same function as in CEO. If a line break does not occur in the word, the
discretionary hyphen is ignored.

4.2 Additional Conversion Features
The conversion program contains additional features which allow CEO users greater flexibility in
producing typeset documents.

Special symbols

The following table contains a list of special symbols that are not part of the CEO character set but can
be produced in l&X documents. These symbols are specified with the CEO superscript text attribute.
For example, the bullet symbol can be produced with a superscripted period, i.e., -.- . Note that
the symbols enclosing the period (.) are produced by the superscript text attribute and not by the
keyboard character.

Superscript
tex t Description C E O Examples

.. Bullet This line starts with a bullet.

-Re Registration symbol This is a CEO@ example.

-C^ Copyright Copyright @ 1988 by Data General Corp.

-T- Trademark The PRESENT^^ utility is a versatile tool.

-0- Degree Symbol The temperature was -25OF today.
(This is a lowercase o, not a zero)

-1/2- Ftaction It rained 1112 inches today.

Fractions can be produced using the superscript text attribute and any digits separated by a slash, for

example, l/3, 5/16, ''164 , 3/323, etc.

Special spacing features

When a period is encountered by l&X, it is assumed to be the end of a sentence and a space representing
end-of-sentence spacing is put after the period. However, if the period is not the end of a sentence, as
in "Dr. Childs", then the amount of space inserted is out of proportion with the rest of the spacing in
the sentence. The conversion program scans the CEO text for the character strings D r . , Drs . , Ph . D . ,
Mr., Mrs . and Ms., and inserts a single space instead of end-of-sentence spacing.

5. ASCII Previewer
We have also provided an ASCII previewer to get a crude representation of what the typeset document
will look like on our existing ASCII terminals. This screen representation allows the user to see page
breaks, line endings and orphaned text. The previewer software was designed following the CEO user
interface with consistent screens and function key mappings. Figures 1 and 2 demonstrate the user
interface developed for implementation of TJ$ in the Forest Service.

6. Data Tables
CEO decision support tools include a data table product that allows a user to enter data in a table
format. In keeping with our desire to use existing products, a conversion of CEO Data Tables to
T)$-formatted tables is provided. This conversion takes data from the data table and builds the
appropriate T)$ commands to produce a table. The user can select options to include table captions
(above or below), column headings, and horizontal or vertical rules.

600 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Msg: New: 0 Mar 28,89 5:26 PM username : hostname

FOREST SERVICE TEX

---> I. Typeset (Typeset and print CEO document)

2. Preview (Display typeset document)

3. View (Display CEO document)

4. Edit (Revise CEO document)

5. File (Create AOS/VS file)

Enter Choice:l

TO return to the previous menu, press the CANCEL/EXIT key.

For assistance here (or on any other menu or question), press the HELP key.

Figure 1: TEX environment main menu

r Msg: New: 0

Document: TeX test

Drawer: TeX drawer

Mar 28,89 5:26 PM

FOREST SERVICE TEX

in

Folder: TeX folder

Pick one: (1. TeX, 2. LaTeX, 3. SliTeX, 4. BibTe

XI I

Convert to TeX format (Y/N)? Y

Printer name:

How many copies? 1

Run in background (Y/N)? Y

Execute (Y/N)? Y

Figure 2: TEX environment typeset menu

7. Using Graphics
Graphics produced by either CEO Drawing Board, Charting Tool, Present or application programs
using the Graphics Kernal System (GKS), in either GKM or CGM format, can be inserted into a
document. The procedure for including a graphic consists of two parts; defining the graphic to
and preparing the graphic for inclusion.

8. Documentation
Documentation describing the Forest Service implementation of T)jX is available from the authors.
It includes a description of 'QX, the Forest Service environment, CEO to T@ conversion features,
previewing text on ASCII terminals, building tables with CEO Data Table, using graphics in a T@
document, and a description of other Tl$ products. Also included are appendices that provide the
user with a glossary of technical terms, common T@ terms, a font chart, Forest Service T@
macro library, a detailed description of using in the Forest Service environment, 'QX defaults for
CEO conversion, software release notice, and T# software abstract for the Software Reference
Center.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 601

9. Summary
The rn and CEO integration software was just released within the Forest Service this past May.
Fewer than 50 sites have the software installed, and two national training classes have been held,
with more to follow soon. We also expect to release the CEO Data Table and the Graphics Inclusion
software by the end of October.

The integration of a sophisticated typesetting system such as l$jX into an existing word processing
system produced an extremely powerful document processing tool for the Forest Service. Any employee
having access to a Data General system anywhere in the organization can now produce the highest
quality typeset documents.

Training consisted of 3 courses similar to the elementary l)$ course offered by TUG. Others will
be offered as our user community grows. Distribution will be in the form of magnetic tape, and also
electronically through the Forest Service network. Distribution will include the T)$ executables, the
CEO-to-TEX conversion program, several Forest Service-specific macros, and the Computer Modern and
other fonts. Additional macro packages will be distributed as the need is identified.

Integration of these two systems has allowed the Forest Service to maintain the integrity of its in-
formation processing standards developed over many years. This is viewed as a major accomplishment
in an organization the size and complexity of the USDA-Forest Service. We hope to make a future
report on the use of l$jX in the Forest Service.

10. Acknowledgements
The authors would like to express their sincere appreciation to Dr. Bart Childs, Texas A&M University,
for making Q X available on the Data General systems and for his continued support throughout this
project; and to Dr. Donald Knuth, Stanford University, for developing T)$ and putting it in the public
domain so projects like this could become a reality.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Enslaved

Digital Equipment Corporation
110 Spit Brook Road (ZKO 1-2/C14)
Nashua, NH 03062-2698

ABSTRACT

Several documentation systems incorporate as a text formatter, but use a generic
markup language as a front-end. This means rn is hidden from the users, and usually
has been modified or extended. This paper discusses the advantages and disadvantages
of such systems, as regards international standards, macro packages, and 'I$$ itself.

1. Introduction
w, the mathematical typesetting program, has a number of good qualities and unique features. It
is extremely'precise in its measurements, generous in its use of fonts, sophisticated in its hyphenation,
ultra-sophisticated in its display of mathematical characters, and generally device-independent in its
output. And, it is now fixed and completed; it is the same for everyone.

But, rn has limitations. 'I$$ processes text in a straight line. It cannot rotate characters or text,
and it has difficulty drawing "freehand" lines. Although it can insert graphics at arbitrary locations,
it cannot produce them.

is a general-purpose composition program. It has a relatively large number of commands that
make it hard to learn. Many of its concepts, such as zero-width boxes, are not intuitive. w is often
inconsistent in the way it presents its primitives and arguments.

Programmatically, most of its formatting macros are low-end, aimed at producing basic structures,
such as paragraphs and boxes. For higher-level objects, custom macros are needed.

2. A Front-End
Many, if not most, of the perceived shortcomings of could be solved by placing behind a
front-end system. The front-end would have its own simple, consistent, standardized commands for
formatting documents. These commands would then be translated into w.

2.1 Advantages
Numerous advantages would accrue. Specifically:

1. The front-end could provide consistency and conformance with external standards, such as the
Standard Generalized Markup Language (SGML).'

The syntax of an SGML-encoded document is independent of processing. With SGML, a doc-
ument is ordered as a hierarchy of structural elements. The standard provides conventions for
beginning and ending structural elements; every element is delimited by a pair of start and end
tags. The standard also provides ways of defining document types and limiting the structural
elements permitted within each.

w has been compared unfavorably with SGML standards; it has been labelled as a procedural,
but not descriptive, text processor. Yet, some proposed SGML markup, 'lq' for instance (left

'As defined in International Standard (ISO) 8879 (10186). "Markup" is used here t o mean any non-text added t o
increase understanding of the text.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings 603

quad? long quote? loose quality?), is as cryptic as anything in T)$.2 It is possible for SGML or
TEX (in the form of macros) to be completely descriptive, depending on the interpretation.

2. The front-end could permit an object-oriented approach to documentation, which would seem
more natural for users.

(a) A front-end language would be considered object-oriented if it supported four specific object
properties (Cox 1987):

i. abstraction - a concise representation for a more complex idea, where the details are
not essential to understanding the function. Each object is an instance of a class, its
behavior limited by the properties of that class.

ii. encapsulation - an object is the unit of encapsulation of an abstraction - is a process
by which an individual component is defined. Encapsulation ensures that an individual
object can have private properties, not shared with other objects in the class.

iii. inheritance - classes that are sub-classes of others can inherit the properties of the
super-classes. For example, in a document, a paragraph within a table would inherit
the left margin of the table.

iv. polymorphism - inherited messages can be re-defined by sub-class; the same message
in different classes could be polymorphically defined.

(b) The front-end could provide a set of object-oriented constructs which would then be used
to form high-level, hierarchical document structures.

3. The front-end could, in fact, provide extensions, or perhaps "pretensions", to m. This would
simplify the operation of the macros. For instance, when an argument in TJ$ is used for several
purposes, such as a chapter title, running head, contents entry, and index entry, each case is
handled differently; the text is a box, mark, or write, depending on the macro. Expansion occurs
at different times. The front-end could copy the text, so it does not need to be done in the
macros.

4. The front-end could be simpler to use and easier to learn. Complex parts of the code would be
located in lower levels, in T@, so that higher levels, the front-end, would be less complex. The
markup would be descriptive and consistent.

It could offer easier error correction. An SGML parser could check the context of elements (for
example, emphasis, double columns, or indents) and issue error messages. Otherwise, this would
have to be built into the T@ macros. Thus, T)$ errors would be minimized. The front-end

would detect errors and relate them to the elements used by the author, not to the arcane
operations in T&X's gut.

5. The front-end could be extraordinarily flexible. It could provide another level of optimization.
It could, in fact, use other text processors under certain circumstances. It could offer multiple
styles of document preparation; the same dataset could be available as a manual, print-file, or
on-line book. The layout would be determined by a style definition.

2.2 Disadvantages
Putting a front-end on TJ$ does have disadvantages, however:

1. A comprehensive front-end may be almost as difficult as T&X to learn, especially if it has to serve
a variety of applications.

2. The interface between the programs becomes complex.

3. Maintenance and debugging also become more complex and lengthy.

'See Coombs et a1 1987.

604 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Running time may be increased.

5. The front-end may not be as portable as m.

3. An Example in Progress: Digital's VAX DOCUMENT
Front-ends have been advertised for a number of years. The Tyxset system (1985, Tyx Corporation,
Reston, VA) was designed to hide Q$ from users with no typesetting experience, while letting them
typeset. Page One (1987, McCutcheon Graphics, Toronto, Canada) offers templates for automatic
book production on the Macintosh, where the skill requirement was listed as the ability to use a mouse.
MARKUP (1987, Hewlett-Packard, Palo Alto, CA) is an SGML parser and application generator that
uses Tp$ to print internal documentation (Price 1987).

Digital Equipment Corporation's VAX DOCUMENT provides a front-end for a formatting engine
that is currently "based on w. The engine has been modified and does not pass the t r i p test.
Changes include making into a callable function, instead of a standalone program, providing 8-bit
support (to permit fonts with 256 characters, instead of 128), raising the memory limit, replacing error
messages with more normal VMS messages, and increasing the number of marks, dimens, and fonts.

This means that a VAX DOCUMENT-produced file cannot run through public domain w, or
similarly, an arbitrary 'I$$ file won't run through VAX DOCUMENT'S text formatter. In fact, end users
are not allowed to load their own format files. VAX DOCUMENT consists of the following components:

1. A proprietary generic markup language, based on preliminary international standards.

2. A tag translator, which reads the source file and produces an intermediate file (with syntax)

that can be read by text formatting software.

3. The text formatter, which uses the input file from the translator and font definition files.

4. Device converters that produce output for different devices: monospaced, LN03 printers, Post-
Script printers.

The text formatter controls page layout, typography, and output dependencies. Text formatting
macros are coded using a proprietary Q$ macro package, dependent on 'I$$ extensions (and inclusive
of future bug fixes). Most of the macros (and language dependencies, font loads, device-dependent
characters) are considered internal to the product and are shipped to customers in machine-readable
form only.

Invoking VAX DOCUMENT begins a chain of processing. One command calls the components of the
system and their associated files. Except for the top level verb component, which parses the command
line and some files and creates an item list to facilitate communication, all the components are data
processors that manipulate an input file to produce a readable file for the next processor. The tag
translator reads an ASCII input file with embedded generic tags and replaces them with definitions
from a saved tag table file, which supplies a mapping from the tags to strings of l)$ macros. The tag
translator output becomes input to the text formatter, which looks up the macros from a format file;
the macros are parameterized by a design file.3 At the end of the chain, a formatted file is displayed
or printed.

The major components of VAX DOCUMENT are the tag translator and text formatter. Both compo-
nents are macro processors, i.e., text substitution programs. Each processor defines a set of primitive
macros that do "work". The primitive macros include a kind of programming language that allows an
algorithm to be written. The tag translator macros are called tags, to conform with generic tagging
and to avoid confusion with macros.

VAX DOCUMENT is still evolving. Currently, it supports government standards (DOD 2167, 2167a).
Other features are being studied: automatic language strings; support for languages that read from
right-to-left and left-to-right, as well as the mixture of the two; a modular form for the text formatter
macros; an on-line bookreader.

3Users are not told how to modify the saved tag table file and format files, only design files.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

4. Summary
TI@ is a sophisticated system for setting type. But l)$ has a high learning curve, and TEX does not
meet international standards.

TEX is a public domain program with all the attendant problems of public domain programs,
such as maintenance and improvement - who will support and disburse TEX and for how long? By
extending l$$, making it proprietary, companies such as Digital guarantee interest and investment
in l$$. By using a front-end, they can complement the strengths of l$$ with those of the front-end.
Also, they are flexible in their choice of a formatter.

An object-oriented front-end that conformed to SGML standards could handle the logical struc-
tures of a variety of documents. That front-end could then harness QX's impressive text-formatting
capabilities.

Bibliography

Coombs, J.H., A.H. Renear, and J.S. DeRose. "Markup Systems and the Future of Scholarly Text
Processing." Communications of the ACM 30:933-947, 1987.

Cox, Brad. Object Oriented Programming: An Evolutionary Approach. Reading, MA: Addison
Wesley, 1987.

Price, Lynne. "SGML and m." TUGboat 8(2):221-225.

TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

Methodologies for Preparing and Integrating PostScript Graphics

J.T. RENFROW

Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

TRENFROWQjpl-pds.jpl.nasa.edu

ABSTRACT

Graphical material represented in the Postscript language can be incorporated into
'I)$-based documents and ultimately printed on a printer having a PostScript interpreter.
Successfully completing this incorporation process requires an understanding of PostScript
and its use in programs to generate graphics and in programs associated with document

preparation. It also requires an understanding of the particular DVI-to-Postscript trans-
lator program being used. PostScript concepts such as a stack of dictionaries, commands

such as "translate", "rotate", "scale", and the idea of saving the state of virtual mem-
ory must be mastered. Different graphics generation programs use somewhat different
mechanisms to produce the PostScript description of a graphic object. The graphics

programs Adobe Illustrator, Cricket Draw, and MacDraft illustrate the diversity of pos-
sible PostScript output files. Text manipulation programs, such as AWK, can be used
to examine these PostScript output files, establish the correct origin for these files when

incorporated into documents, and prepare them for inclusion in m - b a s e d documents.

A number of special cases need to be considered depending on the use of landscape or
portrait modes in both the l)$-based document and the graphic object.

1. Introduction
Incorporating PostScript code into a document being processed by is challenging initially but once

the techniques and approach are worked out you will be able to incorporate PostScript code produced

by graphics programs very rapidly and easily. To set up the process initially may require someone

who is willing to "hack" or experiment a little. After this, anyone who can use TEX should be able to

incorporate this type of PostScript code into a document with relative ease.

In this paper I will illustrate how to incorporate PostScript code representing graphical figures -
lines, circles, shaded figures, text, etc. -into documents. I will not illustrate how to incorporate images
but the techniques used here should apply to that graphical form also. I will illustrate the techniques

using three common software packages: MacDraft, Adobe Illustrator, and Cricket Draw. I have chosen

these three packages because they require somewhat different approaches as one incorporates their
graphical material into the w e d document.1

It seems that the success of incorporating PostScript graphics material into TEX documents can be
very dependent on the hardware/software configuration. For that reason I am carefully documenting
the configuration I use:

a. Hardware - IBM PC/AT, Macintosh Plus, QMS 810 Laser Printer

b. Software - DOS 3.3, MacLink Plus, Mac OS 4.2, Laser Prep 5.0, Cricket Draw 1.1, MacDraft

1.2a1 Adobe Illustrator 1.1, Micro'I)$ Version 1.5A1, DVIPS 4.0.4, AWK (MS-DOS MKS Toolkit
Version 2 . 2 ~ from Mortice Kern Systems, Inc.)

If you are using other software (for example, a different DVI-to-Postscript processor), you will probably

have t o do things differently. Hopefully you will have enough courage or insight after reading this paper

The phrase " w e d document" means a document that was produced using the typesetting system.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 607

that you will try to incorporate graphics using your configuration.

I employ a uniform approach t o the generation of Postscript and TEX material. The graphical

material is generated on a Mac Plus using one of the three packages previously identified. Using
techniques to be described later I generate a file containing the PostScript code associated with the

graphical material. This file is transferred over to the IBM AT using MacLink Plus. The new file
is processed by several AWK programs which insert, change, or remove PostScript commands as
appropriate. Via these AWK programs I am also able to preview the diagram itself so that I can
determine information needed to properly center the diagram on the printed page. Commands using

the \ spec ia l command in TEX are placed in my text file. These commands are then passed through
untouched by TJ$ through to the d v i file. The d v i processor (in my case DVIPS from ArborText),

then interprets the \ s p e c i a l commands, includes the appropriate PostScript files, and prepares a
Postscript file for the printer. This file is then sent via a parallel communication cable to the printer.

The resulting document contains the integrated text and the graphical material.

These techniques of incorporating graphical material into w e d documents may not be useful in

every case. If you are producing only one version of a document that contains only one or two diagrams
then it may be simpler t o paste in a copy of the graphical material. These techniques become useful
when you have many figures to include in a document or when multiple versions or multiple drafts of
the document will be prepared.

The remaining sections of this paper explain the techniques used to incorporate graphical material.

First an explanation of relevant Postscript concepts is presented, including the concept of a PostScript

header file. After this, the techniques for producing the Postscript file representing graphical material

are presented. The techniques for manipulating and converting this PostScript file are then explained.
Finally some techniques useful in printing the document are discussed. Appendix A contains some

AWK code that is used in processing the Postscript files.2

2. Understanding PostScript
PostScript is a language used to describe where to put certain objects on a page. Of course this is a
very simplified statement of the capability of PostScript, but it is sufficient for the mental model that

I am trying to help you build for Postscript. I am including this material to help you read PostScript

and write a few simple commands in it. To learn more about it you should consult either the second
or the fourth reference in the Bibliography.

The initial coordinate system for Postscript has 72 units to the inch, with the origin at the lower

left corner of the page. Thus the position (144,72) would correspond to a point 2 inches to the right
of the lower left corner and 1 inch above the lower left corner.

PostScript uses post-fix notation; that is, the parameter or arguments are given first and then the
command follows. For example, 100 100 moveto tells Postscript to move its current point to position

(100,100). PostScript also assumes a stack architecture - parameters are placed on a stack and then
removed or manipulated by the operators.

It is important to understand how Postscript knows what to do when it sees an operator. The

simple answer is that the Postscript interpreter looks up the operator in a dictionary to see what it
means. That is a simple model to follow. In fact, a user can create a stack of dictionaries for the

PostScript interpreter to use. The i~lt~erpreter looks up the command in the top dictionary first. If it

finds the entry there then it does what the dictionary entry says. If it does not find the entry in the first

directory it looks in the second directory. If it finds the entry there then it does what the dictionary

entry says. The interpreter continues this process through all the directories on the dictionary stack
until it finds some definition for the operator. If the interpreter has searched all the directories on

the dictionary stack and it has not found the operator, it signals that a bad operator has been given.

If the same operator name appears in two different dictionaries then the definition in the dictionary

that is above the other in the stack will be used. This provides a very easy way to make sure that

PostScript does exactly what you want with the commands you use. You create a new dictionary on

top of all the other dictionaries and put your special commands in it. This is the way that most drivers

A full set of documentation for this work, including complete examples, can be obtained by sending a message to

either the electronic or physical address of the author.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

for PostScript work. We will talk about these special dictionaries in the next section.
The Postscript commands that you need to learn for this work fall into a few categories:

1. Translating, scaling, or rotating the material to be placed on a page.

2. Creating a dictionary and putting it on the dictionary stack and then removing it.
3. Defining a new operator.

4. Saving and restoring the state of the entire PostScript interpreter or just the graphics state.

2.1 PostScript Movement Ope ra to r s

These operators will be used to adjust your graphical material to appear on the printed page at the

right location. The methodology advocated in this paper is to place the bottom center of the dzagram
at the coordznates, (0,O). The commands used are currentpoint , moveto, t r a n s l a t e , sca le , and
ro t a t e .

a. currentpoint - This puts on the stack the coordinates of the "Postscript pointer" at the current

time. This is useful when PostScript knows where it is but you don't.

b. moveto -This command moves the current location of the PostScript writing pen to the coordinates

you designate. For example 72 72 moveto moves the graphics pen to the point one inch up and
one inch in from the bottom left corner of the paper.

c. t r a n s l a t e - This command translates the origin to a new point. For example, 144 144 t r a n s l a t e

moves the origin up two inches and over two inches. A common use for this command in the

context of placing graphical material into documents is currentpoint t r a n s l a t e . YOU may have

positioned your diagram so that the bottom center of your diagram is at (0,O). When the DVI-to-

PostScript program tries to put your diagram on the page the current point may be (212,345.33).
By putting cur ren tpoin t t r a n s l a t e at the beginning of your graphics PostScript file, you have
removed any need to know exactly where your diagram will go on the page.

d. s c a l e - This command scales the coordinate system. It can be used to shrink the coordinate system

or expand it. The shrinking or expanding may be non-uniform (i.e., the shrink may be bigger in

the x direction than in the y direction). For example, 2 2 sca l e expands all the coordinates by

2. Now the point (72,72) would be two inches over and two inches up. We have to use the s c a l e
operator because DVIPS does some necessary scaling that we, nonetheless, must undo. Another

useful but initially confusing example is 1 -1 sca le . This produces a flip of the graphics along

the x-axis. We have to use this when dealing with CricketDraw output.

e. r o t a t e - This command rotates the coordinate system. In this paper it will be used to convert
diagrams from landscape to portrait and vice versa.

The diagrams presented in Figure 1 illustrate how these operators can be used to place the bottom
center of the figure at the origin. For each diagram, additional code has been created to put an

axis and rectangles indicating four 8 112 x 11 inch pages so that the reader can better see how the

transformations are taking place. Two new operators (makedarkrectangle and makedarktriangle)
have been defined to produce the geometric figures.

Determining which transformation should be applied first and which second, etc. has always been
counter-intuitive to me. As you can see from the examples, you should first take the code that draws the

figures, then precede it by the first transformation. Then precede all this by the second transformation,
and then precede all that by the third transformation, and so on.

Figure (la) represents the initial diagram which consists of one rectangle and one triangle. Figure

(lb) represents the diagram with the bottom center of the diagram shifted to the origin. Figures (Ic)

and (Id) represent a translation of the original code to put the left side center at the origin and then

a rotation to put the diagram "bottom centered" at the origin when the diagram is in a landscape

position. Figures (le) and (If) represent the same initial translation to the origin as in Figure (lb)

but then a scaling by .5 in each direction to shrink the diagram so that it is centered at the origin but
in a smaller 6-e. This last technique is useful for adjusting a diagram when it is initially too large t o
fit in the space allocated for it in the document.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure l a :
makedarkrectangle
makedarktrianale

Figure l b :
-300 -150 t r a n s l a t e
makedarkrectanale

Figure l c :
-100 -400 t r a n s l a t e
makedarkrectangle

m a k e d a ~ k t r i a n ~ i e makedarktriangle

Figure Id:
90 r o t a t e
-100 -400 t r a n s l a t e

Figure l e :
-300 -150 t r a n s l a t e
makedarkrectanqle

Figure I f :
- 5 .5 s c a l e
-300 -150 t r a n s l a t e

makedarkrectanale makedarktrianaie makedarkrectangle
m a k e d a ~ k t r i a n ~ f e makedarktriangle

Figure 1: Illustrations of PostScript movement operators

2.2 PostScript Dict ionary Opera tors

This paper covers only a few of the many Postscript operators used for manipulating dictionaries. The

operators discussed here are used to create a new dictionary, and to put a dictionary on the stack of
dictionaries being used by Postscript and to remove a dictionary from this stack. You need to realize

that PostScript can store dictionaries "over in the corner" when it does not have them on the active
stack of dictionaries. Via the appropriate command, a dictionary "over in the corner" can be brought

out of storage and put back on the stack. All its entries are still intact.

The way to create a brand new dictionary is via a command string such as /mydict 200 dict

def. This defines a new dictionary, which I have arbitrarily named mydict, which has room for 200
entries and which is currently stored '(over in the corner".

The way to bring a dictionary (for example, one named myoldone) that is "over in the corner" to
the active stack is to give the command string myoldone begin. Notice that we did not have a "/" at

the beginning of myoldone because the name is already known to PostScript.

The way to remove a dictionary from the active stack is to give the command end. This removes
the top dictionary from the stack and places it "over in the cornern.3

2.3 Pos tScr ip t Definition Opera tors

Just as macros are used in to define useful combinations of basic commands, so procedures are used

in PostScript to combine useful combinations of PostScript operators. A simple form of this definition
is /myownprocedure { s o m e Pos t scr ip t code) def. This process causes the name myownprocedure

to be added to the topmost dictionary in the stack of dictionaries and the corresponding PostScript
code to be entered as the meaning of myownprocedure.

With this form of defining a procedure, when Postscript encounters myownprocedure it will find
the corresponding Postscript code in the dictionary and proceed to look up the current definition of

1 have continued to use the phrase "over in the corner" to impress upon you that dictionaries don't disappear just

because they are removed from the stack.

610 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

each of the PostScript operators and then execute them. This in fact is the way that 7)$ behaves
when macros are expanded normally.

There is another way to define procedures in PostScript which can be a bit confusing at first but is

very helpful once it is understood. This involves the use of the bind operator. If a PostScript expression

such as /moveit { 100 100 trans late } bind def is used, then the bind operator looks up all the

operators - in this case translate - in all the dictionaries. If i t finds that translate has been
re-defined from its original meaning (by having been defined again in some new dictionary) then bind

does nothing. If i t finds that trans late has not been re-defined then it associates translate with its

original definition and in fact causes this name to point directly t o that code. This has two beneficial

results. The first benefit is that when the moveit procedure is called, the PostScript interpreter will not

have to go through all its dictionaries for t,he definition of translate . It can immediately execute the
code associated with i t . The second benefit is that even if between the time that the moveit procedure

is defined and the time that it is executed another dictionary is added to the stack of dictionaries
which re-defines trans late , the moveit procedure is unaffected.

It is important t o understand the necessity for using the bind operator a t times. In some cases
header files can interfere with one another and the person producing the document must load header
files in such a way that the interference is avoided. This actually occurs when the Adobe Illustrator
header file is loaded on top of the DVIPS header file. This will be discussed more later. This problem

was solved by loading the Adobe Illustrator header file permanently, while the DVIPS header file
dictionary was not on the dictionary stack, and the bind operator was used on the affected Adobe

Illustrator code. The new release of DVIPS (Version 4.6) from ArborText has fixed this problem.

2.4 P o s t S c r i p t S t a t e - P r e s e r v i n g O p e r a t o r s

When you insert PostScript code for diagrams into Postscript code that will cause the document to be

typeset, the inserted code should make sure that when it finishes execution, the Postscript interpreter
is in the same state as it was when the inserted code began execution. In we could accomplish

this by grouping, using { and }. In PostScript this is accomplished by using the save and restore
operators. The way that these are used is as follows:

/vmsave save def

many lines of PostScript code

vmsave restore

In the remainder of this paper this convention is referred to as a "save-restore" encapsulation. Other
distinct combination of letters could have been used instead of vmsave. The first line of code defines

a "save" object, which reflects the state of the PostScript interpreter's virtual memory a t that time.
The last line of code restores the state of virtual memory to this same state. All new definitions are

forgotten, all new graphics operations are forgotten, etc. W a r n i n g : the operand stack is not fixed SO

you must make sure that your code leaves the operand stack just as it found it .
Usually any decent program producing Postscript code leaves the stack clean. These two lines of

code are usually placed a t the very beginning and end of the PostScript code for the diagrams that

you are inserting. Sometimes the DVI-to-Postscript program will automatically insert these.

Another "save and restore" sequence used for saving the graphics state is gsave and grestore.

These operators are easier to use than save and restore but are less powerful. The way that they
are used is as follows:

gsave

many lines of PostScript code

grestore

T h e graphics state (i.e., the line width, the fill value, the current ~ a t h , the current point, etc.)

after the grestore will be the same as it was immediately before gsave. Any new definitions created
will not be removed. Only the graphics state is restored.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

3. Understanding and Using Header Files
Understanding header files can be easier if one is familiar with the concept of a file of macros for w.
For example, the p l a i n . t e x file discussed in Appendix B of the Tflbook is such a set of macros. Both

the header files and the files of macros are created to contain abbreviations for very commonly used
sequences of commands. In both cases these files are loaded into the "interpreter" before the other

code is sent to the interpreter. This can simplify the complexity of the other code that is sent since the
code can use these abbreviated forms of commands rather than laboriously repeat the full sequence
each time they are used.

Just about any program that produces Postscript output has a header file associated with it.

DVIPS, Cricket Draw, Adobe Illustrator and MacDraft each have a header file associated with them.

The header file is independent of the actual diagram and document that is produced. Thus, once a

header file is analyzed and conquered (you feel like using that language after you have dealt with some

header files) you never have to worry with it again. You don't have to reconsider it each time a new

diagram or document is produced. However, you need to make sure that the version of the header

file that you have created and stored (perhaps some time ago) is the same one that the application is
currently using. This is particularly important with the standard Laser Prep file used by MacDraft
and most of the other Macintosh applications. Compare version numbers, which should be contained
in each file.

Two nice examples of header files are those associated with Adobe Illustrator and Cricket Draw.

In the following paragraphs I will tell you how to produce these header files and how to load them into
the printer.

3.1 Adobe I l lustrator Header File

The header file for Adobe Illustrator can be produced simply. Create a diagram using Adobe Illustrator.

For example, a diagram consisting of a single line is fine. Save this diagram. The Illustrator file will

appear as a simple text file of Postscript commands. Using a text editor, open and edit this file.
Extract the header file as follows. There will be some material at the beginning of the Illustrator file

that is specific to the particular file and this can be removed. The header file then begins with the line

and ends with the line:

Thus the whole header file is:

%%BeginProcSet:Adobe~Illustrator~l.l 0 0

% Copyright (C) 1987 Adobe Systems Incorporated.

% A l l Rights Reserved.

% Adobe I l l u s t r a t o r i s a trademark of Adobe Systems Incorporated.

/Adobe-I l lus t ra tor-I . I dup 100 d i c t def load begin

/Version 0 def

/Revision 0 def

% d e f i n i t i o n opera to rs

/bdef {bind def) bind def

/ ldef {load def) bdef

/xdef {exch def) bdef

% graphic s t a t e opera to rs

/-K €3 index add neg dup 0 It {pop 0) i f 3 I r o l l) bdef

(several more pages of definitions)

% f o n t c o n s t r u c t i o n opera to rs

/Z {f indfon t begin c u r r e n t d i c t dup l e n g t h d i c t begin

(1 index /FID ne {def) {pop pop) i f e l se) f o r a l l /FontName exch def dup

612 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

length 0 ne

</Encoding Encoding 256 ar ray copy def 0 exch {dup type /nametype

e q
{Encoding 2 index 2 index put pop 1 add) <exch pop) i f e l s e) f o r a l l) i f

POP
cur ren td ic t dup end end /FontName ge t exch definefont pop) bdef

end

%%EndProcSet

%%Endprolog

3.2 Cricket Draw Header File
TO create a header file for Cricket Draw also is easy. Create a diagram in Cricket Draw consisting of
one line or some other trivial diagram. While this file is open, choose "New" from the "File" menu

and check the "Postscript" button in the dialog box, indicating you wish to create a Postscript file

(a opposed to a "Draw" file). A new window will be created. Under the "Goodies" menu that has
appeared with the activation of a Postscript window, select the entry "Create Postscript". This will

display the Postscript code for the diagram, but not the header code. Now choose "Save As . . ." from
the "File" menu. Give this file a name and check "Complete" when indicating how to save the file.

Exit Cricket Draw and use a text editor to examine the PostScript file. Like Illustrator, there will
be code at the beginning and at the end of the file that is not a part of the header. This should be
removed. The remaining material will be the header. The header file should look like:

/$cricket 210 d i c t def

$cr icke t begin

2 s e t l i necap

/d /def load def

/b {bind d)bind d

/1 {load d)b

/e /exch 1

/ X {e d3b

/C /c losepath 1

/CP /currentpoint 1

(several more pages of definitions)

/shadow {so)d

/charshadow {sc)d

/ fountain {df)d

/ o f f se t ca l c (ocld

/MakeOutlineFont (of)d

/MakeUnderlineFont {uf)d

/ l e f t show {ls)d

/rightshow {rs)d

/centershow <cs)d

/fullshow {ss)d

/coordinatefont <cf)d

One last line should be added to the header file in order to make it complete. That is the line

end

and it is needed to close off and remove the dictionary that is being created for Cricket Draw.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 613

3.3 MacDraft Header File
To create the header file for MacDraft may require Herculean strength. This header file is the standard
Laser Prep file used by most applications that run on the Macintosh. I have included a list of suggestions

on how to construct this file in Appendix B. It is definitely a non-trivial process.

We can now assume that we have three header files created. The next step is to load them into
the Postscript interpreter's memory. There are four different techniques that can be used.

The header file can be downloaded directly into the permanent-memory of the Postscript inter-
preter. The advantage to this is that the header file is accessible whenever you or anyone else

needs i t , until the power to the printer is turned off or the printer is reset. Another advantage

is that you don't have t o worry with how your DVI-to-Postscript processor would handle these

header files. Still another advantage is that you will not be loading the graphics software's header

(a.k.a. dictionary) on top of the DVI-to-Postscript package's header (a.k.a. dictionary). This last

feature has already been referred to in Section 2.3. The disadvantage is that the header file takes

up space in the printer's memory. On printers with a reasonable amount of memory (e.g., 2RIB),
this does not appear to be a problem.

To use this process requires placing the following additional line at the beginning of the header file:

s e r v e r d i c t begin 0 e x i t s e r v e r

The assumption here is that "0" is the password for your printer (it will be unless some printer
guru has gone in and changed it) . It may appear that you have placed an additional dictionary
("serverdict") on the stack and therefore you should place an additional "end" at the end of your
header file. Y o u do no t need t o do th i s . However, you should send a (c t r l -d> character to the

printer at the end of this file to indicate that the end of this special file has been reached. I have

done this on my system by creating a special file with only one character in i t , namely (c t r l -d>

(the HEX notation for this is 04). I send the header file and then this very small file to the printer.

The header file can be downloaded via a Macintosh computer attached to the printer. This tech-
nique is really useful only in downloading the header file associated with MacDraft and is the

standard Laser Prep file for the Macintosh. This is by far the cleanest and simplest way to down-

load this very complex file. Simply attach the Macintosh computer to the printer and print a
Word document or a MacWrite document or a MacDraw diagram or a MacDraft diagram to the

Postscript printer. This causes the header file to be downloaded permanently to the printer.
The header file can be downloaded as a part of printing the document itself. This process is

dependent on the particular DVI-to-Postscript processor being used. If you are printing diagrams

on multiple pages of the document, then you want to make sure that the header code survives

from one page t o the next one. If my header file is in header .ps , then I can place the following
\ s p e c i a l command a t the beginning of the text for my document:

\ s p e c i a l { ~ s : p l o t f i l e header .ps g loba l)

and the header file will be correctly loaded. This particular command sequence is used by DVIPS

and will most likely not work with other DVI-to-Postscript processors. The user should consult

the manual for the particular DVI to PostScript processor used.4

If you are going to print only one diagram then you may want to include the header with the actual
file itself. This technique is discussed later when the actual process for including a graphics file is
considered.

We can now assume that the header file is loaded into the printer or else will be included with the
diagram itself.

There is a problem in using this technique (no. 3) with the version of DVIPS and Adobe Illustrator referenced in this

paper. DVIPS's header re-defines a basic Postscript operator concat. When Adobe nlustrator's header is installed with

the DVIPS dictionary already on the stack (as technique 3 would do), this operator, which is used by Adobe nlustrator,

is not bound even though bind is used. The wrong definition of concat will be used. If the Adobe Illustrator header

is loaded while the DVIPS dictionary is not on the stack, the bind operator will make sure that concat is defined

properly and permanently. When the Adobe Illustrator dictionary is finally called during operations and placed above

the DVIPS dictionary, the correct definition of concat will still be used.

614 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Producing PostScript Graphics
This section concerns the production of the PostScript code for the diagram itself. This production
process depends on the application used.

a. Adobe Illustrator - Using Adobe Illustrator, produce the diagram. Save the diagram. This entire

file can be sent from the Macintosh computer to the IBM PC for processing.

b. Cricket Draw - Using Cricket Draw, produce the diagram. Follow the procedures discussed with
respect to Cricket Draw in the section on producing headers (Section 3.2). Instead of saving the
diagram using the "Complete" option the file should be saved using the "brief" option. This will
produce only the code for the diagram and not the header file.

C. MacDraft - Using MacDraft, produce the diagram. Select the "Print" command. Position the

cursor over the "OK" button but don't click it. At the same time, press down the "Apple" or

the "Four-Leaf' (different ways t o describe the same key) key and the "I?" key - then click on

the "OK" button. The computer may sound some warning signals because these keys are pressed
but this can be ignored. The message to look for after this sequence of key strokes and mouse
clicks are performed is a message box which says "Creating PostScript file". A file will be created
called "PostScriptn" where n is an integer between 0 and 9. This file should be re-named to some
meaningful name associated with the diagram.

5. Transferring the Graphics
Any of the files produced on the Macintosh must be sent to the IBM PC. I use MacLink Plus which

makes the job very easy. If you decide to use Kermit or some other file transfer protocol, then you will
have to cope with the fact that on the Mac the EOL (end-of - l ine) is designated by just CR (car r iage

re turn) (OD in HEX) while in the IBM PC world it is designated by CRLF, (car r iage re turn- l ine

feed, ODOA in HEX). There are fixes around this but a file transfer package such as MacLink PIUS
simplifies the work.

6 . Analyzing and Converting the Graphics Files
The graphics files that were produced on the Macintosh need to be altered in some standard ways

to prepare them for incorporation into documents that will be processed by TEX. Each of the three

graphics packages requires different changes. Also complicating the conversion is the fact that a diagram

may have been produced in either portrait or landscape orientatmion and the document that will contain
it may either be in portrait or landscape orientation. To handle all this repetitous file conversion work,

I use the AWK programming language. It is ideally suited for this work. It is powerful, it runs on an

IBM PC, it does text manipulation, and it can handle files in a combined interactiveJbatch mode.5

The following generic steps must be taken for all Postscript files sent over from the Macintosh:

1. Appropriate scaling information must be placed in the file to compensate for the uniform magnifi-
cation provided by the DVI-to-Postscript processor.

2. The "bottom center" of the diagram must be determined and the graphics file must be adjusted

to contain this information. It may be desirable to produce a test print for the diagram to make
sure that it is correctly centered.

3. All unneeded PostScript code in the file must be removed. Any needed additional PostScript code
must be added.
The matter of scaling depends on the DVI to Postscript processor. DVIPS magnifies all the

PostScript code based on the magnification level indicated in the original document (i.e., what \magstep

was used). For example, if \magnification = \magstepi is used, then a scaling factor of 1/1.2 must

be included in the graphics file. This is done by lacing the sequence .8333 .8333 sca l e in the
appropriate (to be shown later) place in the graphics file.

The diagram that has been constructed on the Macintosh will need to be translated SO that the

bottom center of the diagram is at the coordinates (0,O). This makes the placement of the diagram

in the document very easy. Since the diagram will not normally be constructed so that the bottom

center of the diagram has these Postscript coordinates, a simple statement must be added to the file

Complete AWK programs to handle all the various permutations of graphics packages and document and display

orientations can be obtained via electronic mail from the author.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 615

to adjust the origin. The following approach is used t o determine the correct coordinates to use in
making this code addition:

1. The original PostScript file is manipulated by an AWK program that adds code to produce a pair

of very long lines that form a right angle on the page. The vertex .of the right angle is printed at
approximately one inch up and in from the lower left corner of the page. This modified code is

sent directly to the printer. The resulting output contains two things - the diagram and a pair
of reference lines. By visual inspection and by using a ruler with a scale in points, the person

preparing the material can measure the relative displacement from each of these reference lines to
the bottom center of the diagram.

It is unwise to use a corner of the paper as the reference point. The printer may have a systematic

offset that it applies so that a corner of the paper does not correspond to (0,O). The orientation
of the paper as it goes through the printer may be a little askew and this can also distort the
measurement process.

2. A second AWK program is used to interactively ask the user for these two displacement coordinates

and then to insert the correct Postscript t r a n s l a t e command into the file to accomplish this needed
translation.

3. A third AWK program can be used to print out this modified PostScript file to verify that the
translation is correct.

Each graphics production package requires different changes to the contents of the file that it has
produced:

a. Adobe Illustrator -The header file information must be removed. The correct translation of bottom

center must be added. The proper scaling must be added to compensate for the magnification found
in the document. A "save-restore" encapsulation of the PostScript file must be put in place.

b. Cricket Draw - A correction (I -I sca l e 30 -762 t r a n s l a t e) must be inserted to correct for

the fact that Cricket Draw does a flip of the diagram about the x-axis. A line of Postscript code

must be added for each font used in the Cricket Draw diagram. The fonts used in the diagram will

be listed in the header of the document. The AWK program can read these lines, remember the

fonts, and then insert the needed lines at the appropriate place in the file. For example, if the two
fonts used are Times-Roman and Helvetica, then the two lines to be added are:

(Times-Roman) coordinatef ont

(Helvet ica) coordinatef ont

The correct translation of bottom center must be added. The word showpage must be removed

from the file so that printing will occur only after the entire page is done. The proper scaling
must be added to compensate for the magnification found in the document. A "save-restore"

encapsulation of the PostScript file must be put in place.

C. MacDraft - The correct translation of bottom center must be added. The proper scaling must

be added to compensate for the magnification found in the document. The line F T cp , which

occurs near the end of the file, must be removed or "%ed out". This line causes the page to print

prematurely. A "save-restore" encapsulation of the PostScript file must be put in place.
If the header code is to be included with the code for the diagram itself then the following alterations

of the above additions must be used. The header material (minus the code serverd ic t begin 0

ex i t s e rve r) should be inserted immediately after the line /vmsave save def . This will allow the
header to be loaded before the code that calls on it is executed.

Appendix A to this paper contains the "before and after" codes for a simple diagram (the word "Hi")
for each of the three graphics packages.

7. Incorporation of Graphics Files into TJ$ Files
The files containing Postscript code for the graphical material must now be placed in the output

stream that will be sent to the printer. This is done in a two-stage process and is dependent on the

particular DVI-to-Postscript processor used. The following information applies to DVIPS.

616 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The DVIPS processor prepares an environment in which you can place your diagram. When the
\ spec ia l command is given, DVIPS restores most of the pure PostScript environment (except the

magnification level). You make the current point the center of your drawing environment by giving

the command currentpoint t r a n s l a t e . You will notice that this sequence has been added to all the
sample files shown in Appendix A.

My placement methods for diagrams uses the "bottom center" approach. I determine the bottom
center of the space on the page in which the diagram should fit. I find this approach much easier than

if I have to specify the lower left corner of the diagram. Supposedly all the PostScript files should
tell you where the bottom left corner of the diagram's "bounding box" is, but most of the programs

don't do this correctly. Generally this space for the figures or diagrams is created through the use of a

\midinsert, \ top inser t or \pageinsert . If the diagram is 3 inches high then I can use the following
code:

. . . and t h i s i s shown i n Figure 1.

\midinsert

\vskip 3 t rue in

\centerline{\hbox t o ~pt{ \spec ia l (ps : p lo t f i l e f i g l .ps333

\medskip

\centerline{Figure 1 -- My F i r s t Figure)

\endinsert

A new paragraph . . .

Sometimes the diagrams are larger than will fit on one whole page using \pageinsert . As was
mentioned earlier, these diagrams require additional scaling factors to reduce the size of the diagram.

These scaling factors can be combined with the scaling factors used to correct for the document

magnification. For example, if magstep1 is used and we want to reduce the diagram to 85% of its
original size anyway then, when using DVIPS, the correct scaling would be .7083 .7083 sca le since

.7083 = .85 x (111.2).

8. Additional Comments and Guidelines
The incorporation of graphics into documents definitely proceeds in two phases if i t is to be success-
ful. The first phase involves constructing the header files and building the AWK programs that will

manipulate the Postscript files. This ~ h a s e is tedious, subject to numerous errors, and will need to be

completed only once. The second phase involves the production and conversion of the actual diagrams.
This part is relatively easy. After approximately 25 diagrams were prepared in MacDraft, I converted
and centered all of them in approximately one hour.

Sometimes it may help to start learning how to insert PostScript code by incorporating some pure
Postscript code. You have no header to worry about. For example, the following code will cause one
diagonal line to be constructed:

/vmsave save def

currentpoint t r a n s l a t e

newpath

0 0 moveto

72 72 r l i n e t o

s t roke

vmsave r e s to re

Once you have gotten this to work, you will have more confidence to tackle the bigger job of Postscript

output from applications. Since Postscript code is simply ASCII text, you can always examine a (small)
output file and get some idea of how the Postscript code for graphics has been inserted into the other
Postscript code.

I feel that it is important to use AWK programs in order to perform this work. This allows for

TUGboat, Volume 10 (1989)) No. 4-1989 Conference Proceedings 617

the almost complete automation of this process. Dealing with all the cases of landscape diagrams
being placed in portrait documents or landscape diagrams being placed in landscape slides requires

either that you remember all the subtle but necessary corrections to make or that you depend upon a
program to make them.

This paper has not addressed all the desirable features one would like in incorporating Postscript
files. There are numerous other features that can be considered:

1. The PostScript code can be instructed to read the magnification setting that is current in the

printer and scale the diagrams accordingly. Currently I need to know beforehand the magnification

level that will be used in the document that will receive the graphics files.
2. Another form of au t~sca l ing can be built into the process. The 'I$$ macros would be used to pass

the size of the space available to the graphics file. Specially written PostScript procedures would
be invoked to combine this information with information describing the size of the diagram and

these procedures would then set the scaling factors correctly.

3. The positioning of text generated by l')$ and to be placed in a landscape orientation when the

body of the text is in a portrait position could be implemented. This would be useful in placing
captions for landscape diagrams correctly in portrait-oriented documents.

I have discussed how you do this work but now you need to actually do it. What tools are available

to help you? Your greatest new need will be to try to understand what is going on inside the Postscript
printer, that inscrutable "black box". There are several possibilities:
1. There is a package called "LaserTalk", produced by Emerald City Software. It is excellent for

sending code to a Postscript printer and getting error messages back. It is available for the

Macintosh and IBM environments.

2. There are various error handling routines that can be downloaded to your printer. Then, when

YOU send PostScript code to your printer and there is an error, supposedly a sheet will be printed
showing the offending command and the state of the stack at the time the command was issued.
Unfortunately there are times when you commit an error that will not allow this error handler to
be invoked.

3. Communicate between the computer and the printer via a serial port that is set up to handle com-

munication from the printer as well as to the printer. ArborText includes such a communications
utility with the DVIPS program, called SPR. The value of this is that the Postscript interpreter
will most always be able to use this method to send you the first offending command. It will not
be able to use this method to send you any more information but at least this is a start.

A final comment: getting started with the process of incorporating PostScript code can be a trying

or challenging experience. But once the process is established, incorporating graphical material can
be easy, benefical and very time-saving.

9. Acknowledgment
The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

Bibliography

Adobe Systems Incorporated. PostScript Language Reference Manual. Reading, Mass.: Addison-
Wesley, 1985.

Adobe Systems Incorporated. Postscript Language Tutorial and Cookbook. Reading, Mass.: Addison-
Wesley, 1985.

Aha, Alfred V., Brian W. Kernighan, and Peter J . Weinberger. The AWE: Programming Language.
Reading, Mass.: Addison-Wesley, 1988.

Holzgang, David A. Understanding Postscript Programming. San Francisco, Calif.: SYBEX, 1987.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix A: Postscript Code and AWK Programs

The following material is the Postscript code for a simple diagram (the word "Hi") before and after
modification for incorporation into a document. The code is included for Adobe Illustrator, Cricket

Draw and MacDraft. In some cases large amounts of text has been removed and replaced by three
lines consisting of a single period. This is done simply for economy of space in this paper. Normally
no code would be removed.

la: Adobe Illustrator Code Before Modification

%%DocumentFonts:~ourier

%%+Helvetica

%%BoundingBox:lii -395 252 -320

%%TemplateBox:288 -360 288 -360

%%Endcomment s

%%BeginProcSet:~dobe~Illustrator~l.1 0 0

% Copyright (C) 1987 Adobe Systems Incorporated.
% All Rights Reserved.
% Adobe Illustrator is a trademark of Adobe Systems Incorporated.
/Adobe-Illustrator-1 . I dup 100 dict def load begin

/Version 0 def

/Revision 0 def

% definition operators
/bdef {bind def) bind def

% font construction operators
/Z Cfindfont begin currentdict dup length dict begin

€1 index /FID ne (def) (pop pop) ifelse) forall /Fontlame exch def dup

length 0 ne

</Encoding Encoding 256 array copy def 0 exch Cdup type /nametype

eq
(Encoding 2 index 2 index put pop I add) (exch pop) ifelse) forall) if

POP
currentdict dup end end /FontName get exch definefont pop) bdef

end

%%EndProcSet

%%EndProlog

%%Beginsetup

Adobe-Illustrator-1.1 begin

n

%%BeginEncoding:-~elvetica Helvetica

I:
39/quotesingle 96/grave

128/Adieresis/Aring/Ccedilla/~acute/Ntilde/Odieresis

%%EndEncoding

%%Ends etup

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

%%Note :

/-Helvetica 72 12 0 0 z

[I 0 0 I 148 -3801e

(Hi) t

T

%%Trailer

-E end

lb: Adobe Illustrator Code After Modification

/vmsave save def

% ! PS-Adobe-2.0 EPSF-I .2

%%DocumentFonts:Courier

%%+Helvet ica

%%Bounding~ox:lll -395 252 -320

%%Template~ox:288 -360 288 -360

%%Endcomment s

%%BeginProc~et : ~dobe_~llustrator-1. I 0 0

% Copyright (C) 1987 Adobe Systems Incorporated.
% All Rights Reserved.
% Adobe Illustrator is a trademark of Adobe Systems Incorporated.
%%EndProcSet

%%Endprolog

%%Beginsetup

Adobe~Illustrator~l.1 begin

n
I a
AABeginEncoding : -Helvetica Helvetica

c
39/quotesingle 96/grave .

%%EndEncoding

%%Endsetup

currentpoint translate

.8333 ,8333 scale

-320 288 translate

0 g

TUGboat, Volume 10 (l989), No. 4 - 1989 Conference Proceedings

-E end

vmsave r e s t o r e

2a: Cricket Draw Code Before Modification

% ! PS-Adobe-2.0

%%Creator:Cricket Draw 1.1

%%Title :Unt i t led # I

UCreationDate: 5/15/89 4: I6 PM

%%DocumentFonts: Helvetica

%%BoundingBox: 0 0 612 792

%%Pages: (atend)

%%Endcomments

/vmstate save def

/$cricket 210 d i c t def

$cr icke t begin

2 se t l inecap

%%LoadPrep:Cricket Procedures

%----- Begin Main Program ----- %
gsave % Text Block

0.000 1 -1 0.000 126.500 114.000 f ixcoordinates

/myshow /show load def

0 setgray

-63 -11 moveto

/ 1 Helvetica f indf ont 72 scalef ont s e t f ont

<
(Hi) show

3 leftshow

g re s to re
%------ End Main Program ------ %
showpage end

vmstate r e s t o r e

%%Trailer

%%Pages: 1

2b: Cricket Draw Code After Modification

%!PS-Adobe-2.0

%%Creator:Cricket Draw 1 . 1

%%Tit le :Unt i t led #I

n c r e a t i o n ~ a t e : 5/15/89 4 : I6 PM

%%DocumentFonts : Helvet ica

%%BoundingBox: 0 0 612 792

%%Pages : (a t end)

%%Endcomments

/vmstate save def

cur ren tpoin t t r a n s l a t e

.8333 .8333 sca l e

1 -1 s ca l e -100 -130 t r a n s l a t e

$c r i cke t begin

2 s e t l i necap
* 8
LhLoadPrep: Cricket Procedures

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

(Helvetica) coordinatefont
%----- Begin Main Program ----- %

gsave % Text Block

0.000 I -1 0.000 126.500 114.000 f ixcoordinates

/myshow /show load def

0 setgray

-63 -11 moveto

/ I Relvetica f indf ont 72 scalef ont s e t f ont

(Hi) show

3 leftshow

gres tore
%------ End Main Program ------ %

end

vmstate r e s to re

%%Trailer

%%Pages : I

3a: MacDraft Code Before Modification

%!PS-Adobe-2.0

%%Title: Untitled-1

%%Creator: MacDraft

%%Creat ion~ate : Monday, May 15, 1989

%%Pages : (a t end)

%%BoundingBox: ? ? ? ?

%%PageBoundingBox: 30 31 582 761

%%For: Tom Renfrow

%%IncludeProcSet: "(AppleDict md)" 66

%%Endcomment s

%%Endprolog

%%Beg inDocument Setup

md begin

T T -31 -30 761 582 100 72 72 I F F F F T T psu

(Tom Renfrow; document: Untitled-1)jn

0 mf

od

%%EndDocumentSetup

%%Page: ? 1

OP

2 F / I Helvetica f n t

bn

-1 .9567 1 0. (Hi) ashow

0 0 pen

254 147 gm

(nc 0 0 730 552 6 rc)kp

0 g r
104 146 194 227 0 r c

F T cp

%%Trailer

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

cd

end

%%Pages: 1 0

%%EOF

3b: MacDraft Code After Modification

% ! PS-Adobe-2.0
%%Title : Untitled-I

%%Creator : MacDraf t

%%CreationDate: Monday, May 15, 1989

%%Pages : (atend)

%%BoundingBox: ? ? ? ?

%%~age~oundingBox: 30 31 582 761

%%For: Tom Renfrou

%%Include~rocSet : "(AppleDict md) " 66
%%Endcomment s

%%Endprolog

%%BeginDocumentSetup

/vmsave save def

currentpoint translate

.8333 .8333 scale

-250 -600 translate

md begin

T T -31 -30 761 582 100 72 72 1 F F F F T T psu

(Tom Renfrou; document: Untitled-1)jn

0 mf

od

%%EndDocumentSetup

%%Page: ? I

I Helvetica fnt

671 0. (Hi)ashou

0 0 pen

254 147 gm

(nc 0 0 730 552 6 rc)kp

0 gr
104 146 194 227 0 rc

%%F T cp

%%Trailer

cd

end

vmsave restore

%%Pages: 1 0

%%EOF

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Two AWK programs are included as examples to show the utility that the AWK language can
provide for manipulating Postscript files. The first program reads in a Postscript file produced by

MacDraft and puts in the code necessary to generate two reference lines. This altered file can be

sent to a Postscript printer and the resulting diagram (with reference lines included) can be used to

determine the "bottom center" of the diagram. It is assumed that the MacDraft header has already
been loaded into the printer.

#Add t h e vmsave header

#Add t h e code t o genera te t h e re fe rence l i n e s

/-%%BeginDocumentSetup/ {pr in t $0

p r i n t "/vmsave save def"

p r i n t "gsave"

p r i n t "newpath"

p r i n t "72 720 moveto"

p r i n t "360 0 r l i n e t o "

p r i n t "s t roke"

p r i n t "newpath"

p r i n t "72 720 moveto"

p r i n t "0 -360 r l i n e t o "

p r i n t "s t roke"

p r i n t "gres to re"

next)

#Add t h e r e s t o r e command a t t h e end

/-end$/ {pr in t $0

p r i n t "vmsave r e s t o r e "

next)

#Pr in t t h e l i n e s which don ' t con ta in an end of f i l e marker

$0 ! - "\032" { p r i n t $0)

The second AWK program converts a Cricket Draw file from the original form transferred from

the Macintosh to the form that can be included in the Postscript code for the document. Before the

user runs this AWK program, it is assumed he has run another AWK program like the one above (but

designed for Cricket Draw) which helps the user determine the "bottom center" of the diagram. The

AWK program interactively queries the user for the two needed offset measurements. The results of
the transformation are written to a file specified by the variable outf i l e . This variable is specified by

the user in the command line that invokes the program. An interesting feature of this program is that

it saves font name information from one part of the text file and then writes it out later.

#Ask u s e r f o r o f f s e t informat ion

BEGIN { p r i n t "How many p o i n t s from t h e l e f t l i n e "

p r i n t "is t h e c e n t e r of t h e f i g u r e ? "

i f (g e t l i n e > 0) xoff s e t = $1

p r i n t "How many p o i n t s up from t h e bottom l i n e is"

p r i n t " the bottom of t h e f i g u r e ? "

i f (g e t l i n e > 0) y o f f s e t = $1)

#Build t h e l i s t of f o n t s needed i n Cricket Draw

#Note: Th is command w i l l be executed only a f t e r t h e

#/-%%DocumentFonts:/ command has been used.
/ - % % L ~ ~ ~ P ~ ~ ~ : / {print "%-------------------------" > o u t f i l e

p r i n t "%Encode PS Fonts t o match Mac Fonts" > o u t f i l e

f o r (name i n f o n t s)

p r i n t "(" name ") coordinatefont" > o u t f i l e
~y------------------------n > o u t f i l e

next

3

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

#Put i n t h e needed o f f s e t information

/ - \ / \$cricket / C
p r i n t "currentpoint t r ans l a t e " > o u t f i l e

p r i n t "/xoff s e t " xoff s e t " def" > outf i l e

p r i n t " /yoffset yof fse t " def" > outf i l e

p r i n t "/specialmag " specialmag " def" > o u t f i l e

p r i n t "specialmag dup neg scale" > o u t f i l e

p r i n t "xoffset 100 add neg 500 yoffse t neg add neg t r ans l a t e " > o u t f i l e

next)

#Turn off t h e rou t ine t h a t gathers font information

/-%%Bounding~ox:/ (ac t ion = 0; p r i n t > outf i l e ; next)

#Turn on t h e rout ine t h a t co l l ec t s font information

/-r/DocumentFonts : / {act ion=l ; fon t s [$21 =O; p r i n t > outf i l e ; next)

#Another l i n e t h a t w i l l contain font information
ac t ion == I (fonts[$2] = 0; p r i n t > outf i l e ; next)

#Remove t h e showpage command so t h a t t he page i s not

#printed prematurely

/^showpage/ (pr in t "end" > o u t f i l e ; next)

#Print t h e o ther l i n e s which don't contain an end of f i l e marker

(i f ($0 !' "\032") p r i n t > outf i l e)

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

Appendix B: Suggestions on Creating MacDraft Header File

Producing a working version of the MacDraft Header File is a challenging task. Basically this

involves producing a working version of the Laser Prep file on the Macintosh.

The first step is to capture the header file. This can be done by creating a file in Word or MacWrite
that consists of some small amount of text - for example, the letter "a". Select the "Print" command.

Just before you click on the "OK" button, depress the "Apple" or "Four leaf' key and simultaneously

the "K" key and then click on the "OK" button. Ignore the strange sounds produced by the machine.

A new file called "PostScriptnn will be produced on the system and you can find it with the Macintosh
Desk Accessory "Find File". Open this file with some text editor.

NOW you have to pare this header file down some. There are several large code segments at the
end of the header. These look like:

currentfile ok userdict/stretch known

not and~eexec)~flushfile)ifelse

373A767D4B7FD94FE5903B70i4BiB8D3BEDO

2632C855D56F458Bii8ACF3AF73FC4EF5E81F57490

00000000000000000000000000000000

00000000000000000000000000000000

cleartomark

currentfile ok userdict/smooth4 known

not and~eexec)~flushfile)ifelse

F94EOOEE41A71C59E5CAEEDlEDBCF23DiDBA1

EE99B9BB356492923BD8BlBA83A87CEBOE07377A3

00000000000000000000000000000000

00000000000000000000000000000000

cleartomark

%%EndProcSet

These segments can be removed. The rest of the file can remain. If you plan to download the file

permanently to the printer, then you need to add the line serverdict begin 0 exitserver at the

beginning of the file. When you transfer this file from the Macintosh to the IBM PC and edit it with
a text editor, you must may very sure that some of the long lines do not get broken up incorrectly.

One particularly bad section is the part that lists the names of special characters (e.g., jagrave

/acircumflex Iadieresis latilde laring /ccedilla leacute legrave). Text editors may break

these lines in the very middle of a word and this causes the PostScript interpreter to think that there

is a new name and also a command which it does not understand. Text editors may also break -1 into

- and 1 which will cause an error. Once you get all these edits made and no lines broken improperly,
then you can send the header to the printer to see if you have any errors. At this time it is nice to use

a utility like LaserTalk to analyze the code as it is being sent.

The suggestions don't work magic but they may help.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

t e x ~ i c - Design and Imdement ation
A

of a Picture ~ I a ~ h i c s Language
in & la pic

Eiselauer Weg 12
D-7901 Beimerstetten

West Germany

ABSTRACT

texpcpic is a ?]EX implementation of a graphics language similar to Kernighan's troff pre-

processor pic .
Many features of the original p ic are supported, including a variety of graphical objects

(boxes, circles, ellipses, lines, arrows and others), directions of motion, controlling sizes of
objects with variable and appropiate defaults, relative and absolute positioning of single

objects or whole pictures (labels and corners are allowed), and much more.

There are two significant enhancements. Objects adapt to the size of their contents;
that is, a circle may contain a table with mathematical equations, a box may contain the

circle, etc. texpcpic objects and Tji$ or UTEX commands may be combined at will.
The implementation consists of two parts, a set of elaborate w macros and a post-

processor for drawing (in the dvi file), written in C. It should be emphasized that texpic

is fully ort table, i.e., every 'l&X version, every preview and even every (correctly written)

printer driver will work together with texpic.

I. Preface
Some years ago I attended a lecture on text processing. At that time I had just discovered and

was filled with enthusiasm, but unfortunately the lecture dealt mainly with another system: the f rog

typesetting software, widely used under UNIX.
There ensued a friendly competition between the lecturer and me - with the goal being to typeset

things the other one couldn't do. One time he won, another time I made a point, so the race was
rather even.

With introducing pic one day, a powerful, but easy to use language for drawing pictures, imple-

mented as a pre-processor to &off, the tables turned. Because has little to retort, I began to

lose very often. To catch up, I decided to implement something similar in m, not knowing what

frustration (and fun) this would be!

2. Boxes - The Cornerstone of TjjX
Boxes are probably the only objects which are easy to implement in w. This is because also

uses a box concept which offers two possibilities. If we have specified width and height explicitly, we
obtain just a box with these dimensions. Otherwise the smallest box is chosen which fits around its

contents. For the frame of the box we need only horizontal and vertical lines - suitable commands
already exist. Consequently we require the following:

0 Boxes have a minimum size.

0 Between contents and frame there is a certain amount of free space.

0 Boxes adapt to the size of their contents.

Boxes are centered perpendicular to the current direction of movement.

0 Minimum size, free space and the thickness of the lines are locally or globally changeable.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 627

The resulting Tj$ macros are relatively straightforward. Producing a box with texpic, the complete
syntax of the corresponding command is:'

\tpbox [attributes] [parameters] [contents] ;

An attribute such as invis describes a quality and is typically one word, whereas a parameter such
as width 3cm influences the size of an object and consists of several words. Finally, the contents

begin behind the last parameter or attribute, stop at the next semicolon and are often ordinary text.
Subsequent sections will illustrate this.

2.1 "Growing" Boxes with Minimum Size

box \tpbox; a box

As we can see, the box is centered on an imaginary horizontal line.

a box a very long box - \tpbox a box;

\tpbox a very long box;

boxes

stretch \tpbox \vbox{

to the \hbox{boxes)
\hbox{also)

\hbox{stretch)

\hbox{to the)

\hbox{top)

1;
In the next example the current direction of movement is vertical which changes the centering of the
box:

2.2 Local a n d Global Changes
With parameters we can change various sizes of one object:

wide narrow

I narrower

\tpbox width 3cm wide;

\tpbox width lcm narrow;

\tpbox width Ocm height Ocm narrower;

\tpbox height Ocm width Ocm fill Ocm

very narrow;

Parameters which control the size of an object, control only the minimum size, i.e. if the contents don't

fit, the object will still grow. The space between frame and contents is changed through fill. The
thickness of the lines is also adjustable:

thick lines very thick lines no \tpbox thickness 4pt thick lines; \
\tpbox thickness 8pt very thick lines;

"tp" as a prefix for all names relating to tezpic and should avoid name conflicts.

628 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

To achieve global changes we can simply change corresponding variables. As usual, braces control the

\tpbox equal; \tpbox size;

scope:

normal El

all

\tpbox normal ;

\tpboxwd=~pt \tpboxht=Opt \tpboxfill=Opt

\tpbox all; \tpbox boxes; \tpbox have;

\tpbox minimal; \tpbox size;

1

\tpboxud=35pt \tpboxht=20pt
boxes

The first same is the attribute, the second is ordinary text! \tpphantom can be used, if the biggest

box is not the first one:

have

2.3 Sharing A t t r i bu t e s

With the attribute same we can make an object have the same size of the last one, provided that the

contents fit:

\tpboxwd=Oin \tpboxht=Oin

\tpphantom(\tpbox 1234 ; 3 ;
%
\tpbox same 1; \tpbox same 12;

\tpbox same 123; \tpbox same 1234;

With invis we can make an object invisible, i.e. we suppress the frame. This attribute will prove
useful later, when we want to position objects at different places:

1 invisible \tpbox an;
\tpbox invis invisible;

\tpbox box;

equal

\tpbox all boxes have;

\tpbox same the same;

2.4 Boxes A r o u n d O t h e r Objec ts

More complicated examples are possible - boxes are bona fide members of the TEX world:

a. first item \tpbox

\hbox to 3cm(\vbox<

\item(a.) first item

\item(b.) second item

>\hss3

size

\tpbox same size;

size
-

all boxes have

\centerline(

\tpbox centered;

3

the same

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Notice, that \item would use the entire line, therefore \hbox is used to limit line length. Similarly,
\centerline pushes the \tpbox to the middle.

\tpboxwd=Opt \tpboxht=Opt \tpboxfill=lpt

\tpbox{\tpbox{\tpbox{\tpbox{\tpbox(%

\tpboxC\tpbox{\tpbox;>; >;>;I;>; };I;

The last example shows a particularly valuable feature: nesting. Most UTEX macros also work with

iexpcpic boxes. So a box around a tabular or a box inside a tabular can be used. This is very useful
for positioning.

3. Circles - Do they have to be so special?
Now on to the circles which should provide exactly the same features as the boxes above. As we will

see, however, circles are much more complicated than boxes.

3.1 Two D e a d E n d s

To draw circles there are two approaches which will not work, at least not very well or with considerable
restrictions:

1. Drawing in 'I)$ is possible, but this is very slow and there are also limitations regarding the number

of circles, i.e., points, on the same page. See also the preface from the F'ICI'EX Manual.

2. Use of a printer language for drawing is possible with the \special command, though this means

a commitment to one printer and therefore a loss of portability.

The second solution would be sufficient at the moment, but as in the original pic, references to objects
should eventually be implemented. Because there is no way to get the current coordinates on the page
in TEX, we could have transfered this problem to the printer language as well. However, this would

certainly not improve any portability aspects.

3.2 A Post-Processor for Drawing

Looking for other ways to obtain the coordinates of an object we discover the dvi file which is absolutely

device independent. Reading this file (and some tfm files to get the widths of single characters) we are

able to track the current position.

The main point, however, is that we can draw in the dvi files. This is a bit subtle, since we must

pay attention to some pointers. With the use of the \special command and a post-processor written

in C, the same features as for boxes are possible:

a big circle 0 \tpcircle a big circle;

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Directions and Movements - Not quite the same
Changing the current direction of movement in pic is possible at any time - "north", "south", "west"

and "east" are allowed. Besides that, we can change the current point by a movement. Both features

can be implemented in TEX, however, with some restrictions.

4.1 Directions

Because we want to allow arbitrary objects, we require the following points:

0 All four points of the compass are allowed.
0 Macros \tp. . .begin and \tp. . .end enclose the objects of one "row".

0 Inside a "row" all arbitrary objects are possible.

0 Every single object must be surrounded by braces.

In the following examples the default sizes have been decreased a little:

\tplef tend

Directions can be combined with other objects as usual:

\tplef tbegin

{\tpbox I;)

{\tpupbegin

{\tpbox 1;) (\tpbox 2;) (\tpbox 3;)

\tpupend)

<\tpbox 3;)

\tplef t end

\tprightbegin

{From a) {\tpbox box;)

< to a 3 {\tpcircle circle. ;}

\tprightend

Especially for positioning objects these features are very useful.

4.2 Movements

An arbitrary change of the current position is not possible in 'QX, therefore the design of movements

is poor and rather restricted:

0 A single \tpmove changes the reference point for a default value in the current direction.

0 Specifying an optional direction moves only the next object.

0 All default values are changeable locally and globally.

The first example shows the "normal" use of \tpmove, the second moves only one object:

\tpbox two;

\tpmove width 5pt;

\tpbox horizontal;

\tprnove same;

\tpbox movements;

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

second +I \tpbox first ;
\tpmove up <\tpbox second; 3;
\tpbox third;

The \tpmove command in the last example does not change the reference point!

5. Arrows and Corners - Tying objects together
As said before, p i c supports a "link" mechanism:

. . . to 3rd last circle . .
Since the actual position on a page is not available, this feature cannot be implemented in TEX.
Because we are already using a post-processor for drawing circles, it is not very difficult to extend the

C program to store the positions of the objects. The communication is done again with the \special
command of TEX.

5.1 Arrows
To work not only with lines we implement arrows:

arrow t-l \tpbox an;

\tparrow ;

\tpbox arrow;

does not support slanted lines and UTEX does not permit arbitrary slopes. Therefore, the arrow-

head is drawn by the post-processor. There are two new parame te r s and one new a t t r i bu t e relating to
the arrowheads:

\tparrow same headheight 0.3in; \tpbox heads ;

wide and

5.2 Links

Links to objects are much better than coordinates for connecting objects with lines or arrows. Because
the original syntax of p i c is not ideal for scanning, I changed the syntax slightly from line from 2nd

\tpbox a double-headed;
\tparrow double;

box to 3rd circle to \tpline

n

\tpbox arrow;

arrow a double-headed

long

from 2.box to 3.circle;:

4 >

\tpcircle; \par \hskip 3cm \tpcircle;

\tpline from 1.circle to 2.circle;

heads

Counting up ults in absolute links. Relative links are constructed by counting backwards: >
\tpbox vide and;

\tparrow headwidth 0.2in; \tpbox long;

\tpcircle; \ ~ a r \hskip 3cm \tpcircle;

\tparrow from 2.circle to 3.circle;

\tparrow from -2.circle to -1.circle;

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

If one link is missing the current position is used:

\tpbox; \par
A l i n k from a

\ t p l i n e from I

t e x t .

5.3 Corners

Links can even refer to eight compass points on the perimeter of an object:

\tpbox; \hskip 2cm \ tpc i r c l e ;

\par \vskip lcm

\noindent \ t p c i r c l e ; \hskip 2cm \tpbox;

\ t p l i n e from -1.box.n t o -2.box.s;

\ t p l i n e from -1.box.ne t o - 2 . b o x . s ~ ;

\ t p l i n e from -1 .c i rc le .n t o -2 . c i r c l e . s ;

\ t p l i n e from -1 .c i rc le .ne t o - 2 . c i r c l e . s ~ ;

As you can see, circles also have "corners". With these features fancy pictures become possible.
However, they require too much code to be shown here:

G Street H Street

4= 1 & = 2
\ 0

Which

is true?
/ 1

4 = 3 & = 4

6. Ellipses - Circles with a catch
Unfortunately, ellipses differ considerably from circles since there is not just one smallest suitable
ellipse around an object:

Because an ellipse has two major axes, it seems reasonable to require a fixed ratio for them:

\tpboxwd=30pt \tpboxht=i5pt

%
\ t p e l l i p s e C\tpbox inv i s ;) ;

\ t p e l l i p s e <\tpbox inv i s width 40pt;);

\ t p e l l i p s e <\tpbox inv i s height 30pt ;) ;

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

If width or height are specified, the shape of the ellipse will change:

\ tpelliwd=30pt \ t pe l l i h t=20p t \ t p e l l i f i l l = O p t

%
\ t p e l l i p s e width 40pt 4:2;

\ t p e l l i p s e width 60pt 6 : 2;

\ t p e l l i p s e height 40pt 3 : 4;

Within each ellipse the ratio of its axes is displayed.

7. Shifted Objects - With and without size
Sometimes it is useful to move whole objects. To do this, there are two new attributes: with and a t .

Unlike a t , from, and t o , with does not permit a link:

\tpbox;

\tpbox with .nw a t -1.box.se;

u
Again with the C post-processor, the implementation is simple: only one change in position has t o be

made. But there is a problem: objects which are to be moved must be set without any size; otherwise,

they will need some place on the page and after being moved this place would be empty! So the user
has to worry about the space.

The "corners" of lines and arrows are abbreviated with 's' for 'start' and 'e' for 'end':

\tpbox i n v i s ;

\ t p l i n e ;

\ t p c i r c l e with . e a t -1 . l i n e . s ;

\ t p c i r c l e with . w a t -1 . l i n e . e ;

Without the with attribute, the center of the desired object is used:

\tpbox;

\ t p c i r c l e a t -1.box;

\ t p e l l i p s e a t -1 .box;

Once again, more elaborated pictures are possible:

terminal

controllei

RAM

CPU

ROM

i
keyboard

controller floppy
controlle:

printer

controllei

""YPY - controlle:

hard disk floppy

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

this is a

man

A friend of mine, a mechanical engineer, supplied the following pictures, which I would never have
thought possible:

BL -
(I-

8. Conclusion

8.1 W h a t has been done
Using texpic simple pictures in the style of pic can be drawn within a TEX document. Graphical

objects have been implemented which may be used with several attributes and positioned in different
ways. pic syntax was modified slightly to accomodate conventions. Furthermore, there are two

significant enhancements:

0 Objects adapt to the size of their contents.

0 The contents may be almost anything.

This results in a very smooth integration of text and line drawings. Through a C program as a post-

processor operating on the dvi file, we achieved a very portable and absolutely device independent

solution. Some points of the original pic were not implemented:

0 pic itself serves as a target language for other pre-processors (grap, chem, etc.) New features in

texpic, however, will most likely have to be constructed within TEX as well.

0 In pic a picture can be scaled to near arbitrary dimensions. I see no way to do this in TEX.

8.2 What can be done
A few more features are probably practical:

0 Generalization of the corners, for example nnw or sssee. This requires only a little bit of mathe-

matics.

Arcs of a circle and splines. This is possible with some mathematics and the C program.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

References to the dimensions of an object, e.g.:

. . . -1.box.ht ...
Local scopes for objects. This requires an extension to the management of object stacks.
Labels for objects or whole pictures, as in:

\tpbox name ellipsoid;

\tpline from e1lipsoid.w ...
Coordinates with addition and subtraction. This is very simple, because we already have the
coordinates in the C program. The only thing to do is to build an interface t o ?]EX, e.g.:

\tpbox with .n at -1.box.s minus (12,15);

Interpolating a point, e.g.:

\tparrow from <1/3,-l.box.n,-2.box.s> ...
There is a syntactical problem: a link must consist of one word.

Projecting object coordinates, e.g.:

\tparrow from (1.b0x.s~-2.ellipse.n) . . .
Printing and positioning text. The ideal would be along the lines of "printf", because this is simple
to implement in C.

8.3 What might be done

I am afraid the following features would be rather difficult to implement:

Grids with automatic scaling. There is a question: what should a good grid look like?

Drawing arbitrary functions. This requires all sorts of mathematical and syntactical support.

Simple graphics in the style of grap, a pre-processor of pic.
Rotation of objects. This would result in substantial changes since then every object must be
drawn by the post-processor.

It is interesting to note that further refinement of features appears t o shift more and more responsibity
out of T@ and on to the post-processor. Is the ideal solution a graphical co-processor to ?]EX?

Bibliography

Adobe Systems Incorporated. Postscript Language - Tutorial and Cookbook. Reading, Mass.: Addi-
son-Wesley, 1985.

Adobe Systems Incorporated. Postscript Language - Reference Manual. Reading, Mass.: Addison-
Wesley, 1985.

Aho, Alfred V., Brian W. Kernighan, and Peter J . Weinberger. The AWK Programming Language.
Reading, Mass.: Addison-Wesley, 1988.

Appelt , Wolfgang. l)$f fur Fortgeschrittene . Bonn: Addison-Wesley, 1988.

Bentley, J.L. and Brian W. Kernighan. "grap - A Language for Typesetting Graphs." CACM. Au-

gust 1986.

Elan Computer Group. "pic - Reference Manual".

Foley, J.D. and A. Van Dam. Fundamentals of Interactive Computer Graphics. Reading, Mass.: Addi-
son-Wesley, 1982.

Hearn, D. and M.P. Baker. Computer Graphics. Reading, Mass.: Addison-Wesley, 1986.

Jordan, B.W., W.J. Lennon and B.D. Holm. "An Improved Algorithm for the Generation of Nonpa-
rametric Curves." IEEE Transactions on Computers. December 1973.

Kernighan, Brian W. "pic - A Language for Typesetting Graphics." Software - Practice and Expe-
rience. January 1982.

Knuth, Donald E. The W b o o k . Reading, Mass.: Addison-Wesley, 1986.

Knuth, Donald E. 7&f: The Program. Reading, Mass.: Addison-Wesley, 1986.

636 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Kopka, Helmut. BTEX - Eine Einfuhrung. Bonn: Addison-Wesley, 1988.

Lamport, Leslie. BTEX - User's Guide & Reference Manual. Reading, Mass.: Addison-Wesley, 1986.

Schreiner, Axel T. "Lecture on Text Processing." Given at the University of Ulm, Dept. of Compu-
ter Science, 1987188.

Schwarz, Norbert. Einfihrung in QX. Bonn: Addison-Wesley, 1988.

Wichura, Michael J . The P m Manual. Providence, Rhode Island: T@ Users Group, 1986.

Wonneberger, Reinhard. Kompaktfihrer BTEX . Bonn: Addison-Wesley, 1987.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

AMS-lQX82 Users Course and Users Group Meeting
Stanford University, July 11-15, 1983

Terrnan Engineering Center Auditorium

T@K at Mathematical Reviews

D.C. LATTERNER AND W.B. WOOLF

Mathematical Reviews
P.O. Box 8604

Ann Arbor, MI 48107-8604

d c l b a t h . ams . corn

wbwhath. ams . corn

ABSTRACT

A brief description of the history of Mathematical Reviews (MR) is followed by a

detailed discussion of the use of rn in the current MR production system. The flow of

a sample item through the MR "pipeline" is traced, showing how TJ$ is used to produce

in-house tracking and proofreading documents as well as the MR journal and its related

publications. The design and use of generically tagged data files extracted from the MR
database are described, with an explanation of how this approach takes advantage of the

powerful formatting capabilities of 'I)$. Finally, the use of TEX in the on-line version of

MR is demonstrated.

1. Introduction
Mathematical Reviews (MR) is the world's pre-eminent secondary journal covering research in pure
and applied mathematics.1 It was founded in 1940; it has grown from 2,120 items in 1940 to about

50,000 per year currently.

In the early years, MR was produced from bibliographic information maintained on file cards and
from review manuscripts prepared in pen and ink or on typewriters by reviewers around the world.

Over the last fifty years, there has been some change in the form or manner of reviews submitted
by reviewers: the handwriting is still quite varied and occasionally hard to read, the typing is still

frequently error-prone and smudgy, but the typewriter has become a word processor. (The future is

also beginning to show in the few manuscripts each month which are submitted electronically.) But

more dramatic changes have taken place in the way the bibliographic information is maintained. From

file cards in the 1940s (from which information was repeatedly re-typed in the process of preparing
review forms and typesetting MR issues, indexes, annual indexes and cumulative indexes), and "ditto"

masters in the fifties, sixties and seventies (which allowed one keyboarding for file cards and forms, but

still required a separate keyboarding for each issue, index, annual index and cumulative index), MR

moved to a database management system (SPIRES) and a computer typesetting system (STI, from
Science Typographers, Inc.). This proprietary typesetting system allowed the same keyboarded input

to be used for cards and forms as was used for all issues and indexes, but only the outputs created by

the ST1 company from its typesetters carried the typeset appearance; cards and forms carried the raw
coded input from which the ST1 typesetting program would create camera-ready copy. In 1983, MR

changed to a CODASYL database management system (SEED), and yet another migration is under

way at present, to a relational database management system (INGRES).
While MR was still using STI, it began experimenting with TJ$. A program was written to convert

the ST1 code into m, and a few macro files were written to format in-house forms. The advantages

of TJ$ over ST1 soon became apparent. Outputs could be had in typeset rather than raw coded form

A secondary journal carries abstracts and/or reviews (with bibliographic information) of articles published in primary

journals and collections, as well as of monographs.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 639

and, most importantly, MR was no longer dependent on an outside source for its typesetting needs.
By 1985, MR had fully adopted l&X as its typesetting language.

The following sections detail the ways in which l&X is used to provide multiple outputs from the
MR database, and the efficiencies and economies that this implies.

2. The MR Production System
F'rom the time an article is received at MR to the time a review is actually published (and even
beyond, to its appearance on-line in MathSci), the bibliographic data and the review undergo much
examination and correction. Along the way, a variety of programs extract information from the MR
database for proofreading purposes and report generation. These database extraction programs, along
with the macro files ("headers") that format the extracted data, form the backbone of the MR
TEX production system.

2.1 The MR Database a n d Extract ion Programs
The MR database is currently managed by a CODASYL-type database management system running
on one of the DEC-20 machines at the headquarters of the American Mathematical Society (AMS) in
Providence, RI; it contains bibliographic information on about 300,000 items reviewed in MR from 1985
to the present or awaiting publication. These several years of information are kept on-line to support
referencing and author identification functions. Older material is available on archived copies of the
database. The database is bibliographic only, i.e., it contains only author, reviewer, title, journal and
publisher information, and a variety of flags for tracking purposes. Due to space considerations, the
reviews themselves are not stored in the database, but rather as text files linked to the bibliographic
information in the database by means of unique accession numbers, on-line before publication and on
tape thereafter.

While the database resides on the DEC mainframe, much of the production work, particularly the
typesetting, is off-loaded to a network of Apollo workstations located at the MR offices in Ann Arbor,
MI. Data files from the mainframe are transferred to the Apollos via FTP or KERMIT. Most proof output
is printed on an Imagen 5320, with an Imagen 81300 serving as a secondary printer. Camera-ready
copy is obtained from an Autologic APS-p5 in Providence.

Although the idea of generically tagged files is certainly not a new one, particularly in the 'IfEX
arena, the use by MR of the principle provides a good illustration of the advantages of this approach
in a m - b a s e d production system. Since the format of the extracted data files is central to the way in
which QX is used in production at MR, a brief discussion of the design principles behind the extraction
programs follows.

The database extraction programs retrieve information from the database and format it in a manner
easily manipulable by an appropriate set of l&X macros. Figure 1 2 shows the output of the extraction
program MAKMFtB (MFtB refers to MR bibliographic file) and an example of one type of TFJ document
produced from this mrb file. This example illustrates the characteristics of an MR extracted data file:

1. Each data entity is individually tagged. Volume, year and issue, for example, are each
tagged separately rather than combined into one field.

2. Data elements are tagged with unique, descriptive control sequence names and terminated
with the control sequence \endx.

3. All data associated with a particular item are pulled, even though certain elements may not
actually be typeset in a given document. Figure 1 shows the element \etype in the tagged
file, although that element is not used in the output shown. Other documents, however,
may typeset this field.

4. The tagged data do not contain formatting instructions.

Since most documents generated from an extracted file include only a subset of the data pulled,
MR uses a system whereby the f i s t macro file \input is a "tags" file. The tags file contains macro
definitions instructing to ignore all the possible tagged data fields associated with a particular

All figures can be found at the end of the article -Ed.

640 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

extraction program. It is followed by a document-specific header which re-activates and formats the
desired fields. For example, the line

is found in the file makmrb. t ags , in effect "nullifying" the \etype field. In the header for a "daily box
proof", this field is re-activated with the definition

while in the MR issue header, there is no re-activation and the definition supplied by makmrb. tags
remains in effect. Thus, the tags file is an efficient way to provide TEX with a definition for every
tagged field, so that undefined control sequences can be avoided.

This approach to the design of the data files has allowed MR to take advantage of m ' s tremendous
formatting capabilities. The same generically tagged file can be formatted into literally any type of
document simply by writing or modifying a set of macros.

2.2 The Spine --

Perhaps the best way to illustrate the production system at MR is to track the flow of a reviewed item
through the MR "pipeline". The process begins with the receipt of a "spine" - a book or an issue of
a journal - into the MR library. An identification number, called a spine number, is assigned to the
spine and certain basic bibliographic elements such as the book title or issue volume and number are
keyed into the database.

To take a real example, suppose that Vol. 91, no. 8 of The American Mathematical Monthly arrives
at the MR office. The next unused spine number, S117 897, is assigned and the issue volume and
number are input into the database, along with flags indicating how the bibliographic information
should be displayed in print.

After a day's worth of spines has been entered in the database, several w e d documents are
generated using an extraction program called SPINES. The first, a "spine form", displays all the
current information held in the database for a particular spine. The spine form is physically attached
to the spine; any corrections or comments about the spine are recorded on the form and the database
is later updated to reflect these changes. Figure 2 shows the output of the SPINES program and a
sample spine form.

An interesting aspect of this particular form is the barcode at the bottom. Generated by T@
macros, it represents the spine number (Issue cno: on the form). Barcodes are used on a variety of
MR documents for tracking purposes. Every four months, an inventory of items at various stages in
the pipeline is conducted in order to identify old or lost items. Barcodes enable this function to be
performed quickly and efficiently.

Mail logs are produced along with the spine sheets using the same extracted input files. These are
lists of all spines added to the database on a particular day, separated into books and journal issues.
The issue of The American Mathematical Monthly would appear on the log along with all the other
journal spines that were added to the database that day, as in the following excerpt:

S117 893 Acta Math. Hungar. 53 (1984), no. 1-2

S117 896 Comm. Math. Phys. 120 (1984), no. 4

S117 897 Amer. Math. Monthly. 91 (1984), no. 8

S117 901 Bull. Calcutta Math. Soc. 80 (1984), no. 6

Next, spines are arranged into an "editors7 box" and routed to the MR editorial staff for decisions
on whether they are within the scope of the areas of mathematics reviewed in MR, and for classification
according to the Mathematics Subject Classification scheme. Travelling with the editors' box is another
w e d document based on the output of the SPINES program - an editors' box log that lists the spines
contained in the box. To continue the example, the editors scan The American Mathematical Monthly,

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 641

Vol. 91, no. 8, assigning preliminary 2- or 3-digit classifications to those articles they consider to be of
interest to the mathematical community.

2.3 The Bibliographic Item
After the editors finish with the spines, they return them to the library where the staff provide a
bibliographic "set-up" for the selected articles. The spines containing the selected articles are collected
together into a "daily box" and a daily box log is generated using the SPINES program. New paper-
specific accession numbers - called control numbers - are assigned to the chosen articles, and the
bibliographic information for those items is keyed into temporary files using a program called MRPADD
(MR paper add).3 An extraction program called PADGAL is then used to pull the information from the --
MRPADD filesznd a daily box proof is produced, using the output of PADGAL in combination with a
QX header file (see Figure 3). The daily box proof is proofread and corrected and the information is
loaded into the database.

Now that the complete bibliographic data for the items in a daily box are held in the database,
the real workhorse of the extraction programs - MAKMRB - is used. Its first task is to create the
input file for generating "editor assignment forms", forms that are used by the editors to record their
assignments of reviewers to the items in the daily box that will eventually be reviewed (see Figure 4).

The editor adds the first three letters of the reviewer's last name and his reviewer code (a unique
number assigned to the reviewer, used internally at MR) to the form. There are also numeric codes
on the form for those items that the editor suggests be reviewed from the author's summary, from
the preface, etc. The forms are routed back to data entry staff and the assignments are keyed into
the database. The example shows that M.S. Cheema, with a reviewer code of 03162, was assigned to
review "The toilet paper problem".

2.4 The CMP Issue
After three weeks' worth of daily boxes have been added to the database (this amounts to 3000+
items), an issue of Current Mathematical Publications (CMP) is ready to be produced. The process
begins with the creation of a giant mrb file containing the bibliographic information for all the items
entered over the three-week period. Much of the CMP is generated in one way or another from this
mrb file or parts of it, although some sections require further "massaging" by other programs in order
to combine entries, add cross-references and section heading information, and provide some formatting
instructions to QX. The source file for the CMP "Books Listed in This Issue" section, for example,
is actually an unembellished mrb file, while that of the "Complete Bibliographic Listing by Subject
Classification" section requires further mrb file processing. Figure 5 shows the familiar example as it
appears in the "Bibliographic Listing" section along with its QX source. For illustration purposes, a
fictional co-author has been introduced to show how cross-references are added to the source file.

The various sections of the CMP issue are actually w e d twice. The first run generates output
that is designed to make the job of proofreading easier: it is set in single-column format (or in some
cases double column, if the section is ultimately printed in more than two columns) with plenty of
space in the margins for marking. Also, the output is magnified, since the type size used in CMP
is quite small. After proofreading and correction, the issue is r e - w e d (this time in the format of
the published CMP), camera-ready copy is ordered off the APS-p5, and the issue is delivered to the
printer.

Because MR tends to use fairly small type in its publications, the scenario just described - a
first run that generates enlarged output for proofreading and a final run that produces copy as it will
appear in print - is an often repeated one at MR. This ability to switch from one output mode to
another is a feature of many of the macro files used in MR production. Horizontal spacing (i.e.,
line breaking) remains the same from the first run to the final run; it is only the placement of the
material on the page and the page length that changes. All of this is accomplished with switches built
into the macros: a \FirstRun switch generates proofreading copy, a \FinalRun switch produces final

The MRPADD interface was designed to facilitate input and to make the correction process easier. Inputting the

bibliographic information directly into the database would be cumbersome.

642 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

copy. For the most part, the output routines used to produce final copy are fine-tuned enough so that
re-runs for bad page or column breaks are rare.

2.5 Review Forms
Once the database has been updated with the reviewer assignment, a "review form" is printed and
mailed to the reviewer along with a copy of the article to be reviewed. A detailed look at this form
demonstrates the great versatility of 'I?@ in the MR production environment. The form consists of
several parts (see Figure 6):

1. An overlay that partitions the form into various sections. (The macros for this overlay
consist of a variety of rule boxes and some text which are put into a box the size of the
page and \copyld for each new form produced.)

2. The bibliographic information in the top left-hand corner derived from the mrb file.
3. The reviewer's address, also taken from the mrb file, a t the bottom left-hand corner, posi-

tioned so that it appears in the window of the envelope when the form is folded.
4. The barcode at the very bottom of the form.

An interesting sidelight to the production of review forms has to do with so-called "pre-publication"
items. These are articles from selected journals that have been accepted for publication by the editors
of those journals but have not yet appeared in print. In order to accommodate this type of item
efficiently, a new tag - \ isprepubl - was added to MAKMRB. The presence of this tag in the mrb
file for a review form will (1) add the phrase "to appear1' to the bibliographic heading on the review
form and (2) generate a separate attachment describing the treatment of pre-publication articles at
MR. This example points out the ease with which new tagged fields can be introduced into the MR
production stream. In this particular case, all that was needed after MAKMRB was programmed to output
the tagged field was the addition of the line to ignore the field in makmrb. tags, and a re-definition of
\isprepubl in the header that produces the review form.4

MR strives to be as timely a publication as possible through procedures such as the pre-publication
process just described and periodic inventories of items in the MR office. Another method used to
keep MR up-to-date is the mailing of reminder letters to reviewers who have not returned their written
reviews for a significant period of time. Every three weeks a list of such reviewers is compiled along
with a T@ source file containing their addresses and a list of the items they have not returned. The
letters are then W e d and mailed.

2.6 The Review
There are two ways in which a review is received back at the MR office. Since January of 1988, MR
has been accepting manuscripts through the electronic mail system; currently, several dozen reviews
a month are received electronically. Most reviewers, however, still type, typeset or write their reviews
on the review forms provided and return them to MR by mail. Once received back at MR, the reviews
are routed to the copy editors for copy editing and verification of references, and to the editors for
substantive editing. They are then passed on to keyboarders in Providence and Ann Arbor. Reviews
are input using the macros of A M S - W as a standard, although there are a few cases where conflicts
between A M S - w and p la in . tex are resolved in favor of p l a in . tex (for instance, MR uses \ . for
the dot accent as defined in p l a in . t ex rather than \D of AMS-'I?@). However, since MR is a journal
of abstracts rather than complete papers, the mathematics generally is not difficult to code and there
are relatively few instances where such conflicts occur. As noted earlier, the review text is not entered
into the database but rather is written to a text file and tied to its bibliographic information by means
of its control number. Thus, the name of the example review text file is 761401 .msr (m s r refers to
manuscript ~eview). -

After the review text has been keyed, the file is merged with its bibliographic information, re-named
to be an mrg file (merge), and w e d to produce an "item proof' (see Figure 7). At this point, the - -

In the CMP "Complete Bibliographic Listing by Subject Classification" section, the \isprepubl tag also produces

the phrase "to appear" for the entry. Later, after the article is actually published, the item appears a second time in

CMP followed by the symbol (3, triggered by the presence of the tag \wasprepub1 in the mrb file.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 643

item actually begins to look like an entry in an MR issue. In fact, the same headers used to
process the MR issue are used here to generate item proofs. Like the CMP headers, they contain a set
of switch options for producing several different output types. Thus, there is an \ItemProofSwitch,
a \FinalRunSwitch that calls up the macros for typesetting the MR issue as it appears in print, a
\ClippingsSwitch for preparing "clippings" of reviews be sent to publishers of books, and a number
of others.

Item proofs are routed to the editorial staffs for proofreading and editing, and then back to the
keyboarding staff for correction. On the average, an item is run through twice before it is declared
LL~lean" and ready for the issue "pool".

2.7 The MR Issue
Once a month, reports are run on the approximately 4000 items ready for publication to give the
editors a final opportunity to remove from, add to, or substitute for, items in the issue pool. After
any necessary adjustments have been made, the MR issue is created: MR numbers are assigned (recall
that up to this point there have been only control numbers), cross-reference information is created,
and bibliographic information is extracted (using MAKMRB) and merged with the review text files in the
issue pool. This process results in 61 mrg files, one for each subject area.

Next, is run on each of the 61 section files to produce a first set of page proofs that are
then scanned by editorial staff. An author index, a "key" index (a list of "unauthored" items such as
collections or conference proceedings) and a list of new serials being reviewed in MR are also produced
and proofread. After all corrections have been made, there is a final page proof run, this time in three
or four large chunks, rather than section by section. Once again the proofs are scanned and, if there
are no further corrections to be made (generally there are none at this stage), camera-ready copy is
ordered off the APS-p5.

2.8 MR Sections
MR provides mathematicians with the option of subscribing to a section or sections of MR in which
their main interests lie. For instance, a combinatorialist who subscribes to MR Sections for section 05
is provided every month with a 'Lminil' version of MR consisting of reviews from section 05 along with
an author and key index for that section. Although MR has looked at the possibility of r e - m i n g
the individual sections of MR and using laser printer output for MR Sections, it has so far been more
cost-effective simply to re-use the camera copy from the MR issue. The author and key indexes for
MR Sections, however, must be generated from scratch, since they represent only those authors and
unauthored items within that section (whereas the indexes in the MR issue are alphabetized lists of
names and keys taken from the issue as a whole).

2.9 The Annual Index
After the iterns in the December issue of MR have been assigned MR numbers (even before that issue
is w e d) , production of the Annual Index of MR begins. The Annual Index consists of a number of
parts:

1. a bibliographic index by author name
2. a bibliographic index by "key"
3. a list of all serials appearing in MR
4. a list of journals that are translations of other journals
5. the complete list of author institution codes used in MR
6. some information on the transliteration of Cyrillic in MR
7. a bibliographic index by subject classification
8. the MR subject classification scheme

Mrb files containing all items that have been reviewed over the past year, as well as items that will
not be reviewed but have appeared in CMP, are extracted. The format of the items in the bibliographic
indexes is much like that of the "Complete Bibliographic Listing by Subject Classification" section of
CMP. In fact, the same programs used to generate that section of CMP are employed here with only
a few minor changes.

Thus, the Knuth paper mentioned earlier would be found in the author index under the letter

644 TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

"K" along with any other papers Knuth may have written that were reviewed in the same year, and
under section "05" of the subject index. Information on the journal in which the paper appeared could
be looked up under "Amer. Math. Monthly" in the serials list; Knuth's institutional address could
be obtained from the author institution code list under "1-STF-C"; and a description of the article's
classifications, 05A10 and 05A15, could be found in the subject classification scheme (see Figure 8a-e).

The process of producing an Annual Index is spread over a period of about three months. An-
nual section indexes, including subject, author and key indexes, are also produced for MR Sections
subscribers.

2.10 MathSci and MathSci Disc
Since 1982, the AMS has provided the mathematical community with the information contained in MR
and CMP in an on-line database now called MathSci. Users of MathSci can find information on any
item published in MR since 1959 (the review text is available only for the years 1980 to the present),
as well as those items from CMP not yet in MR. With the adoption of 'QX as its typesetting language
in 1985, MR was able to add a new dimension to the MathSci database: users equipped with a l'@
software package (MathSciQX, obtainable from the AMS) can print or preview the results (for items
from 1985 or later) of their MathSci sessions in typeset form rather than as encoded on-line records
(see Figure 9a-b).

MathSci Disc makes available a subset of the MathSci database (MR 1985-1988, plus 68,000 CMP
entries) on CD-ROM. Search records can be downloaded to hard disk for typesetting with QX software.

3. Conclusion
The advantages to a bibliographic database operation of a typesetting language that provides input
for all manner of outputs - from office forms to issues and indexes - cannot be overstated. That the
language is in the public domain and has been widely adopted by the mathematical community, and
that it can be used to drive many varied output devices and fonts is of substantial additional value.
While the current mode of operation at MR seems standard and routine to those who work there, it
is useful to reflect on how modern, state-of-the-art, and efficient this mode is, compared to what was
available only a decade ago.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

\paper 761 401\endx

\ m u m 86a : 05006\endx

\cno 761 40l\endx

\hdyr 84\endx

\etype J\endx

\status PUBL\endx

\cv 17\endx

\ci 2\endx

\editor AG\endx

\psub j 05A15\endx

\ssubj 05AlO\endx

\authno \endx

\namepub Knuth, Donald E.\endx

\inst I-STF-C\endx

\instname Department of Computer Science, Stanford University\endx

\instaddr Stanford, California, 94305\endx

\mtitle The toilet paper problem.\endx

\lag English\endx

\mrabr Amer. Math. Monthly\endx

\jname The American Mathematical Monthly\endx

\vol 91\endx

\yr (1984) ,\endx

\iss no . -8 ,\endx

\pp 465--470.\endx

\jorissn 0002-9890\endx

\jorcoden AMMYAE\endx

\tyrevtext Signed review\endx

\revf Cheema, M. S.\endx

\revr M. S. Cheema\endx

\rev1 (1-AZ) \endx

\revcode 03162\endx

\endpaper

86a:05006 05A15

Knuth, Donald E. (1-STF-C)

The toilet paper problem.

Amer. Math. Monthly 91 (1984), no. 8, 465-470.

Figure 1: MAKMRB output and sample TEX document

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

\spines \endx

\isscno S117 897\endx

\maillog AA\endx

\issindate 841012\endx

\isszero \blanks \endx

\counttag \blanks\endx

\j orcolltype \blanks\endx

\ j orke y AMEMM\endx
\jorabbrev Amer. Math. Monthly\endx

\pubkey 0-88385B\endx

\pubname Mathematical Association of America\endx

\pubstitle Math. Assoc. America\endx

\publoc Washington, DC\endx

\pgprf N\endx

\issvol 9l\endx

\volsl N\endx

\issyr 84\endx

\yhd N\endx

\issno 8\endx

\ord N\endx

\issname \blanks\endx

\jctitle \blanks\endx

Issue cno: S117 897 Count :

Entry date : 84/10/12 Journal collection type: -
Issue zero: Related cno:

..
AMEMM/Amer. Math. Monthly
0-88385B/Mathematical Association of America, Washington, DC
Pageproof flag: N
..
Volume: 91 Paren. number:

Volume slash flag: N Part number:

Issue year: 84 Supplement:

Year hanging date: N Hanging date :

Issue number: 8 Order flag: N

Multi issue number: Duplication:

Issue name :

JC title:

Figure 2: SPINES output and spine form

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

\dbox 841015\endx

\isscno S117 897\endx

\jorkey AMEMM\endx

\cno 761 40l\endx

\etype J\endx

\pp 465--470\endx

\iof lag N\endx

\psubj 05A\endx

\mtitle The toilet paper problem.\endx

\namepub Knuth, Donald E. \endx
\inst 1-STF-C\endx

\instname Department of Computer Science, Stanford University\endx

S117 897 761 401 ET = J
PP = 465-470
I0 = N
PCLASS = 05A
T = The toilet paper problem
A = Knuth, Donald E.
INST = 1-STF-C Department of Computer Science, Stanford University

Figure 3: Daily box proof input and output

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Check here if this item should be given
high priority (gold slip) treatment.

761 401
et : J CMP 17: 2 05A

Knuth, Donald E. (1-STF-C)
The toilet paper problem.
Amer. Math. Monthly 91 (1984), no. 8, 465-470.

(reviewer last name - first 3 letters) (reviewer code)

DATE : EDITOR :

. Summary (2) [7 From text . .
From preface

(9)
. From sum. (4) (10)

EDS. (1)

Introduction. (5) Title (12)
. C] From intro (7) 0 (11)

Date Produced : 1/26/85

761 401

Figure 4: Editor assignment form

\newaut Knuth , Donald E . \endx
\inst I-STF-C\endx

\others ({\it with\/) Drofnats, R. J . \instc{l-ABC-D)) \endx

\mtitle The toilet paper problem.\endx

\mrabr h e r . Math. Monthly\endx

\vol 9l\endx

\yr (1984) ,\endx

\iss no. "8, \endx

\pp 465--470.\endx

\cmpclass 05A\endx

\endpaper

\newaut Drof nats , R. J . \endx
\see Knuth, Donald E. \endx

Knuth, Donald E.(l-STF-C) (with Drofnats, R. J. (1-ABC-D)) The toilet paper prob-
lem. Amer. Math. Monthly 91 (1984), no. 8, 465-470. 05A

Drofnats, R. J. See Knuth, Donald E.

Figure 5: CMP "Complete Bibliographic Listing by Subject Classification" input and output

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 649

MATHEMATICAL REVIEWS

CMP 17: 2

hu th , Donald E. (1-STF-C)
The toilet paper problem.
Amer. Math. Monthly 91 (1984), no. 8,

65-470.

n'm Piease give >character clmi6catian(s) according to

1980 Subject Cla641ficatmn (1985 Revwon) (See the mmt recent

MR Annual Subject Index)

TOG:

- - - - - , - - - - -

Conventions (use colored pencil).

RP

Greek : underhe in red

German nak tur : print or type roman letter, underline in green

Script : pnnt or type roman letter, encircie in blue

Boldface : underline with a wavy blue l i e

Do not underline for italics. (Lettern used as mathematical symbols are automatically

italicized by our printer.)

PLEASE TYPE WITH EXTRA SPACE BE

Professor M. S. Cheema CONTINUE ON SEPARATE SHEET IF NECESSARY.

Department of Mathematics ~f the paper is in Russian or Chinese, and you consider it to haw

University of Arizona exceptional merit warrantmg tramlation. check here.

This work has been speially eomssianed for ineluior

~ C S O ~ , AZ 85721 in MATHEMATICAL REVIEWS, or subsequent compilation!

11111 11 111 11 111 11 111 11 111 11 111 11 111 11111 of reviews, m accordance with the terms of Seetlon 101 of t L

Copyright Act of 1976. All nghts to this review. inciudiq

copyright, belong to the American Mathematical Society.

Figure 6: Reviewer form

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

99a:99999 O5Al5

Knuth, Donald E. (1 -STF-C)

The toilet paper problem.
Amer. Math. Monthly 91 (1984), no. 8, 465-470.

The toilet paper dispensers are designed to hold two rolls of
tissues, and a person can use either roll. There are two kinds
of users. A big chooser always takes a piece from the roll
that is currently larger, while a little chooser does the oppo-
site. When the two rolls are the same size, or when only one is
nonempty, everybody chooses the nearest nonempty roll. As-
sume that people enter the toilet stalls independently at ran-
dom, with probability p that they are big choosers and prob-
ability q = 1 - p that they are little choosers. If two fresh
rolls of toilet paper, both of length n are installed, let M,(p)
be the average number of portions left on one roll when the
other one first empties. The purpose of this paper is to study

Mathematical Reviews Item Proof: Run l985/ 101 171 14: 10
Batch (Page: 1) Item: 1 Complete

the asymptotic value of Mn(p) for fixed p as n + m. Let

M(z) = C,,, Mn(p)zfl, and C(z) = C,,, 4 z n , Cn = (2 n n 3 / n
(Catalan numbers) be the generating functions. It is proved
that M(z) = (z / (l - ~) ~) ((q - C(pqz))/q). Let r be any value
greater than 4pq; then Mn(p) = p/(p - q) + O(rn) if q < p,

CE

Mn(p) = ((q - p) / q) n + p / (q - p) + O (r n) if > p,and Mn(3) =

2 4 i 7 Z - +
M. S. Cheema (Tucson, Ariz.)

761 401

Figure 7: Item proof

Keyed by: AMP

Ed

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Co RP Fin

Knuth, Donald E. The toilet paper problem. Amer. Math. Monthly 91
(1984), no. 8, 465-470. 86a:05006 05A15 (05A10)

Figure 8a: Excerpt from annual author index

Amer. Math. Monthly The American Mathematical Monthly. Math.
Assoc. America, Washington, DC.

Figure 8b: Excerpt from annual serials list

1-STF-C
Department of Computer Science
Stanford University
Stanford, CA 94305

Figure 8c: Excerpt from annual institution code list

Knuth, Donald E. The toilet paper problem. 86a:05006

Figure 8d: Excerpt from annual subject index

O5A 10 Factorials, binomial coefficients, combinatorial functions
[See also 1 lB65.1

O5A 15 Combinatorial enumeration problems, generating functions

Figure 8e: Excerpt from subject classification scheme

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

AN- 15410941

AN- <MR Number> 86a#050061

AN- <Paper Number> CMP 761 4011

TI- The toilet paper problem.1

AU- Knuth, Donald E.

(Department of Computer Science, Stanford University,

Stanford, 94305, Ca1ifornia)I

CS- 1-STF-CI

JN- her. Math. Monthly, 91, no. 8, 465--470.1

PY- 19841

SN- 0002-98901

CO- AMMYAEl

LA- English1

DT- Journal l
SF- MR (Mathematical Reviews) AMSI

RL- MEDIUM (20 lines) I
AB- The toilet paper dispensers are designed to hold two rolls of tissues,

and a person can use either roll. There are two kinds of users. A big

chooser always takes a piece from the roll that is currently

larger, while a little chooser does the opposite. When the two rolls

are the same size, or when only one is nonempty, everybody chooses

the nearest nonempty roll. Assume that people enter the toilet stalls

independently at random, with probability p that they are big

choosers and probability $q=l-p$ that they are little choosers. If

two fresh rolls of toilet paper, both of length n are installed,

let $M\sb n(p)$ be the average number of portions left on one roll

when the other one first empties. The purpose of this paper is to

study the asymptotic value of $M\sb n(p)$ for fixed p as

$n\to\infty$. Let $M(z)=\sum\sb Cn\gel)M\sb n(p)z\sp n$, and

$C(z>=\sum\sb Cn\gel)c\sb nz\sp n$, $c\sb n=C2n-2\choose n-l)/n$

(Catalan numbers) be the generating functions. It is proved that

$M(z)=(z/ (1-zl\sp 2) ((q-C(pqz1) /q) $. Let r be any value greater than
$4pq$; then $M\sb n (p) =p/ (p-q) +0 (r\sp n) $ if $q<p$, $M\sb

n(p)=((q-p)/q)n+p/ (q-p)+O (r\sp n)$ if $q>p$, and $M\sb n(Cl\over

2)) =2\sqrtCn/\pi)-\frac 14\sqrt Cl/\pi n)+O (n\sp <-3/2)) $. I
RE- <Name> Cheema, M . S . I
RE- <Location> (Tucson, Ariz.) l
RT- Signed review1

DE- *COMBINATORICS -Classical combinatorial problems --Combinatorial

enumeration problems, generating functions (05A15); COMBINATORICS

-Classical combinatorial problems --Factorials, binomial coefficients,

combinatorial functions (O5AlO) 1

Figure 9a: M a t h S c i W input file

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

1541094 - Dialog Number
86a#05006 - MR Number
CMP 761 401 - Paper Number

Title: The toilet paper problem.
Author: Knuth, Donald E. (Department of Computer Science, Stanford University,

Stanford, 94305, California)
Corporate Source: 1-STF-C
Journal: Amer. Math. Monthly, 91, no. 8, 465-470. Year: 1984 ISSN 0002-9890

CODEN: AMMYAE
Language: English Document Type: Journal
Subfile: MR (Mathematical Reviews) AMS Length: MEDIUM (20 lines)

Revzew:
The toilet paper dispensers are designed to hold two rolls of tissues, and a person can use either
roll. There are two kinds of users. A big chooser always takes a piece from the roll that is currently
larger, while a little chooser does the opposite. When the two rolls are the same size, or when only
one is nonempty, everybody chooses the nearest nonempty roll. Assume that people enter the toi-
let stalls independently at random, with probability p that they are big choosers and probability
q = 1 - p that they are little choosers. If two fresh rolls of toilet paper, both of length n are in-
stalled, let Mn(p) be the average number of portions left on one roll when the other one first emp-
ties. The purpose of this paper is to study the asymptotic value of Mn(p) for fixed p as n -t m. Let
M(z) = &, Mn(p)zn, and C(z) = &, cnzn, cn = (","I:) /n (Catalan numbers) be the generat-

ing functions. It is proved that M(z) = (z/(l - z) ~) ((~ - C(pqz)/q). Let r be any value greater than

4 ~ q ; then Mn(p) = P/(P - q) + O(rn) if q < P, K (P) = ((q - ~) / q) n + ~ / (q -PI + O(rn) if q > P, and
M,(;) = 2m - im + ~ (n - ~ / ~) .

Reviewer: Cheema, M. S. (Tucson, Ariz.)
Review Type: Signed review

Descriptors:
*COMBINATORICS -Classical combinatorial problems -Combinatorial enumeration problems, gener-
ating functions (05A15); COMBINATORICS -Classical combinatorial problems -Factorials, binomial co-
efficients, combinatorial functions (05A10)

Figure 9b: M a t h S c i w output

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Lexicography with

Institute of Lexicography
University of Iceland
Reykjavik
Iceland
jo rgen@lex i s .h i . i s

ABSTRACT

At the Institute of Lexicography at the University of Iceland, 7l$jX is used for the
typesetting of dictionaries. Currently we are in the process of bringing out a large etymo-
logical dictionary which is typeset in TEX with Postscript fonts. Details of this project are
presented. The value of generic or logical coding over typographical coding is emphasized.

1. Background
In this paper I will discuss the use of T@ in the work carried out at the Institute of Lexicography of
the University of Iceland. The Institute was founded in 1948 and has as its major aim the production
of an historical dictionary of Icelandic from 1540 (when the first printed book appeared in Icelandic)
up to the present, a dictionary somewhat along the lines of the Oxford English Dictionary.

During the past forty years, a lot of material has been gathered for the dictionary. The main
collection of the Institute comprises some 2.5 million dictionary slips; others include, for instance a
collection of words from the spoken language. These other collections contain perhaps 300,000 slips in
all. Near the end of 1982, it was decided to begin evaluating the collection with the aim of publishing
an historical dictionary of the language. At the same time it was decided to embark on computerizing
the Institute itself.

The first computational project involved registering the main collection so as to open more paths
into the collection itself. A database of all the words contained in the collection was set up. The
word class, date of oldest and newest citation, the oldest source, number of citations kept in the
collection and the word type (whether the word is a compound, an affixed word or a 'simple' word)
were registered for each word. This database contains a total of just over 600,000 words. This is a
surprisingly high figure but is explained in part by word-compounding, which is an active process in
the Germanic languages, not the least in Icelandic.

In some respects, this database file can be viewed as a first approximation to a dictionary although
a very primitive one, since it does not have any grammatical analysis to speak of. Yet, because the
material is stored in a database (as opposed to a linear alphabetized order), it does enable us to escape
from the "tyranny of the alphabet" and gives us multiple access paths to the collections of the Institute.

The editing of historical dictionaries has usually proceeded in alphabetical order, the work being
brought out in installments over a period of decades. This is an approach which is in many respects
less than ideal since the editor is forced to deal with words which do not form a coherent set under
any reasonable linguistic criterion. We would therefore like to proceed in a different manner, dealing
with individual word classes at a time. The availability of the computer makes this relatively easy to
accomplish. It has now been decided by the governing board of the Institute that the editing work
will concentrate on the verbs with the aim of producing an historical dictionary of verbs as the first
volumes of what will hopefully later become a comprehensive historical dictionary of Icelandic.

This work was begun in 1985. The editorial strategy involves some novelties compared with tradi-
tional methods (eg., Kuhn 1982), in that each citation is furnished with a set of editorial descriptors
detailing the grammatical and semantic features of the citation itself. This is done on-line with the

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 655

Text Vocabulary
archive

-
database

L

V

I
V

User mterface

Figure 1: A model for a "lexicographer's workbench"

description being stored in a database system. The database system is then used to make TQX-encoded
scripts which TEX then changes into beautifully typeset pages.

In 1986, in a talk presented at the NordData Conference in Stockholm, I outlined the approach we
were using and illustrated it with a figure of a "lexicographer's workbench" (Figure I) , commenting
that a number of features had not been implemented. "This holds especially for the 'manuscript
writer'. Our work has not yet reached the stage where this is in great demand, but we envisage, for
example, the possibility of using the database to turn out manuscripts for a typesetting program like
TJ$P (Pind 1986:87).

Well, this was written before we even had a version of Tm running at the Institute! As a matter
of fact, though we expected that typesetting would be something that we would deal with much later,
a lot of work over the past couple of years has been devoted to the typesetting side of lexicography.
There are two reasons for this. The first is that the lexicographer very much wants to be able to
print proofs from the lexicographic database that show some resemblance to a traditional dictionary.
The second is the fact that we have been engaged in producing an Icelandic etymological dictionary
working from the author's manuscript. This project will be described in detail below.

2. Icelandic T'X
In October 1986 I first acquired T&X. Unfortunately it was not possible for me at that time t o work with
Icelandic in T&X since a number of characters were missing from the Computer Modern fonts which
are needed in Icelandic: such as thorn and eth (\char '034 and \char ' 037 in Figure 2). Additionally,
Icelandic has a number of accented characters and, as is well known, will not hyphenate words
which contain floating accents. In January 1987, however, I acquired Doug Henderson's METAFONT

for MS-DOS and this enabled me to get started on making Icelandic versions of the Computer Modern
fonts. The first version was limited to 128 characters, due to limitations in the drivers then available.
The special Icelandic characters are accessed as ligatures, as recommended by Knuth (1984:46). An
Icelandic hyphenation table was made using Frank Liang's PATGEN-program. This table has turned
out to perform excellently. A number of changes have also been made to the p la in and ~ T E X macros
to accommodate Icelandic. The development of Icelandic TQX was originally carried out on an IBM
PC/AT. In early 1988 we switched over to AIX on an IBM PC/RT and got Rick Simpson's excellent
port of T@ and METAFONT to that machine. This has since been the platform on which we have
operated.

TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

Figure 2: The Icelandic Font irnrlo

3. The Making of an Etymological Dictionary
I turn now to a discussion of the making of one particular dictionary, a 1250-page etymological dic-
tionary of Icelandic which will appear later this year. The etymological dictionary is the work of one
man, the late Asgeir Blijndal Magnhson, who worked at the Institute for over forty years. When
keyboarding of the text began in 1985, it was expected that the dictionary would eventually be typeset
by a professional printer. Indeed, at that time we did not even have at the Institute as mentioned
above. However, I acquired the m b o o k early in 1985 and QX did influence the keyboarding of the
manuscript.

We were immediately confronted with the diverse floating accents which any etymological dictionary
contains and I decided that we would adopt the Q X coding scheme as our model for the keyboarding.
I now have some doubts about the suitability of this scheme as I will elaborate on later. However, it
must be emphasized that I never expected that in fact the dictionary would end up being typeset with

w .
The dictionary was keyboarded directly from the author's handwritten manuscript (having been

collected on slips of the traditional kind so loved by lexicographers before the advent of computing).
The PC-Write editor was used to input the manuscript, since it uses near ASCII-files and is easily
configured. It was limited to 60K files but this did not cause any trouble. When the whole manuscript
had been input, it amounted to 151 files containing just over 7Mb of text.

Proofreading and checking the manuscript turned out to be a major task, even more so since the
author died in 1987. In December 1988, it became clear that it would be possible to publish the
dictionary this year and arrangements were made with the largest printing house in Iceland to take
care of the typesetting and printing. The typesetting was to be done on a Linotronic 300. At that
time it turned out, however, that the typesetting process would be difficult since a lot of accents were
missing from the fonts which were available. Some of these could be ordered from Linotype, others
had to be made specifically at what we felt was an exorbitant price. I think I can fairly say that the
printers were none too happy with the prospect of typesetting this massive book.

At this point, I decided that I would have a go at typesetting the dictionary myself with w.
This fitted also very well into our overall strategy since we had decided that we would use TEX in the

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 657

future as our typesetting engine and had, as a matter of fact, already made some experiments with
the dictionary of verbs. Using the etymological dictionary as the first major test-case was of course
in some respects ideal since if we could accomplish that, we felt we could cope with any dictionary. I
should point out that this is by no means the first Icelandic book typeset with TH. The first one was
actually a book about the Macintosh personal computer written by the present author (Pind 1987)
- my apologies for not having chosen a weightier subject for the occasion! A number of other books
have appeared in Icelandic typeset with m, with more on their way. The dictionary is, however, by
far the most ambitious and also the first (Icelandic) book of its kind typeset with WY.

4. Some Details
Figure 3 shows a page from the dictionary printed on the Linotronic 300.

4.1 The Dictionary Entry
A typical article from this page is the one for cidan, meaning 'just now'. This is coded as follows:

\hword{&ban) ao. 'fyrir skommu'; \shwordidaur),

\dag\shwordCdar) ao. 'fyrr'. Sbr. far. \wforrni&aan(i)),

\wformidaur), nno. \wformi\aai)dan), \wform{\aa{)der), fd.

\wf ormiadens), f sz . \wf ormiapans) , nsa . \wf ormii j \aa()ns\/) ;

sk. fe. \wform{\=(a)dre), fsax. \wform{\=adro\/) 'undir

eins', fhp. \wform{\=atar\/) 'fljbtur, skilningsskarpur'; likl.

einnig i att via lettn. \wform{\-atrs) 'brbaur, flj6tur til'

og lith. \wf orm(otr\ 'us\/) 'aaf ur ' .
This, admittedly, doesn't look particularly nice, but the output from the Linotronic sure does and

that is what counts. Each article starts with a headword which is given by the \hword macro. Other
categories shown in the extract are \shword which identifies a 'subsidiary headword' and \wf orm which
identifies a word, either one from a different language or one cross-referenced in the dictionary.

As can be seen in Figure 3, it is often the case that there are multiple meanings for one word, each
one entered as a separate headword. These are distinguished by a decimal number in front of the word
itself. These numbers are given as an optional parameter (enclosed in square brackets) for the \hword
macro which is defined as follows:

\def\hwordi\futurelet\PossBracket\hwordbranch)

\def \hwordbranch{\if x\PossBracket [%
\let\next=\hwordwithno

\else

\let\next=\hwordwithoutno

\f i

\next

1
\def \hwordwithno [#I] #2{%

(\leavevmode\hbox to lOpt{)\bf#l #2\mark{#2)))

\def\hwordwithoutno#l{%

i\leavevmode\hbox to lOpt{)\bf#l\mark{#l)))

We use \futurelet to check for the presence of a bracket. If it is present, the macro \hwordwithno
is executed, otherwise the macro \hwordwithoutno is used. Note that the indent is specified with an
\hbox. Since this occurs at the very beginning of a paragraph, it is necessary to leave the vertical
mode explicitly, using \leavemode. The primitive \mark enables us to automate the typesetting

of the headwords at the top of each page, which shows the range of entries on a particular page. For
this dictionary, which is set in two-column format, a version of Knuth's double-column output routine
from Appendix E of The w b o o k has been used. These output macros make use of \vsplit to divide
the page into two columns. The \headline macro is as follows:

\def\headline{\hbox to \pagewidth{%

\tenbf\strut\hbox to 14pc{\firstmark\hfil}%

\hfill\folio\hfill\hbox to 14pc{\hfil\splitbotmark}}}

658 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 4: The placement of the ogo~lek accent under different letters

The \f irstmark token marks the first headword on each page and the \splitbotmark marks the last

headword on the page.

4.2 Accents

In an etymological dictionary, there are n different accents which need to be taken care of. has an

\accent primitive which positions accents over letters. Unfortunately the \accent primitive is limited

to putting one accent over a letter. Often there is a need to put two accents over a single letter. For
this it is necessary to write special macros.

One subtlety which 'l&X does not address directly is the fact that it is not always possible to

position accents without knowing what letter it is put over. This holds, for example, for the acute

accent over a k. Ordinarily, the accent primitive works fine for positioning an acute accent over letters
(see e.g., 8, S), but when it comes to the k, the accent should not be positioned as in k, but rather as
in K. A similar issue arises in regard to the positioning of the ogonek accent under letters. Thus it is

usually placed under the middle of an o but at the right serif of the A and a (Figure 4).
These facts bring up the question of coding. The character set of the Computer Modern fonts is

really quite limited since it only uses 128 character positions out of the 256 possible. Adobe Postscript
fonts have many more characters (around 300) and the Bitstream fonts even more. In particular, many

accented characters are part of the standard Adobe and Bitstream fonts and it would seem natural
to use those. This makes it necessary to define the characters in a manner similar to that adopted
by Knuth for the mathematical symbols. Thus we would have control sequences such as \aacute,

\oogonek, \ubreve, etc. In fact, in many ways this is probably a better choice than using the accent
coding. In our case, for instance, where we want to be able to use both the Adobe fonts and Iinuth's
Computer Modern - changing between them with a simple switch - a fragment of our font coding

macros runs on along the following lines:

\newif\ifcmfonts

. . .
\ifcmfonts

\message{*** Computer Modern fonts used ***I

\font\tenrm=imrlO % im . . . Icelandic versions of Computer Modern
\f ont\ninerm=imr9

\font\eightrm=imr8

. . .
\def \aa{\accent23a)

\ d e f \ L ~ \ l e a v e v m o d e \ s e t b o x 0 \ h b o x ~ \ h b o x to\wdO{\hss\char32L}~

. . .
\else

\message{*** Postscript fonts used ***I
\f ont\tenrm=Timesro at 10pt

\font\ninerm=~imesro at 9pt

660 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

. . .
\def\aa(\char7) % Yes, our encoding is a b i t pecul ia r !
\def \L{\char3>

. . .
\f i

This makes it possible for us to define the characters without regard for the particular fonts we
are using. Here a generic or logical approach to the coding of characters is adopted rather than the
typographically-oriented coding of the W b o o k . The coding scheme is natural for use with the
Computer Modern fonts. When extending Tm to use other fonts it becomes less than ideal and thus
it is appropriate to adopt another coding scheme which is not font-based.1

At one point I attempted to use the Bitstream fonts, but they turned out to be useless for our
purposes since the implementation of the Bitstream-to-rn conversion program from Personal TJ$
makes it impossible to freely arrange characters in the fonts. Thus it is not possible to use the Icelandic
hyphenation table if using the Bitstream fonts.

Sometimes the p l a i n macros are not up to the typesetting of floating accents. There is no T@
primitive which puts accents underneath letters. Knuth has defined some macros in p l a in which are
used for this. To put a dot underneath a letter the macro \d is used and the macro \b is used to put
a bar underneath a letter. The former macro is defined in p l a i n . t e x as:

\def \d#l(\oalign(#l\crcr\hidewidth. \hidewidth>)

These macros work nicely for putting a dot and a bar underneath straight letters but are not
adequate for italic letters. Re-definition of these macros along the following lines makes it possible
to use these macros both for straight letters and italic _letters.

\def \d#l(\ifnum\f am=\itf am
\oalign~#l\crcr\hidewidth\kern-O.lem.\hidewidth>%

\ e l s e
\oalign(#l\crcr\hidewidth. \hidewidth)\f i 3

\def \b#IC\ifnum\f am=\itf am\oalign(#l\crcr\hidewidth%
\kern-. 3em\vbox t o . 2ex(\hbox(\char22)\vss)\hidewidth~%
\else\oalign(#l\crcr\hidewidth%

\vbox to.2ex(\hbox(\char22)\vss)\hidewidth)\fi~

These macros only work for the italic family. If they are to be extended to slanted letters, it will be
necessary to introduce yet another conditional testing for membership in the \ s l f am.

T$jX is not able to put two accents over a single letter. These are quite frequent in the etymological
dictionary and, unfortunately, always occur in the italic font. After having tried some fiddling around
with kerns and such things, which did not produce what I felt were adequate results, I looked at the
definition of the \accent primitive in the listing for the TEX program (Knuth 1986:462-463). The
positioning of accents is "straightforward but tedious" according to Knuth. And further:

Given an accent of width a, designed for characters of height x and slant 8; and given a character

of width W , height h, and slant t: We will shift the accent down by x - h, and we will insert kern nodes

t h a t have the effect of centering the accent over the character and shifting the accent t o the right by

S = i (w - a) + h . t - X . S .

Well, I thought, this is what I need for the positioning of double accents. And so I decided to
implement this in a macro called \dblacc. The idea is to first put one accent over a letter and
then use Knuth's formula as if it were a single character needing one accent. The macro \dblacc needs
to play with a number of variables. The names of these variables are similar to the ones Knuth uses
in the equation above:

\newdimen\xheight % t h e accents a r e designed f o r t h e x-height
(\it\xheight=\fontdimen5\the\font) % x-height f o r t h e i t a l i c fon t
\newdimen\Shift \newdimen\A

I should note that I have not ir~plemented this scheme completely and letters which can only be set wlth a floating

accent (e.g., doubly accented letters) are still coded with an accent-based coding.

TUGboat, Volume 10 (1989). No. 4- 1989 Conference Proceedings 66 1

\newdimen\X \newdimen\W \newdimen\H \newdirnen\HT

\newdimen\XS \newcount\slant \newdimen\lk \newdirnen\rk

The macro itself is defined as follows:

\def\dblacc#l#2#3{\1eavevmode\setboxl=\hbox{#2#3~%

% #1 topmost accent, #2 first acc, #3 character

\H=\htl\W=\wdl\setbox0=\hboxC#1)\A=\wd0

\ifnum\f am=\itf am\slant=4

\HT=\H\divide\HT by \slant

\XS=\xheight\divide \XS by \slant

\else\slant=O

\HT=\H\multiply\HT by \slant

\XS=\xheight\multiply\XS by \slant

\f i

\lk=\W\advance\lk by -\A\divide\lk by 2\advance \lk by \HT

\advance \lk by -\XS\rk=\A\advance\rk by \lk

\Shift=\xheight\advance\Shift by -\H

\kern\lk\lower\Shift\hbox{#l~\kern-\rk\u~boxl\relax~

T@ is only able to handle integer arithmetic. In the program, the slant parameter of the font

is used to position the accent. Here a brute force approach is used and the \slant is set to 4, which
is then used in division to equal multiplication by 0.25, which is the value of the slant parameter both
in cmt i9 and Times-Italic.

Now, I must admit that this does look rather complicated and I felt that a simpler method could
be found. I was aware of Peter Olivier's macros for setting double accents (Olivier 1988) but these
do not work for the italic fonts. .After having made the \dblacc macro, I saw Christina Thiele's

macro \diatop (Thiele 1987). This macro does a pretty good job but does not assign correct width to
the overall construction for doubly-accented letters and so is not suitable for running text (this could

probably be easily fixed). However, I did run a small experiment timing the \dblacc and \diatop
macros. After ascertaining that the former runs faster I sort of lost interest in redefining the macro!

Anyway, the \dblacc macro has performed pretty well in this project and so there has not been a

pressing need to change to something which perhaps is somewhat simpler.

4.3 Postscript
The book is typeset with using PostScript to drive the typesetter. This approach was taken so

that it would be possible to get high-resolution typesetting on the Linotronic 300. Using PostScript

also demanded the use of Adobe typefaces since we did not have the Computer Modern faces for use
with Postscript at the high resolution offered by the Linotype machine. Even so I doubt that we

would have used the Computer Modern faces since they are not particularly well suited to typesetting
in narrow columns. The lowercase alphabet length of cmr9 is 118.0124 pt while the corresponding

figure for Times-Roman at 9 points is 107.48698 pt (the dictionary is set using fonts at 9 pt). For the
bold fonts there is an even greater difference in that cmbx9 has a lowercase alphabet length of 136.1019
pt while Times-Bold is 114.50696 pt.

This difference of length shows up clearly in the number of Overfull \hbox messages when type-
setting with these fonts. 7l&X has a parameter called \tolerance which enables the user to specify

how much glue is allowed to stretch and shrink between words. Normally plain T@ sets \tolerance

equal to 200 but this, as pointed out by Knuth (1984:28-29, 96), is much too strict for narrow column
setting.

The following table shows some experimental runs with \tolerance equal to 500, 1000 and 5000

using either Adobe fonts (Times-Roman, Times-Italic, and Times-Bold) at 9 points or Computer

Modern fonts (cmr9, cmbx9 and cmti9). These experimental runs were done on the articles comprising
the letter s totaling 4,318 paragraphs and running to 240 pages. It is evident that the number of over-

and underfull boxes is dependent on both the fonts used and the setting of the \tolerance parameter.

From these experiments it was decided to set the \tolerance to 1000 during the processing of the
book.

662 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Fonts

Adobe
Times

Computer

Another approach, which I feel would be worth trying, would be to make a special version of Com-
puter Modern designed for narrow settings. Knuth (1989) has recently given a fascinating example of
the way he changed the parameters of the Computer Modern fonts for the Concrete fonts. Something
similar can no doubt be done to make the fonts suitable for narrow columns.

The typesetting process used standard ?iEX (with one exception) running with an Icelandic hy-
phenation table. The change from standard QX relates to the hyphenation where one change was
made to the T@ code. In section 902 of the program listing (1986:380), Knuth declares that "TJ$
will never insert a hyphen that has fewer than two letters before it or fewer than three after it". This
is less than ideal for Icelandic where it is very common to hyphenate before the second last letter of
a word. So slight changes were made to the code to accomplish this. Otherwise, the TE;IC program is
standard. In particular, I don't think using Multilingual 'I'@X would have been to any advantage in this
case since dozens of languages and dialects are referenced in the dictionary, many of them extinct and
no doubt getting hold of hyphenation patterns for these would have been pretty difficult!2 Correcting
the overfull boxes was therefore done by hand. This, however, did not turn out to be a particularly
onerous task.

Using PostScript with 7)$ is really quite straightforward. It is of course necessary to supply the
requisite t fm files. These can be rather easily generated from the AFM files provided with the Adobe
fonts. For this I used the a f t o p l program on the UNIX TEX distribution and changed it so that it
would recognize the font encoding I had adopted. The a f t o p l program makes p l files which can then
be changed to t fm files with the p l t o t f program. I have used ArborText's dvips driver to generate
the PostScript code from the d v i files. This has all worked quite satisfactorily.

The only thing which leaves something to be desired is the possibility for previewing the typeset
pages. The IBM RT has a screen with a resolution of 118 points to the inch. It has an excellent and
very fast previewer, enabling the user to jump to any page in a 100-page section of the dictionary
almost instantaneously. No standard Adobe files exist for this resolution. So I tried making some up
using the Bitstream fonts, e.g., Dutch for Times-Roman. It turned out of course that one foundry's
Times-Roman is not another's. The widths of the characters are not comparable so what should be a
nicely justified text comes out quite ragged on the screen. This should come as no surprise and was
presumably one of the main motives behind Knuth's development of the Computer Modern family,
namely the need to generate a consistent set of fonts for use on devices with very different resolutions.

However, though I see a need for bringing up a set of correct PostScript screen fonts, the need is
not pressing since the preview is only used to check for widow lines, overfull boxes and such things.

Though PostScript has a reasonable character set, some characters are missing which are needed
in this project. These I have made up using the Fontographer font editor, a PostScript font editor
running on a Macintosh. Fontographer is quite different from METAFONT. A character is made by
drawing curves and lines on the Macintosh screen. Fontographer uses B6zier curves like METAFONT

but it has no understanding of "meta-ness", so each character has to be drawn on its own with the
user attending to the overall aspects of the design. The output of Fontographer is a PostScript file
which can either be downloaded to the printer or prepended to the PostScript file containing the text
of the dictionary itself. Actually, only the latter approach seems to work on the Linotronic.

All things considered, I would like to stress that using PostScript fonts with QX has turned out to
be much easier than I had at first imagined. It is of course true that PostScript has some limitations
in that it always operates from a single design size. This leads for instance to small caps letters which
are obviously of a lower quality than a specially designed small caps font. Also, the quality of the

Box type

o v e r f u l l

Modern I under fu l l

With a purely bilingual dictionary the advantages of using Multilingual are obvious.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

\ t o l e r a n c e

500 1000 5000
397 309 22

underf u l l

o v e r f u l l

3 3 421

1 2 177

1037 463 71

letters at small point sizes leaves something to be desired, but this is not a problem for the setting of
a dictionary which almost exclusively uses 9pt fonts. Those setting mathematics are of course aware
of the limitations of the Postscript fonts for mathematics.

5. Other Projects
I have already mentioned the dictionary of verbs which will be the major work undertaken over the
next few years. Considerable time has been spent on the database side of this project (which is now
being ported from MS-DOS to UNIX), and also on the typesetting aspects. We have also embarked
on a study of older Icelandic dictionaries. Some of these will be republished by the Institute, freshly
typeset using w. The first three volumes are now underway: an Icelandic-Latin dictionary from 1683,
an Icelandic-Danish-Latin dictionary from 1814, and a Danish-Icelandic dictionary from 1819.

The latter dictionary shows off some of TE;Y7s capabilities quite nicely. The dictionary is Danish-
Icelandic, although we are primarily interested in the Icelandic vocabulary. A list of all the Icelandic
words (with reference to the appropriate headword) will be included with the book. 'l&X automatically
writes these words (which have been specifically marked in the dictionary) to a file and a special
program then takes care of sorting and merging these entries which are then input to T@ again for
typesetting.

6. Some Lessons
I don't think it will be necessary to explain to this audience why we have found w to be eminently
suitable for lexicographic work. The typesetting is unquestionably of the highest order. Our experiences
with T@ over the last couple of years have taught us many lessons. The most important of these is
perhaps the following: When coding a manuscript, always code it at the most abstract level possible.
This was not our approach when we embarked on the etymological dictionary. This was partly due
to the fact that we were preparing a file for a typesetter. The virtues of logical or generic coding
are many, as pointed out by Lamport (1988) for example, and Knuth (1989:31-32) has an interesting
example of this relating to the different use of text numerals and mathematical numerals. The value
of logical coding is apparent in the making of dictionaries where we are dealing with text which is
relatively highly structured. By using logical coding it is relatively straightforward to use the same
manuscript for typesetting as for input to a database system. This of course, is one of the ideas
behind the SGML standard. by itself does not force any particular style of coding on the user,
but it does enable the use of generic coding, and I feel that this should be used to the fullest extent
possible, especially perhaps in lexicographic work, where it would considerably ease the process of
putting printed dictionaries on-line (Alshawi, Boguraev and Carter 1989). Of course, when it comes
to the actual, final typesetting, it is not possible to completely bypass typographical coding. Thus, in
order to get rid of widow lines and other such typographical blemishes, it is necessary to use purely
typographic command such as \looseness. These commands are, however, few and can be easily
isolated.

One advantage of this approach is that by relatively simple re-definitions of macros, it is possible
to print completely different proofs of the same text, with cross-references or grammatical information
highlighted in special ways. This has been tried and found to be highly useful.

This approach has now been consistently adopted for other works now being coded in TE;Y at
the Institute. This holds for the historical dictionary of verbs mentioned earlier, as well as the series
of reprints of older dictionaries. My aim, through these diverse types of dictionaries, is to produce
a reasonably comprehensive macro package for the typesetting of dictionaries, a package which will
enable the user to describe the logical structure of the text while 'l&X takes care of the formatting.

Bibliography

Alshawi, Hiyan, Bran Boguraev, and David Carter. "Placing the Dictionary On-Line." Pp. 41-63 in
Computational Lexicography for Natural Language Processing. Bran Boguraev and Ted Briscoe,
eds. London: Longman, 1989.

Knuth, Donald E. The W b o o k . Reading, Mass.: Addison-Wesley, 1984.

Knuth, Donald E. m: The Program. Computers and Typesetting, Vol. B. Reading, Mass.: Addison-
Wesley, 1986.

664 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Knuth, Donald E. "Typesetting Concrete Mathematics." TUGboat 10:31-36, 1988.

Kuhn, Sherman. "On the Making of the Middle English Dictionary." Dictionaries: Journal of the
Dictionary Society of North America 4:14-41, 1982.

Lamport, Leslie. "Document Production: Visual or Logical." TUGboat 9:8-10, 1988.

Olivier, Peter J. "Publishing 'Exotic' Documents with Eg)jX, A New Macro Package." Paper pre-
sented at w 8 8 , Exeter University, July 1988.

Pind, Jorgen, "The Computer Meets the Historical Dictionary." Nordisk DATAnytt 16(10):41-43,
1986.

Pind, Jorgen. Bo'kin urn Macintosh. Reykjavik: MA1 og menning, 1987.

Thiele, Christina. "?IE)C, Linguistics, and Journal Production." Pp. 5-26 in Conference Proceedings,
Eighth Annual Meeting of the T@ Users Group. Dean Guenther, ed. lj$iniques 5 . Providence:
'T&$ Users Group, 1988.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

T)jX Users Group
Stanford University, August 13-24, 1984

Terman Engineering Center Auditorium and The Graduate School of Business

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Olde Worlde Tj$

Imperial College Computer Centre
Exhibition Road
London SW7 2BP
texlineQvaxa.cc.imperial.ac.uk

mwcQdoc.imperial.ac.uk

and
m e r t systems
36 Baker Street
London W1M IDG

ABSTRACT

T@ and UTEX are used world wide. In recent years user groups have started to
spring up spontaneously, outside (or alongside) the umbrella of TUG. A brief outline of
the established European groups is presented here, together with a selective account of
some historical background. There are some concerns, which although not specifically
European, are certainly non-US, and indicate areas which tend to be overlooked when
viewing the T@ world from the New World.

1. Introduction
T)$ is alive and well on both sides of the Atlantic. Readers of TUGboat will be familiar with con-
tributions from outside North America. But it is not the purpose of this short paper to chart the
migration of TpJ from the New World to the Old Worlds. Besides anything else, I am bound to omit
some of the early movement, simply because it is no longer evident. The early history of TEX is only
poorly known, which is a great pity, since it might provide some useful information about the way
that software evolves and becomes incorporated into the wider world. Many institutions and systems
take w / U T + for granted - how did this happen? But fascinating as this might be (and worthy of
'Trivial Pursuit - the T&X edition'), it is not the topic here.

The objective is merely to report on the present status of TpJ user groups in Europe. As such, we
are ignoring many aspects of TpJ and TJ$ support.

One aspect of the T@ community which must be obvious to all who read the electronic commu-
nications facilities like w h a x is the readiness of T@C/UTEX users to contact other T@/UTEX users
by email, and their apparent reluctance to join TUG. Search the TUGboat membership listings for
the various TpJhax contributors - where are they? This aside covers people with email access. The
growth of "personal" versions of TJ$, where the person at the keyboard is less likely to have email or
even bulletin board access, may point to an even larger community of effectively anonymous users.

2. European Organisations
Within Europe there are five groups with national or supra-national interests. The order in which they
are presented here is completely arbitrary, and reflects neither size, age nor alphabet.

2.1 DANTE

The German 'I)-$ users group (De~tschs~rachige Anwendervereinigung 2?jX) is, as its name says, a
German-speaking user group, and as such, includes members fiom Austria and Switzerland, as well
as the Federal Republic. DANTE was founded in 1989. But there have been significant W/I&T$
activities in the German-speaking countries for several years. This year's meeting in Eichstatt will

TUGboat, Volume 10 (1989)) No. 4- 1989 Conference Proceedings 667

be the eighth annual meeting of German TEX users, and closely follows w 8 9 , the fourth European
T@ Conference, to be held in Karlsruhe (quite independently, in September). We might also note
that Frank Mittelbach was awarded the Knuth Scholarship for his work with UT$, as well as Hubert
Partl's work in customising TAT@ to the various regional requirements within the DANTE catchment.
DANTE promises to be very active and to promote the use of TE,X in a very wide sense. One of their
proposals is to provide W/TAT$ courses in German (not before time!) and even to distribute a copy
of Klaus Thull's public domain TJ$ (for the IBMIclone-pc) to every school in the area - principally
for use by teachers. There is also a proposal to produce a 'newspaper', which it is intended will appear
at the Eichstatt meeting in October.

The contributions of the German-speaking EX users includes Norbert Schwartz' excellent intro-
ductory text to TEX (1988), and Reinhard Wonneberger's extremely useful 'compact' UT$ book
(1988). Several other books are beginning to appear.

A common feature of most of the groups is the use of list servers. The list server which is operated
from Heidelberg is a useful feature of DANTE'S activity, enabling the electronic transmission of a large
amount of public-domain W w a r e .

2.2 GUTenberg
Groupe (francophone) des Utilisateurs de !!&$i is a little older than DANTE. Again, activity in France
is nothing new. The second European Tj# conference was held in Strasbourg in 1986, and Jacques
DCsarmCnien of Strasbourg is well known for his work in incorporating French hyphenation and national
characters into Tj#, since before 1984. GUTenberg was constituted on September 23rd 1988, but before
that time an unofficial group did exist, and organised a number of meetings, including one entitled
''W et les Sciences Humaines" (Paris, 1987). In fact GUTenberg traces its origins back to 1984,
following a suggestion from Jacques AndrC. The focus of GUTenberg appears to be Paris rather than
Strasbourg. Both GUTenberg meetings (in 1988 and 1989) have been in Paris, but next year's meeting
will be in Toulouse. Both Paris meetings were well attended and included many participants from the
academic, research and commercial world. One of the encouraging features of GUTenberg membership
is the support from the commercial sector (indicating that pragmatic concerns can be accommodated
from within W/UTEX) .

Although this apparently emphasises an exclusively French component to GUTenberg, it does in-
clude the other parts of the French-speaking world, like Switzerland, Belgium and Quebec. Michael
Ferguson's ML-TEX (Multilingual W), which greatly eases the use of national characters and hyphen-
ation, is a Canadian development which was wide applicability both outside and within the French-
speaking world. GUTenberg is empowered to distribute VMS, UNIX and MVS implementations of
M L - r n to its membership (for free, but with copying restrictions). They also distribute a version of
S B W (one of the public domain MS DOS compatible W s) , together with various l'~Xtools.

Education plays an important role: this year's annual meeting (May 16th-17th; for a report, see
TUGboat 10:150-153) included two day-long presentations on METRFONT and UTEX (naturally, in
French).

One of GUTenberg's major contributions is the Cahiers GUTenberg. So far three editions of
the Cahiers have appeared. Adopting a fairly common French convention, the very first edition was
'numCro zCrol. Production is of a high quality, and so too is the content. The Cahiers deserve far
higher circulation outside the French-speaking world. Although not a GUTenberg "production", we
must also note Raymond S6roul's Le petit livre du Q$ (1989), an excellent introduction to TI$.

There is a list server which is used by the French group. Refreshingly, they are well-aware of the
problems of the user who is not connected to electronic networks and are hoping to develop access to
the list server through Minitel.

2.3 Nordic l&X Group
While the previous two groups are, in a sense, language specific, the Nordic group is a geographical
supra-national group, including participants from Denmark, Norway, Sweden and Finland. The lan-
guage problems are sufficiently diverse, even within some of the individual countries that no one set
of language solutions (hyphenation/national character) is possible. A result of the heterogeneity of
language is that the meetings tend to be conducted in English, as the lingua franca of the area. The

668 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

reluctance of the French and German groups to use English (because it is not spoken by the majority
of the membership) is not found here. This does carry with it the possible implication that Nordic 'I)$
users may be drawn from the sector which has gone through an educational process which includes
English as a foreign language. This may represent an ultimate restriction on the distribution of T@
to the academic and research areas, and a slowing down of its penetration to more general technical
and non-technical document preparation. (Equally, it seems that almost everyone speaks English, to
the extent that Swedes may reply in English to a question posed in Swedish by a Dane - perhaps the
scope for confusion is lessened!)

The Nordic group has had a number of meetings, and seems to be able to maintain a pattern of
about one meeting per year - this year's was on June 12th (a report appeared in m i n e 9:25-27).
The structure is quite informal, although there is an organising committee elected each year. Being
drawn from a number of constituent countries, this has to be a well-balanced affair, with representatives
from each country. Unlike the other European groups, membership in this group is free.
T@ has been used in the Nordic countries for some considerable time. The first version of T@

which I ever used (m 7 8 on a CDC NOS machine, driving an APS p-5 phototypesetter) was obtained
from the University of Arhus in the early 1980s.

There is a short UTEX book by Steen Larsen, YT# pi Dansk (1989), produced at UNIC, in
Danish, and a wealth of other introductory documentation in Norwegian, Finnish, and English. It is
unfortunate that this material is not more widely known. Although few outside Finland may read
Finnish, we can all appreciate the examples and the structure of such documents. This is probably
a general point: there is undoubtedly support material available in France and Germany which does
not surface outside those countries. It is inconceivable that they have no relevance to the rest of us.
Sadly, the canonical T@ and UT$ books are not really suitable for many beginning T@/UT$ users,
excellent though they may be for the m p e r t and m n i c i a n .

Although there is no list server as such, the Nordic group is setting up an electronic mailing service
over the Scandinavian Universities Network which will channel T@ news. They also plan to handle
electronic enquiries over the net.

Many of the suggestions presented by the Nordic representatives for modifications to m (in order
to handle foreign languages more easily) were suggested in a paper by Romberger and Sundblad in 1985
at the first European T)$ Conference. That paper also makes quite explicit the problems generated
by keyboards which replace some crucial l&X characters by national letters. Losing the \, C,), I: and
I presents some interesting problems, and certainly delayed the adoption of UT$.

2.4 Dutch Group
The NTG (Nederlandse 7)jR Gebruikergroep), is about one year old. Their recent two-day meeting in
Utrecht (June 29th-30th; for a report, see Tj$line 9:29-30) combined introductory courses on UTEX
with a conventional conference. As a somewhat smaller grouping (Dutch is spoken by fewer people
than either German or French), the Dutch are very aware of the need for international cooperation.
Many of their concerns parallel those of other countries: the customisation of UTEX style files is a wheel
which has been re-invented several times already, but the identification of the parts of l p l a i n and the
. s t y files which require harmonisation have not been adequately documented at an international level,
despite the applicability of a general solution to this particular problem. Both T@ and UTEX are
sometimes seen as unnecessarily "Anglo-Saxon" (whatever that means!), with embedded assumptions
which are not truly warranted.

There are other UT$ concerns: the adjustment, or creation, of genuine "European" styles is well
overdue. We are all aware of the need to use international sized paper (usually A4), and the implicit
assumptions that 'I)$ and UT$ make of US paper sizes: equally, European typography is different
from the rather narrow Addison-Wesley style typography exemplified by UTEX. This is no criticism of
LATEX. It is a criticism of all those of us who have sat idly by and who have not nailed our friendly
local typographers and document designers to the wall to help us develop new, appropriate styles.

Like most other groups, NTG operate a list server. While this is really of use only to those on
electronic networks, the NTG augments this by providing some style files and macros on pc disk.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 669

2.5 The UK 'l&X Group
This group, which has not yet adopted a catchy title like DANTE or GUTenberg, has been formed in the
last year or so. It is still being run by a non-elected organising committee, although this should have
been rectified by October 1989, when the annual meeting will be held in Exeter. Despite its rather
low-key approach, it has organised three meetings since December 1988: all were one-day affairs, but
used different venues each time - an attempt to diminish the domination of London as a location (for
reports see w i n e 8:17-18; 8:18-20; 9:20-22). It is perhaps a hallmark of the strength of the group
that there have been dominant themes for the meetings (except the initial prototype). The intention
is to have four one-day meetings each year, at a variety of locations. Historically though, the very first
UK "TEP meeting was probably the METAFONT meeting organized in Oxford on March 20th, 1987,
by Charles Curran (for a report, see m i n e 5:8-9).

It is difficult to separate the UK group entirely from the activity of the Aston w archive.l
Thanks to the far-sightedness of Aston University and the efforts of Peter Abbott, an entire VAX
111780, together with a considerable amount of disk space, is dedicated to electronic m w a r e . This
archive is probably the largest single collection of electronic T)$-related material in the world, and
represents a unique resource. The archive is accessible over various electronic networks, and although it
does not share the delight of using the otherwise ubiquitous IBM list servers, has comparable power and
ease of use. A recent major re-organisation has made navigation through the archive somewhat easier.
However a recurrent problem is the character corruption which occurs at one of the major gateways
into and out of the JANET network. This has the effect of losing braces entirely and corrupting at least
two other characters, in a two-to-one mapping. This minor problem greatly compromises any chance
of using the archive in a global area network. It is hoped that this problem will soon be removed.

The user group is also considering how to make the archive accessible to those without JANET
access, either through guest accounts, or other types of electronic (or even non-electronic) communi-
cation. Aston has also been the focus of U K W , a regular listing similar to Tmhax. Although begun
as a UK-specific listing, it now has a world-wide membership. An interesting feature of U K m is its
regular Friday evening appearance (or, at least, transmission). Other listings might take note.

As a spin-off from part of the archive activites, an introductory book is being prepared. This is
not a book, but a background book which aims to be of use to implementors of w. It seeks
to explain the inter-relationships between the various 7$J tools. Although this information already
exists, it is available in a wide variety of (often) inaccessible sources - like early editions of TUGboat,
or Stanford reports.

The UK was also the site of w 8 8 (or m e t e r) , the 1988 European T)$ conference. Joachim
Lammarsch, of DANTE, says that it was here that "the idea of a German T)$ society came into my
mind". He then went on to try to bring together German users into a formal group. It was also
at Exeter that the first moves were made towards a UK grouping. T)$88 was a very good, friendly
meeting, attended by about the same number of people as the TUG meeting which followed in Montreal
(August 1988).

It is curious that no books have yet appeared from the UK on T)$ or UT*, although rumours
abound. Addison-Wesley, the nominal publisher of T)$ material is known to have turned down
proposals for such books from the UK, and it seems that it will be left to other publishers such as
Oxford University Press, John Wiley and Sons, or even Ellis Horwood Publishers, to publish these.
On the other hand, the newsletter m i n e has been produced and distributed since late 1984. Now
in its ninth edition, it has gradually grown from about eight pages to a peak of forty pages (edition
eight). Like the Cahiers, it covers a wider range of topics than TUGboat.

3. What of the Rest of Europe?
Curiously, although Italy was the site of the first T)$ conference in Europe (1985), there appears to
be no real focus for w users there. Equally, the lack of a user group in Eire is not inhibiting the
hosting of the first TUG meeting in Europe, to be held in Cork in September 1990. Although there
is at least one journal being produced with m in Spain, whatever individuals exist do not seem to

See next article, by Peter Abbott -Ed.

670 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

have been drawn together yet.2 In Israel (defining Europe rather widely), there are a number of active

TEX workers, but again, no clear focus.

Clearly something is required. We will assume that user groups are useful phenomena. One of the

useful suggestions made has been that a list server could be set up, specific for any national group. The
list server could be almost anywhere, provided there is adequate electronic link up. Again this divides

the world into haves and have nots, but provided we remain aware of the problem, it can probably be

handled.

There is also the problem of Eastern Europe. The problem is mainly one of currency restrictions,

rather than availability of computing hardware. The IBM pc (or clone) appears to have penetrated

widely, although laser printers (and consumables) appear less readily available. It is difficult for T)$
users in eastern Europe to join TUG (or to buy m w a r e) . Nevertheless, there is a significant TEX
presence in Poland, in Jugoslavia, and probably in the German Democratic Republic and the Soviet
Union. The 1985 European TEX Conference Proceedings contain a paper about the problems involved

in transferring TEX to an indigenous East European computer (Bien and Kolodziejska 1985), and since

then some very sound work has been done in creating a Polish TFJ, which, among other concerns,
handles the national characters which are not easily obtained through standard TFJ - like the ogonek

and the circle accent.

4. What are the Concerns of TEX Users in Europe?
Of course the concerns are as diverse as the concerns of TFJ users elsewhere (perhaps more so than
users in North America). But some key themes do keep cropping up.

4.1 National Characters
The various national characters, including the accented characters, pose certain problems. The first of

these is that lj$ does not hyphenate beyond the point at which the first control sequence in a word

 occur^.^ Another minor problem is the absence of the ogonek accents and the non-explicit presence
of the circle accent. European languages use different conventions to indicate "quotes", for example,

French uses ccguillemets D, and German tends to use quotes like ,,thisu.

4.2 Hyphenation
The hyphenation algorithm used by TFJ may be used by other languages, but the patterns have to be
created for each language. Although this has been done for a good many languages, this does require

an added degree of knowledge and research on the part of the ordinary user.

4.3 UTEX
The TEX tool of choice in Europe is LATEX. It is interesting to speculate why - perhaps the slightly
later diffusion of and UTfi to Europe meant that by the time it arrived, BTEX was a stable
product. I suspect that UTEX is actually used in North America much more than we commonly

acknowledge. Perhaps one of the reasons that TUG courses have only taken off very slightly in Europe

is TUG's tendency to offer courses on 7QX rather than UTEX. TUG's perception of QjX has tended

to be of TFJ rather than IATEX, or even METAFONT.

4.4 UTEX Customisation - The Language
As noted earlier, to use UTfi outside the restriction of English requires some work. This has been

completed for German, Dutch and French (at least). This information should be properly documented

to make it easier for other language groups to emulate. There is no such thing as a 'T'EX or UTEX
problem which is "only of interest to our own language group".

4.5 UT$ Customisation - The Typography
BTEX styles are being generated to accommodate European styles, for publishers based in Europe,

At the TUG conference I learned that a Spanish group was in the process of being organised.

In a major announcement at the Stanford meeting, Knuth outlined a proposed revision of TEX, to v. 3.0, which

would include looking a t the hyphenation problems -Ed.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 671

but also for everyday needs. Many of us feel that the "received" TAT# styles are rather "loose", with
excessive white space for European expectations. It is clearly necessary to document any new styles
so that others can use them (please).

4.6 Education
It is not enough to assume that TEX courses in English are sufficient. As TEX, and especially BTj-i$
spread out, we acquire users who do not necessarily understand, far less speak, English, as it is not
the lingua franca that TlijX and IATEX are.

4.7 Networking/List Servers
This is an area which will burgeon and penetrate everywhere, no matter what controls and directions
we attempt to give it. It is difficult area to coordinate. Keeping track of what software is available
where, or even which version is current, represents a real problem.

4.8 Standards
This is by no means unique to Europe, but there is plenty of evidence of awareness of international
standards in the document processing area, such as SGML (the Standard Generalized Markup Lan-
guage), ODA (Office Document Architecture), and so on. There also seems to be a marked willingness
to adopt and adapt to these standards - and to cooperate with their user groups or allied organisa-
tions. Papers in which such standards have played an important role are to be found in the Cahiers,
in all the European TJ$ conferences, and also in w i n e .

5 . Contacts
DANTE: D A N T E

Research Center of the University of Heidelberg
Im Neuenheimer Feld 293
D-6900 Heidelberg 1
FRG
Bit net: dant eQdhdurz 1

GUTenberg: GUTenberg
c/o IRISA
Campus Universitaire de Beaulieu
F-35042 Rennes Cedex
France
Uucp: gut0irisair is .a. f r

Bitnet: ucir00lQf rors31

Nordic Group: Roswitha Graham
Royal Institute of Technology
S- 100 44Stockholm
Sweden
Sunet (Internet): rosuitha0admin . kth. se

NTG: Kees van der Laan
Rekencentrum RUG
Landleven 1

NL-9700 AV Groningen
The Netherlands
Bitnet: cgl0hgrrug5

UK group: UK User Group
c/o Computing Service
Aston University

672 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Aston Triangle
Birmingham B4 7ET
UK
Janet: abbottphk. ac. aston

6. Acknowledgements
I am grateful to the many people who have contributed directly and indirectly to this article. Although
too numerous to be named individually, I must note in particular the helpful and generous contributions
of Bernard Gaulle, Joachim Lamrnarsch, Kees van der Laan and Roswitha Graham.

Bibliography
The following is a very partial and incomplete list of TEX- and UT$-related books which have been
published in Europe.

Appelt, Wolfgang. l&Xfur Fortgeschrittene. Bonn: Addison-Wesley, 1988.

Briiggeman-Klein, Anne. Einfuhrung in die Dokumentenverarbeitung . Stuttgart: B.G. Teubner, 1989,
200pp.

de Bruin, Rob, Cornelis G. van der Laan, Jan R. Luyten and Herman I?. Vogt. Publiceren met BT$.
Amsterdam: CWI Syllabus 19, 1988, 196pp.

DCsarmBnian, Jacques, ed. ?JjX for Scientific Documentation. Second European Conference, Stras-
bourg, France, June 1986. Berlin: Springer-Verlag, 1986, 204pp.

Kopka, Helmut. gT#: Eine Einfiihrung. Bonn: Addison-Wesley, 1988.

Larsen, Steen. Z~TEX p6 Dansk. Copenhagen: UNI.C, 1989, l l l pp .

Lehtonen, Ari. AMS-T&X Ja Matemaattisen Tekstin Kasittely. [A@-?JjX and Mathematical Text
Processing]. Jyvaskyla: Jyvkkylan Yliopisto, 1988, 53pp + 6pp + 10pp + 33pp + 7pp.

Lucarella, Dario, ed. Proceedings of the First European Conference on ?JjX for Scientific Documenta-
tion. Reading, Mass.: Addison-Wesley, 1985, 204pp.

Nenonen, Liina. PC W - o p a s . [P C T'X Manual]. Jyvkkyla: Jyvaskylan Yliopiston Monistuskeskus,
1988, 76pp.

Saarinen, Kauko. m-alkeisopas . [m Beginners' Manual]. Jyvaskyla: Jyvaskylan Yliopiston Monis-
tuskeskus, 1989, 57pp. + appendices.

Schwartz, Norbert. Einfuhrung in T@. Bonn: Addison-Wesley, 1988.

SBroul, Raymond. Le petit livre de TE;Y. Paris: InterEditions, 1989, 317pp.

Suhonen, Timo. UT$-opas. [BTEX Manual]. Jyvaskyla: Jyvkkylan Yliopiston Monistuskeskus,
1988, 63pp.

Wonneberger, Reinhard. UTEX Kompaktfiihrer. Bonn: Addison-Wesley, 1988, 141pp.

References
Bien, Janusz S., and Hanna Kolodziejska. "W for MAD Computers." Pp. 133-140 in Proceed-

ings of the First European Conference on T@ for Scientific Documentation, Dario Lucarella, ed.
Reading, Mass.: Addison-Wesley, 1985.

Clark, Malcolm. "METAFONT meets at Oxford." m i n e 5:8-9, 1987.

Clark, Malcolm. "Nordic m." m i n e 9:25-27, 1989.

Clark, Malcolm. "Nederlandse TEX Gebruikergroep." m n e 9:29-30.

Clark, Malcolm. "RBflexions sur le Congrbs GUTenberg." TUGboat 10(2):150-153.

Hewlett, Carol. "UK TEX Users' Group." m i n e 8:17-19, 1988.

Osborne, David. "Notes on 1st meeting, UK W Users Group." w i n e :20-22, 1989.

Rahtz, Sebastian P. Q. "A UK TFJ Users Group?." w i n e 8:20-22, 1988.

Romberger, Staffan, and Yngve Sundblad. "Adapting 7&X to Languages that Use Latin Alphabetic
Characters." Pp. 27-40 in Proceedings of the First European Conference on T)jX for Scientific
Documentation, Dario Lucarella, ed. Reading, Mass.: Addison-Wesley, 1985.

TUGboat, Volume 10 (1989); No. 4- 1989 Conference Proceedings 673

'TEX Users Group

Stanford University, August 11-14, 1985

Terman Engineering Center Auditorium

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The U K W Archive at the University of Aston

The Computing Service

University of Aston
Aston Triangle

Birmingham B4 7ET
England

AbbottP@Aston.Ac.Uk

ABSTRACT

A viable archive should contain material which is useful, accessible and easily imple-
mented on the target system. The growth of electronic communication, electronic mail
in particular, has brought into being computer-based archives, removing the restrictions

of geographical or political boundaries.
This paper describes the growth of the Aston Archive, the Archivists and how we

manage the archive. I shall describe our approach to make implementation across a
wide range of systems consistent and how we answer questions such as "Does the archive
contains fonts for device Y" or "How do I use printer X".

I hope to answer the question "Is the Archive Useful?"

1. Definition of an Archive
If the proverbial "man in the street" were asked the question "What is an archive?", the most likely
reply would be "A collection of books or records". A popularly held view is of the 19th-century room

filled with books collecting dust, or records of births, deaths and marriages. In the United Kingdom

for many centuries, parish records formed the basis of archives and were usually kept in the Parish
Church - a situation which no longer applies, I might add. Chamber's Student Dictionary (Revised

edition 1980) defines archives as "the place in which government records are kept: public records".
The University is mainly funded by government monies and the archive does contain public records,

so the definition seems relevant.

I suppose that the modern concept of an archive was created with the advent of the digital computer,
and it was only a matter of time before "collections" of computer programs and similar material

acquired the title ARCHIVE. In fact, the common term used when preserving the filestore of a computer
against corruption for future use is archiving, and a number of products on the open market make use
of the word. The major growth in electronic communication in the last few years has opened up the

concept of a central archive to serve large areas of a country or even the globe.

There are a number of well-known archives in the world, and several which serve the TEX com-
munity. I shall, of course, be concentrating on the one located at Aston University in the United

Kingdom.

2. The System at Aston
Aston University is located in the City of Birmingham on a 35-acre city-centre campus. Birmingham

has two universities, and the older one (carrying the title "Birmingham University") owes much to

Chamberlain and is classed as a "red-brick" University.1 The Aston Campus does not conform to the

standard city-centre mould, and its campus (albeit small) would not disgrace a country-park approach.

The Computing Service which hosts the archive is located on the fourth floor of the Main Building,

1 'Red-brick' - The Victorians were fond of using red terra cotta bricks for buildings and universities founded in

Victorian times have acquired the name "red-brick" .

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 675

which was designed in 1933 and built after the second World War. As a result, the accommodation
arrangements are generous for the hardware and acceptable for the staff and users.

To all intents and purposes, the equipment used to support the archive is immaterial, other than

for the unusual problems that arise; the present computer system is a VAX processor running the VMS
operating system.

3. Archive History
In the summer of 1987, a number of interested users in the United Kingdom discussed (via e-mail) the

idea of a UK-based version of W h a x , whereby local problems could be aired and informal contact
made between like users. At that time, Aston were interested in text publishing and the Vice Chancellor
expressed an interest in TEX (having spent some years at Stanford).

I agreed to set up a distribution list and to collate and distribute the queries. The first few issues
were experimental, with a number of hiccups and problems, but eventually a pattern emerged of a

weekly digest normally posted on a Friday afternoon beginning at 1700 hours local time.

As a result of the digest software, a large number of questions started arriving at Aston; these
mainly asked if 'x' was available, but also frequently offered items which might be useful to others.

Like Topsy, it grew and grew and grew.
For many months, the digest was from the UK for the UK, but as it became more widely known,

requests for subscription arrived from many areas of the world including the North American continent.

This brought more material for the archive and requests for distribution both via e-mail and by more
conventional means (such as magnetic tape). The archive and digest are now considered as originating

in the United Kingdom with almost universal distribution.
All of this activity consumes a large part of my "free" time and I became increasing worried that

the archive was becoming disorganised with duplicate material. At a meeting in November 1988 at

Nottingham, I appealed for help in preparing an article for University Computing, a publication of

the Inter University Computer Committee (IUCC); this has since developed into a book (Clark and
Abbott 1989; I have brought copies of part of the book with me to the meeting). I also approached a

number of people with a view to assistance with the archive.

3.1 Archivists

Adrian Clark

Adrian (who prefers the alias Alien) is a researcher in the image-processing field, being especially
interested in algorithmic and software aspects. His interests in m are hence mainly concerned with

graphics - particularly the inclusion of grey-level pictures ("halftones") in documents. He is the author

of a number of articles in TUGboat concerning halftone output and aspects of the implementation of

TEX under VAX/VMS. Adrian is responsible for several areas of the archive, including contributed
UTEX and Q B w styles, VMS implementations, and halftones. He also developed the Aston mail-
server.

Malcolm Clark

Malcolm really needs no introduction but he has been producing books in TEX since 1984; is editor
of QXline, a newsletter of the TEX community, since 1985; organised m 8 8 , the 3rd European T@
Conference at Exeter University; is the editor of the 'l&X88 Conference Proceedings (which we are still

awaiting). He is currently TUG'S European Co-ordinator and also Secretary of the British Computer

Society's Electronic Publishing SIG; teaches TUG courses in the US and Europe; carefully watches

SGML, Postscript and ODA; currently completing A plainT& Primer - an introduction to m,
and H y p e r m - a Hypertext guide to and EATEX. Responsible for a tiny portion of the Aston
Archive.

Charles Curran

Charles has worked in the Systems Development section at Oxford University Computing Service for
the last fourteen years. His main interests are operating systems and document architectures. He

supports the UNIX services, which are provided on Suns and Convex supercomputers. He is currently
chairman of the UK Convex Users Group. He first became familiar with TEX about eight years ago,

676 TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

when he installed it on a local VMS VAX and also on the sadly maligned Perq. He has also spent
a fair amount of time with METAFONT. It is with founts and things METAFONT that he is primarily

concerned in his work on the Archive.

David Osborne

Dave joined the Cripps Computing Centre, University of Nottingham, in 1984 as systems programmer.
His special interests are UNIX and text processing. He helped in setting up w on the Centre's VAX

111750 some time in 1986, and has since worked on the Centre's w implementation on an ICL

Clan 7 running UNIX System V. His areas of w n i c a l interest are general, and mainly related to the

implementation side of things, partly from a UNIX system manager's point of view. Dave joined TUG

in 1988.
His responsibilities in Archive management include: the Beebe drivers, Andrew Trevorrow's soft-

ware, Common m, and P C items.

Sebastian Rahtz

Sebastian is a lecturer in the Department of Electronics and Computer Science at the University
of Southampton, where he has a special interest in humanities computing, teaching courses in text-
processing for computer scientists and computing for archzeology M.Sc. students. He originally got

involved with computers for publication of an archzeological report, and his research interests of type-

setting, generic markup, hypertext and graphical databases continue to reflect a preoccupation with
publication.

He has been using 'I)$ since 1985, and has produced a number of books. The archzeological aspect
has produced a particular interest in the problems of graphical inclusion in m, and the integration
of Postscript. Within the Aston Archive, he attempts to cover the UNIX implementations, some of
the Postscript problems and some of the graphical systems.

Philip Taylor

Phil has been with the University of London for almost eighteen years, having migrated from Westfield
College (University of London) to Bedford College (London), and thence to Royal Holloway and Bedford
New College (RHBNC, University of London), where he is presently a member of the Computer Centre.
His interest in was evoked by a chance encounter at British Petroleum, where he first saw a sample
of w s e t text, and was amazed to learn that it had been produced on a system identical to that at

RHBNC. He rushed back to College with a tape, spent the next month pestering various colleagues at
KQC for assistance with his naive attempts to produce 'l)$ output, and has never looked back since.
He is currently visiting Canada (yet again) to collaborate with the Professors Gibson and Gibson, at

the Universities of Guelph and Waterloo, in w s e t t i n g their book on nutrition. When not m s e t t i n g ,
he spends most of his time falling off horses.

Within the archive group, Phil is responsible for advice on VAX/VMS file aliasing, and for main-

tenance of the VAX/VMS list-server.
Areas of interest: Primitive and Plain 'I)$; do-it-yourself macro design; esoteria and arcana.

Bites noirs: UTEXI UNIX & Wimps.

Niel hrempson and Brian Hamilton Kelly

Niel and Brian joined the archivists in May 1989 to take over the VMS part from Adrian, who was

having difficulty in coping with it in addition to the mail server. Adrian still retains the mail server.
Brian (note the double-barrelled surname, without a hyphen) is a Senior Research Officer in the

Software Engineering Group at the Royal Military College of Science, which is now part of Cranfield

Institute of Technology: he is currently working for an M.Phil. connected with code generation derived

directly from graphical representations of systems' designs (although he spends more of his time on

'QjXware!)
He has spent the whole of his working life in software, since 1964, the majority of it with the MOD

(until the privatization of RMCS), but also worked for a short spell in 1966 at Imperial College. He

has had an interest in computerized typesetting since 1968, and in type and typography going back to

his schooldays. (Ah! The joys of an Adana hand press!) He has been using BTEX since 1985, and his

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 677

first W w a r e project was to rewrite Rose's original DVI driver for the DEC LN03 wholly in WEB, to
overcome the bugs in the PL/I part of it. (His program, DVItoLN03 is not to be confused with Rose's

later DVI2LN3 offering.)
He would like to see the authors of T@- and METRFONT-ware pay much more attention to writing

for ease of maintenance, and feels that every C- programmer should have three men with whips standing

over him ensuring that good software engineering precepts are followed! Furthermore, he would like
to see every TJ$ macro package re-written and documented through Frank Mittelbach's doc style -

any volunteers!!?!

Niel is by profession a chartered electrical engineer, but is currently on sabbatical leave at RMCS
Shrivenham, studying for a PhD. His academic interests are centered around the use of multivariate
analysis to identify different types of communications signals.

As with most of the post-graduate students at RMCS, he soon discovered the joys of using UTEX to
produce reams of mathematical equations. He soon became involved with the maintenance of W w a r e
at RMCS, specializing in the Unix systems, DEC's language sensitive editor and translating B I B W

into C for use on the IBM PC.

4. JANET
I t is fair to say that the only way that we can work in maintaining and developing the archive and its

facilities is by utilising modern technology. In this case I mean JANET - the (U.K.) Joint Academic

Network. JANET is a private network operated by the Joint Network Team under a crown agency. The
recurrent funding is met centrally and all universities have free and unfettered access. Polytechnics,

research councils and other bodies deemed "suitable" are also connected (they generally have to pay

a once-off connection charge).

The archivists have an account on the system at Aston and use JANET to carry out allotted tasks.
Archive users are not permitted at present to access the archive interactively (archivists enjoy this

perk), but Network Interface File Transfer Protocol (NIFTP) and e-mail access are both provided.

4.1 Gateways

Whilst this provides a service to the connected community, there are wider implications for its use.

Gateways to other networks exist at various points in the United Kingdom, all linked via a backbone.
The well-known gateways are:

Internet/Arpa/Nsfnet Uk.Ac.Nsfnet-Relay
Earn/Bitnet/Netnorth Uk.Ac.Earn-Relay

uucp Uk.Ac.Ukc

plus others including commercial networks such as the British Telecom PSS service. The main trunks

operate at 2 megabits and the Aston-Manchester link is currently 48K.

5. Structure of the Archive
We have decided to sub-divide the archive into the following main topic areas:

tex

met afont

latex (subdirectory for slitex)
amstex
digests (texhax, uktex, texmag)

bibtex

utils

fonts

etc

drivers
docs

langs
tools (for use by the 'team', not the general public)

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

5.1 Areas Covered
There are two aspects to areas covered:

0 What material should be accepted?

What systems should it cover?

In dealing with the first area, I must mention the United Kingdom National Public Archive at Lancaster

University. This archive contains public-domain software mainly for MS-DOS PCs and Apple Macs.

At one time it carried some of the PC software related to w/I&TEX, but this has now been removed
and all enquiries are re-directed to Aston.

The archivists are only interested in working with material directly related to TEX and related

software, and a long debate has taken place over utilities such as the bootstrap for MS/DOS PCs. In
the end, it was agreed that these would need to be stored at Aston as well as Lancaster, because not all
subscribers (principally those on the other side of a gateway) could obtain the items from Lancaster.

We are working towards the situation whereby all needs for an implementation - from the smallest

PC to the largest mainframe - can be obtained, preferably by e-mail, but in the interim supplemented
by other media.

6. Who Uses the Archive?

6.1 Contributors
It might appear that we are working in a vacuum a t Aston, but this is far from the truth - contributions
are received from many countries and organisations. It is impossible to name the majority, but I must
mention the following:

0 Pierre MacKay (Univ. of Washington/Seattle), who regularly sends an update tape of the UNIX
versions

0 Michael DeCorte (Clarkson Univ., New York), who regular mails updates from his collection
0 Max Calvani (International School for Advanced Studies (ISAS), Italy), who can supply mate-

rial which avoids the Earn-Relay and the corruption that occurs there
0 Andrew Trevorrow (freelance TEX programmer, Australia)

0 Peter Flynn (Academic Projects Manager University College Cork, Ireland)
0 Graham Toal (self-employed consultant, Edinburgh), who provided the early mail server to the

Archive

plus, of course, all the others too numerous to mention.

6.2 Types of Access

As of August 1989 there are only two means of access: NIFTP and mail. Users on JANET can use
NIFTP to transfer items from the archive to their local system. All users can access the archive via

the mail server, and I am pleased to be able to report that the VAXIVMS problem of STREAMLF files

causing untold havoc has been overcome. There might be one or two files still to convert, but the end
is in sight.

There are no interactive access facilities, although it is hoped to introduce a processor dedicated
to the service in the near future. This will provide not only Kermit and Zmodem facilities, but also
(hopefully) a secure environment for mail-boxes and bulletin-board services.

7. Digest Support
The digest is the major vehicle for information dissemination, and until access for external users

becomes available, is also distributed via paper mail. This service is provided on a VAX 111750

independent of the archive service, and it is intended to merge this with the archive as soon as the

separate processor becomes available.

8. Non-Connected Users
There are many commercial users, most of whom do not have a connection or access to JANET, so for

this group of users the advent of the independent service for the archive will open new opportunities.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 6 79

The University has dial-in lines which will give access from any telephone, provided that the user has
a suitable modem.

9. Is it Useful?
I think the following statistics will answer the question:

For the period November 1988 to end July 1989

No. of searches 26
No. of requests for a Directory listing 975
No. of requests for files 2,988

Files sent

Help sent
Italian help

Danish help
Invalid requests

Bibliography

Clark, Adrian, and Peter Abbott, eds. The Tjj$ Companion. In preparation.

Clark, Malcolm. H y p e r W . Exeter and London: w p e r t Systems, 1989.

Clark, Malcolm. A p l a i n m Primer. [Forthcoming].

Clark, Malcolm, ed. 57jK88 Conference Proceedings. Chichester: Ellis Horwood, 1989.

Mittelbach, Frank. "The doc option." TUGboat 10(2):245-273, 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

With UTEX into the Nineties

Fachbereich Mathematik Electronic Data Systems
Universitat Mainz (Deutschland) GmbH
Staudinger Weg 9 Eisenstrafie 56
D-6500 Mainz D-6090 Riisselsheim
schoepfQdmznat51.bitnet qzdmgnQdrueds2.bitnet

Institut fiir Physik
Universitat Maim
Staudinger Weg 7
D-6500 Mainz
schoepf Qdmznat51 b i tne t

ABSTRACT

During the last three years, UT$ has spread widely, even into such new fields as
business applications. The fact that there are new classes of users forces one to reconsider
the UTEX implementation and some of its features. Within a few years, IATG 2.09 alone
will not be sufficient to satisfy the increasing needs of its users. As a consequence one of the
important characteristics of the UT$ concept - the possibility of exchanging documents
- is in danger of being sacrificed on the altar of local changes and enhancements.

Starting from these considerations and from our experiences of several years of IAT$
support, we will present a proposal for a re-implementation of UTG. This new version
would not only preserve the essential features of the present user interface (in order to be
compatible with old UT$ files), but also take into account already formulated requests,
as well as future developments.

1. Introduction
During the last several years, UTEX has become a widely used tool for typesetting documents. Its
advantages over WYSIWIG systems as well as over plain TEX - logical design and high-level commands
for formatting issues - allow even the inexperienced typesetter (author) to easily produce readable
output. Especially for author groups, the concept of logical design is essential to ensure uniformity of
their work.

At least in theory, JAT$ is a markup language which enables the users to specify their input as
logical parts, e.g., to mark a text fraction as a "quotation" or as a "labeled list" instead of supplying
formatting commands such as "indent the next three lines and start with a bullet".

The translation into formatting commands, i.e., primitives, is restricted from use (again, at
least in theory) in the source file. It will take place instead, unnoticed by the user, in one of several
style files which should be applicable to the same input source producing different layouts. UTEX itself
provides four different prototype styles (a r t i c l e , report , book and l e t t e r) which should be used for
different types of input sources, i.e., should not be interchanged. This contradiction at a first glance
(one can't switch between a r t i c l e and repor t for example) is the first (of many) misunderstandings
for UTEX users and amateur style designers.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 681

Since there is only one officially supported document style for each type of input, TJ$X users with
plain TEX experience often find themselves unable to produce a desired layout with LATEX. So, after
some unsuccessful attempts, they return to plain T@ even if they then have to face other problems
(such as cross-references, etc.) which are easily provided in a markup language such as LATEX.

In this case the root of the problem is the fact that most of the LAT$ Interfaces are poorly
documented so that even TEX experts might have trouble designing an offset layout style for example,
which could be used instead of the standard report style. The result is that LATEX documents all look
alike because all existing document styles are either unusable (because of many bugs), or they are only
variants of the prototype styles, without noticable differences.

2. The UTEX User Interface - or Essential Features of BTEX
For every type of document UT$ provides a set of high-level formatting commands which themselves
are defined with the help of internal macros. This internal code is highly modular, often ingenious,'
and allows a wide variety of layouts if the style designer is sficiently familar with the interfaces.

On the surface, UTEX demonstrates a thought-out concept too: similar situations require similar
syntax, unusual cases are hidden behind optional arguments . . . But that isn't all. As a standard in
all applications (but with different layouts) LAT$ provides:

automatical generation of contents listings

a powerful cross-referencing mechanism with symbolic names. This allows insertion, deletion
and movement of text blocks without re-arranging the equation numbers, etc.

the possibility of typesetting only parts of the document without losing cross-references, counter-
values, etc.

a general float mechanism for automatic placement of figures, tables, etc. independently of each
other (but with each class preserving its order)

in conjunction with BIBT$ and Makelndex, it has powerful tools for automatic creation of
index and bibliography entries2

fully implemented size changing commands for several types of fonts

a general mechanism for switching page layouts (running headings, etc.)

So, why not use LAT#? This question leads us to our next topic.

3. Limitations of UTEX Version 2.09
Limitations to the current UT$ version can be divided into several groups, which we will discuss
separately, giving examples as we go along.

3.1 Implementation Disasters

This is where most of our examples are located. In a way it is also the group of problems which are
the easiest to solve: just learn from the mistakes Leslie Lamport made but use all his good ideas.

Fragile commands
Maybe the most troublesome concept in this category is the classification of commands into robust and
fragile ones. At the bottom of page 23 the LATEX book says:

The argument of a sectioning command may be used for more than just producing the
section title; it can generate a table of contents entry and a running head at the top
of the page. [. . .] When carried from where it appears in the input file to the other
places it is used, the argument of a sectioning command is shaken up quite a bit. Some
UT$ commands are fragile and can break when they appear in an argument that is
shaken in this way. Fragile commands are rarely used in the argument of a sectioning

'Clearly not all parts of UT@ are well implemented. But the overall concept is wisely chosen and this isn't affected
by design or implementation bugs in its modules.

'At a site with an up-to-date I4W installation, both programs should be available. Unfortunately, this is often not
the case.

682 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

command. [. . .] On the rare occasions when you have to put a fragile command in a
section title, you simply protect it with a \protect command.

And later on (p. 24):

An argument in which fragile commands need \p ro tec t will be called a moving argu-
ment. Commands that are not fragile will be called robust. For any command [. . .] I
will indicate whether it is robust or fragile. Except in special cases [. . .] a \protect
command can't hurt, so it is almost always safe to use one when you're not sure if it's
necessary.

Isn't that easy? Unfortunately not, because a broken command will produce a totally unintelligible
error message and, to make the chaos perfect, not only could this error occur at a different location, it
is also possible that the error will not vanish when the missing \p ro tec t is finally discovered. This is
hell for novice UTEX users, but even experts are shaken quite a bit if they commit this sin.

The \protect is used to suppress unwanted expansions which are the reasons for the errors men-
tioned above. This is the wrong design decision: it would be better to suppress all expansions by
default, and allow the user to expand single macros if there is need for it.

UTEX error recovery
This part of the implementation can be summarized in a single statement: there is none. Actually
there are several situations where the UT$ error routine is triggered but the recovery mechanism
isn't very powerful. On its own, this poses no problems because one can adopt the philosophy "under-
stand the error, correct the source and re-run", but unfortunately the error help messages aren't very
enlightening:

You're i n t rouble here. Try typing <return> t o proceed.
If t h a t doesn't work, type X <return> t o q u i t .

Well, we certainly know we're in trouble when we see a whole page of error messages coming from
W ' s ~ t o m a c h , ~ and instructions on how to turn off the computer and go home: that isn't what the
user expects to get when he or she enters 'H' (for help) after a UTEX error.

The error messages themselves are often simply wrong; for example, the input

produces the error

Something's wrong--perhaps a missing \item

In nine out of ten cases this error isn't caused by a missing \ i tem so the user doesn't know what to
correct - in this case the center environment expects text, i.e., something in horizontal mode, and
not just a blank line. Looking in the manual helps a little bit, because there the error messages are
explained in greater detail, but all in all the error messages produced by UTfi are a mess from the
user's point of view.

The generic list environment
The generic list environment is one of the central modules of the UTfi implementation. It is used
internally by most standard environments provided by UT$; even environments such as center are
handled as a special kind of list (with an empty \item command).

To allow for such a variety of applications, the list environment has nearly 20 parameters and
switches which can be manipulated to change the layout. Additionally the default values for these
parameters (as defined in the document style file) depend on the level of nesting; that is, the document
style may provide different default spacing for lists within lists.

314T$'s tendency to produce horrible-looking error listings is actually a TEX problem which should be listed under
" W n i c a l limitations". A large macro package such as UT$ is bound to have many expansion levels and there is no
possibility of suppressing the intermediate part in the stack history when spots an error. In our opinion there should
be a T@ \tracing.. . command to control the amount of history listing.

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings 683

But there are also a few implementation problems:

An actual conceptual bug was the decision to add the value of \parskip to all vertical spacing
parameters, even when it is used in places where no paragraph ends.

This means that changing this parameter influences the layout in unexpected places, which
in turn means that other parameters must be adjusted unnecessarily to compensate for this
undesired side effect.

There is also the problem that the \parskip parameter is user-accessible while the affected
parameters are only changeable in a style file. The user can change the \topsep parameter, for
example, but its default value, define d in the style file, will be restored later on.

The resetting of parameters to their default values if nothing else is specified is somewhat
arbitrary. Some of the important parameters (i.e., the penalty values for page breaking before
and after the list) get their values from the surrounding list which is more than a nuisance for
a style de~ igne r .~

Another implementation decision makes it impossible to define lists with page-wide labels, i.e.,
with labels placed on a line by themselves. Those lists cannot be nested properly (see, for ex-
ample, comments in the article about the implementation of the extended theorem environment

PI).
As U T S is used in more and more fields the need for an even more general list environment is
increasing every day.

3.2 Design Limitations

It is certainly not possible to draw a sharp line between implementation disasters and design limitations.
The former are problems introduced when the macros were written, the latter come from decisions or
omissions made during the design phase. Nevertheless, these two phases often go with each other.

Font selection
One of these limitations was Leslie Lamport's decision to take over from plain the method of
selecting different typefaces: he arranged fonts in a two-dimensional grid, one dimension specifying the
size, the other one the typeface. This was reasonable at the time it was implemented as there were
only a few different typefaces for use with T)$. In the meantime, however, more and more fonts have
become available, rendering the above design decision inadequate. For example, it is not possible for
the user to switch between Knuth's fonts and the resident fonts of a Postscript printer in a transparent
way.

The list environment
In spite of its generality, the list environment has some conceptual weaknesses:

0 There is no possibility of generating a run-in list, i.e., a list where the first item runs into the
preceding text. This feature is provided in M-m.
More generally, since the layout of the standard list types is fixed by the document style
selected, there is no way for the user to select different kinds of layouts for the same type of
lists (e.g., enumerated or itemized lists) without defining his own environments. It would be
better to provide a way to speclfy attributes such as "compact", "stream" (see, for example
[17]), "run-in", etc.

0 The vertical spacing before and after lists is controlled by the same parameter.

0 The vertical space preceding the first item does not depend on the length of the last line of the
preceding paragraph (as is the case for displayed equations).

Attribute concept
I 4 T g does not allow the user to specify attributes as, for example, Script-DCF does. However, this
concept is worth being considered for at least partial inclusion in I 4 T S (see previous subsection).

4As an unpleasant result the UT$ f leqn style option (which causes displayed equations to be typeset flush left
instead of the usual centering) favours pagebreaks just before displayed equations. (This bug is corrected in the UTfi
version of 24 May 89.)

684 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Text-producing arguments
The mechanism for scanning macro arguments fixes the \catcodes of the token it reads. As a
result, certain UT# commands (such as \verb) cannot be used inside \parboxes, \footnotes, etc.
This can be avoided using a more elaborate scheme; see for example the \footnote implementation
in plain TEX [3, p. 3631 or the article about chapter mottos [18].

Support for mathematics
In addition to the math features provided by plain 'I)$, UTEX offers only the eqnarray and array en-
vironments. For typesetting mathematical papers with UT# this is certainly not sufEcient. AM-TjjX
provides the necessary features; however, inclusion of these into UT# has not been done yet.5 Instead,
various people have written unpublished style options, each implementing limited subsets.

array and t abular
UTfils tabular environment is a sophisticated tool for typesetting alignments. That means that you
need not be a 'I@ master to "know how to make ruled tables" [3, p. 2451. On the other hand several
easy-to-implement features are not provided. See for example the new implementation described in

[5, 61.

Pictures

To draw picture diagrams UTEX offers mostly basic positioning commands that should actually be
used internally to define high-level interfaces. Examples of such interfaces are given in [13, 161.

The output routine
The UTEX output routine is a very complex and sophisticated module that offers a wide variety of
possibilities for page make-up. However, certain layout decisions, such as special placement of footnotes
and floats, cannot be implemented in style files without a re-definition of UTG7s internal macros. This
poses problems of compatibility. See also Section 4.

3.3 Unknown Interfaces

As we have already noted, many interfaces are not properly documented. This results in unnecessar-
ily complicated solutions to certain layout problems. Even worse: sometimes people are led to the
conclusion that there is no solution at all!

Such problems can often be solved easily by the internal UTEX macros used in the right way. As an
example, consider an offset layout where all section headers are to extend into the left margin that itself
is wide enough to hold them. This is provided by the generic sectioning command \@star t sec t ion
that allows an explicit indentation parameter to be specified. If you give a negative value to it, you
end up with section headers that stick out to the left.

3.4 w n i c a l Limitations

In this group we gather limitations caused by the TjjX program itself. Probably the most severe
limitation comes from W ' s insert mechanism. After prematurely ejecting a page (so that the output
routine can look at its contents), inserted material is removed from the main vertical list and gathered
into certain boxes. It is therefore not possible to re-insert the page contents unchanged. This makes
it nearly impossible to balance the height of several columns when insertions such as footnotes or
floats are involved [9]. Other w n i c a l problems arise from the way TEX inserts penalties, or breaks
paragraphs into lines.

4. New Demands
When asked their opinion, many UTEX users reply:

"UTEX is a very fine thing but this (. . .) and that is missing."

 his situation has now been remedied; the American Mathematical Society will be releasing an m-w style file
which will be an option for use with any T4Tg styie file. There will also be versions of book.sty and article.sty, imple-
menting book and journal styles defined by the AMS. This information comes courtesy of Regina Girouard, Composition
Services Manager of the AMS -Ed.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 685

If we ignore those requests that can be satisfied by reading the manual, we are left with three groups
of wishes:

Features that can be implemented in the current version of UTEX. Here we have the problem
that there are too few people who know the internal structure and interfaces sufficiently well
to do it. These interfaces are poorly documented, and misunderstandings and misuse of these
can lead to catastrophic results. Even if this is done correctly there remains the problem of
compatibility of the different style options.

0 Features where the necessary interfaces are missing. Here one needs to change the internal

macros of UTEX to implement them.

Totally new requirements that lead to large-scale changes to the code or even to the concepts.
Even worse: some things cannot be implemented at all because T@ itself is not able to handle
them.

Instead of listing the numerous requests we will give a few examples.

4.1 Easy Implementable Features

We have already talked about the offset style problem. Other examples for requests which can be solved
easily in a style file are special pagestyles (like the one Leslie Lamport used in his book), numbering
conventions (e.g., equations within theorems . . .), and special heading layouts (e.g., centered headings
or \chapter without the word "Chapter").

A very important issue is the support of national languages. Standard UTfi does not offer anything
in this regard. However, this is easily implemented as a style option as the file german.sty shows.
This file constitutes the German standard to which all German language sites agreed in 1987. See [12]
for a description of its features.

Certain demands arise in business applications; for example, the need to stamp every page of the
document with date, time, name of the input file, and possibly security information.

4.2 Features Implementable with Moderate Effort

As an example of this second group, take the new implementation of the array and tabular envi-
ronments described in [5, 61. In addition to the possibility of creating beautiful ruled tables, this new
implementation allows the user to specify the layout of a column in one place.

Or consider the challenge posed by David F. Rogers in [15]. He asked for a figure placement macro
that would fulfill at least three of five requirements, and states that "UTEX'S floating insert commands
also do not work". This is only partly true. Two requirements are automatically fulfilled in standard
UTEX; the remaining one (numbered figures must be inserted after the first reference to the figure) can
be easily implemented by changing only one line of code in o n e internal macro of the BTEX output
routine: in the macro \Qaddtocurcol, the call to \Oaddtotoporbot has to be changed to a call to
\Oaddtobot. Of course, a style option which implements this change has to take care of the float
parameters too, since their default settings tend to discourage bottom floats.

As another example take a two-column layout where all footnotes appear at the bottom of the
right column. Again this can be solved by re-defining only the internal macro \Qmakecol.

Support for Pos t scr ip t printing devices
"We have to acknowledge the importance of the de facto standard, POSTSCRIPT. [. . .] We must be

aware of the way in which Postscript compatibility is crucial if we are to be taken seriously by the rest
of the world" [2, p. 1531. The question of converting the .DVI file contents to Postscript has already
been taken care of, but here we are concerned with the problem of incorporating Postscript fonts. It
is easy to change lfonts. tex to use the fonts built into Postscript printers instead of the ones by
Knuth. However, this must be done at dump time, and is therefore not selectable by the user. Instead,
one needs a font selection scheme that allows dynamic switching of fonts during a T@ run, as outlined
in [lo].

4.3 Hard Problems

Now that we have seen that complex page make-up can be handled easily in UT$, one might wonder
which demands (in our opinion) belong to the third group. Well, page make-up for example; really

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

complex demands such as the layout used by Scientific American: three columns, figures spanning one
to three columns with captions placed in the neighbouring column if necessary. As already mentioned,
W ' s \ i n se r t primitive cannot be used for such a task. Doing everything by hand is possible (w
is a Turing engine, as Leslie Lamport remarked) but there are limitations in space and time.6

As we have already noted, we think that balancing of columns belongs to the third group if footnotes
are involved, despite the fact that the rnbook [3, p. 4171 implicitly says that this is possible. We
would be only too happy to see an algorithm which did not break under normal (i.e., unrestricted)
conditions.

5. Proposal for a New Implementation
The current UTEX version essentially consists of the following files:

l p l a i n . t e x - plain 'I'EX features used by IATEX

I f ont s . t ex - font definitions
hyphen. t ex - hyphenation patterns

1a tex . tex - most BTfl features or the internal macros to build
them in a style file

* . s ty - document style files and document style options

The first four of these files are all loaded when a format file is dumped. This means that a large

amount of w ' s internal memory is used to store the definitions contained in these files, even though
there are only very rare occasions when they are all used together. If we consider adding more and
more features to UT*, we are led to ask: which parts of IATg are essential for most document typt3s
(called the "kernel") and which are only used by special applications (called "the peripheral part").

5.1 The UTEX Kernel

Before we can talk about re-writing the kernel, we have to separate it from the peripheral parts. The
following modules are considered part of the kernel:

0 Basic features kom plain (defined in 1pla in . tex)

0 Font selection

Constants used by the rest of the program

0 Program control structure

0 Semi-parameter concept

0 Basic error handling routines

0 Spacing, line and page breaking

0 File handling

0 Counter management

0 Cross-referencing

Environment handling

Basic math commands

Generic list environment and their basic applications

Box making commands (including parbox and minipage)

array and tabular

The interface for the theorem environment

Generic sectioning commands

The interface to generate tables of contents, lists of figures, etc.

0 Bibliography

Floats

0 Footnotes

ne ow ever, we are working on this project at Mainz, hoping that we can prove that this problem belongs to the second
group.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 687

The output routine

Some of these parts need to be revised, others must be re-implemented completely: the list environment,
the writing to .aux files to remove the \pro tec t feature (already done), the font selection code
(already done), the counter mechanism (done), hierarchical references, array and tabular (done), or
a conceptionally new output routine (certainly the hardest part). All the above parts should be better
modularized to obtain a higher degree of flexibility.

To provide better control by means of the styles or the extensions, a number of hooks, such as
\everypar, will have to be introduced: think of \every l i s t , \everysection, \everybegindocument,
\everyenddocument, etc.

5.2 Peripheral Features

The peripheral parts should not be included in the format file. They can easily be moved to a number
of files that are loaded on demand during a UT$ run.

We consider the following parts to be peripheral:

Higher math. The only features currently available are eqnarray and array. A new imple-
mentation should provide the same features as M-W, each of them loaded separately.

New verbatim with unlimited size of verbatim text and a command to input verbatim text
from a file (done).

Enhanced p i c tu re environment (conceptionally done, partly implemented: epic, PICTEX)

e Tabbing. Improvements should be discussed, e.g., push/pop over several tabbing environments.

Support for special draft options showing symbolic labels, index entries where they appear,
time and date stamps, etc.

Index: more exactly, the interface to an index program such as Makelndex.

As we mentioned earlier, a BT# installation is complete only if it provides BIBTS and Makelndex.
The integration of these programs, especially of Makelndex, i.e., the interfaces, should be improved.

5.3 Document Styles

A standard mark-up concept (SGML)
For a re-implementation of I4T$ one also has to reconsider the standard document styles. As described
in the introduction, there are different types of documents, e.g., books, manuals, articles, reports,
letters, proceedings, etc. These types cannot be interchanged since each has its own logical concepts:
letters do not possess chapters whereas there is no need for an opening or a signature in books. Given
one type of document (e.g., report), there are many different ways to do the formatting. The repor t
style of current UTEX is therefore only one out of many instances of the "meta" report style.

The important point here is that all report-type styles must use the same logical concepts so that
a properly written UT$ document is independent of the specific style instance used. A German site
(say, the University of Mainz) may decide to provide a special style (called, say, mi-mainz-report)
to format reports according to its own conventions. But a report written at Stanford can then be
typeset at Mainz using this style without changing the BTEX input file - but of course the document
will come out with different spacing, etc.

Therefore an important task of a new implementation is to reconsider the logical concepts used so
far, and then decide to drop or change some, or to add new ones. For example, currently there isn't
any difference between the prototype styles report and book. Obviously this cannot be correct. This
is of course a question being debated by the experts.

Internat ional language suppoTt

There is one point to make here: from what we have said above one must not infer that the textual
representation of headers (e g , "Contents", "Litteratura") must be fixed by the style. In this respect
we disagree with Leslie Lamport. To the contrary: since it may well be that a site wants to typeset
documents written in different languages, but all in the same style, it is only reasonable to provide a
way to change header names. Actually we propose to make this a logical concept of the specific meta
style. This means that there must exist commands such as \chaptername and \refname that can be
changed by the document (using \renewcommand) or by style options. It is perfectly allowed (though

688 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

not necessarily reasonable) for a specific style to ignore these commands, and to typeset all headers in
the same way.

6. Institutional Considerations
Leslie Lamport has copyrighted UTEX and fixed the status quo. While this is the best way to ensure
uniformity over a large group of installations and users, one runs the risk that further developments
and enhancements will become incompatible. Therefore our proposal for a new implementation is
bound to fail if it becomes only one more among many others (with only a new name). We feel that
such a project should only be undertaken if it is supported by an institution which can channel future
developments.

6.1 Maintenance

From the size of the UT$ source code, it is clear that it must be maintained. This not only means
that there must exist a person who will correct any bugs found; this is only part of the story, and not
necessarily the most important one. Another necessary task is to develop the software as new demands
arise. Software design is a difficult job. It is even more difficult to revise design decisions made earlier,
because in addition to software development aspects, one has to consider questions of compatibility.

For the maintainance of a package the size of UTEX, one needs a group of people who can respond to
demands and wishes, and decide what can and should be done. This means that this group must include
document style as well as UTEX specialists. These people need not necessarily be the implementors
themselves. They have to set the standards, not write the macros. Nevertheless, they need to be
sufficiently familiar with U T S .

6.2 Suggestion for a UTfi Standardization Group

Certainly this is only possible if Leslie Lamport is willing to share control over UTEX. Another impor-
tant point is to guarantee that this group continues to perform its task even if the individual members
change. The logical point to organize this would be the TFJ Users Group. We think that TUG should
form a committee to discuss these problems.

7. Update
During and after the conference at Stanford, discussions were held with Leslie Lamport concerning
the issues raised in this paper. From these it became clear that he originally expected BT$ to be
superceded by some other document preparation system within a few years of its appearance. This
has not happened and now he too sees a need for its further development.

He is in agreement with the principles contained in this paper concerning the future of UT$ but
does not wish to be directly involved in their implementation. During the discussions the following
two-stage development plan was suggested:

1. Re-design the style file interface and document it: this would involve the publication of a
manual on the design of style files. The resulting UTEX version would be 2.10. This version
may contain some minor enhancements visible to the user, but every input file that uses only
features documented in the current UTEX manual would work with version 2.10.

2. Produce a completely new implementation of UT$, version 3.0, according to the principles
outlined in this paper. This would be upwardly compatible in the sense that it would be possible
to process any existing document with the addition of a style option.

The timetable for this work cannot be fixed at present since it is not yet clear how much of our time
we shall be able to spend on this project, nor what support will be forthcoming &om various parties.

Bibliography
[l] Bartlett, Frederick H. "Automatic Page Balancing Macros Wanted." TUGboat 9(1):83, 1988.

[2] Clark, Malcolm. "International Standards and TFJ." TUGboat 10(2):153-156, 1989.

[3] Knuth, Donald E. The W b o o k . Computers and Typeset t ing Vol. A. Reading, Massachusetts:
Addison- Wesley, 1986.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 689

[4] Lamport, Leslie. U T g : A Document Preparation System. User's Guide and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 1985.

[5] Mittelbach, Frank. "A new implementation of the array- and tabular-environments." TUGboat

9(3):298-314, 1988. .
[6] Mittelbach, Frank. "A new implementation of the array- and tabular-environments - addenda."

TUGboat 10(1):103-104, 1989.

[7] Mittelbach, Frank. "The doc option." TUGboat 10(2):245-273, 1989.

[8] Mittelbach, Frank. "An Extension of the U T g theorem environment." TUGboat, 1989 [forth-
coming].

[9] Mittelbach, Frank. "An environment for multi-column output." TUGboat, 1989 [forthcoming].

[lo] Mittelbach, Frank, and Rainer Schopf. "A new font selection scheme for T)$ macro packages -
the basic macros." TUGboat 10(2):222-238, 1989.

[ll] Mittelbach, Frank, and Rainer Schopf. "A new font selection scheme for TEX macro packages -
the UTEX interface." TUGboat, [forthcoming].

[12] Partl, Hubert. "German T@." TUGboat 9(1):70-72, 1988.

[13] Podar, Sunil. Enhancements to the Picture Environment of UTEX. Dept, of Computer Science,
S.U.N.Y. at Stony Brook,Technical Report 86-17, version 1.2, July 14, 1986.

[14] Price, Lynne A. "SGML and w." TUGboat 8(2):221-225, 1987.

[15] Rogers, David F. "A Page Make-up Challenge." TUGboat 9(3):292-293, 1988.

[16] Schopf, Rainer. "Drawing histogram bars inside the IATg picture environment." TUGboat

10(1):105-107, 1989.

[17] Wonneberger, Reinhard. "Stream lists and related list types for UTEX." TUGboat 6(3):156-157,
1985.

[18] Wonneberger, Reinhard. "Chapter Mottos and Optional Semi-parameters in General and for
UTEX." TUGboat 7(3):177-185, 1986.

[19] Zalmstra, Joost, and David F. Rogers, "A Page Make-up Macro." TUGboat 10(1):73-81, 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

w r e a t i o n - Playing Games with W's Mind

Project Athena
Room E40-342

and
Student Information Processing Board
Room W20-557
Massachusetts Institute of Technology
Cambridge, MA 02139
amgreene0athena.mit.edu
Please address all correspondence to the Project Athena addrese.

ABSTRACT

TEX can be used to write applications that have little or no connection with document

preparation. Games such as ANIMALS and BATTLESHIP are just a few of the recreational
uses to which TEX can be put - mostly to show that it can be done, but also to pro-

vide an entertaining medium for both experimentation and presentation of programming
techniques that can be used in more serious macro packages. Database management is
exemplified by the program ANIMALS, and array handling is developed in BATTLESHIP.

1. Introduction
At some point, most T@ users find it necessary to extend the language of T@ to perform some task.
Whether the task is as simple as defining a macro to alleviate repeated typing of some lengthy string,
or as complicated as rewriting output routines, we sit a t our keyboards alternately cursing and blessing
Donald Knuth.

Few, if any, of us ever write a program in T@ that has nothing to do with typography. TEX is
slower than C, more obtuse than assembler, and harder to trace than BASIC. Nevertheless, writing
programs in TI$ is possible and will occasionally yield results that are useful in "real" TI$ programs
(or macro packages).

This paper will present two such programs, both of which are games. ANIMALS, a simple "artificial
intelligencen program, resulted in a set of T@ database management routines. BATTLESHIP, the

classic game of naval battle on a grid, was a perfect candidate for implementation of array handling

and indexed variables in TEX.

2. The Game of ANIMALS
ANIMALS was written in response to a dare from a friend a t the Student Information Processing Board

a t MIT. I t is a simple expert system, in which the computer asks questions and tries to guess which

animal the user has selected based on the user's responses. An annotated listing of ANIMALS appears
in Appendix A.

2.1 Rules
The user thinks of an animal which the computer will attempt to guess. On each round, the computer

asks a yes/no question, which the user must answer truthfully. Eventually the computer will take its
guess; if it is correct then the program ends, otherwise the computer will amend its database to include

the new animal and a question distinguishing the new animal from the original guess.

These rules imply that the database should be arranged in a binary tree, such as the sample in

Figure 1. Since TEX doesn't have random access files, this would be difficult to implement. However,

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 691

I Does it fly?

I Does it live on statues? Is it in the TeXbook?

PIGEON I I I I EAGLE LION

Figure 1: A sample ANIMALS tree
pF.1 pq

it should be noted that progress is always towards the bottom of the tree; therefore it is possible to
simulate a random-access database whose records will always be read in a certain order using W'S
sequential f le operators \openin, \read, and \closein.

2.2 Database Routines
For ANIMALS, three fields are required for each record: the question to ask, the record to go to for

a "Yes" response, and the record to go to for a "No" response. These are stored in the data file as
separate lines of text, with the record number prepended to each record. Thus, the data file for the

sample tree in Figure 1 begins:

I

Does it f l y ?
2

2

Does i t l i v e on s t a tues?
4

6

What is needed next is a routine to go to a specific record in the file, keyed by the record number.
The \Scan routine does just that, assuming that 'I&$ is already aligned at the start of a record. Once
W is at the correct record, the \query routine deals with extracting the data and selecting the next
record.

This solves the problem of reading a quasi-random-access database. If the database needs to be

modified, however, we run into difficulties. QjX allows a fle to be open only for input or output, but
not both. Furthermore, modifying a variable-length field within a file would be impossible, even if we
could modify (rather than replace) an existing file.

The solution, of course, is to read in the original data from the beginning of the data file, copying
each field to a temporary file. For ANIMALS, we find that one record needs to be replaced and two new
ones added. Therefore, the record number is watched and, when the record to be replaced is reached, a

modified version is output. Finally, the two additional records are output to the temporary file, which
contains the revised database.

The process is now repeated in the other direction. The original file is replaced by a line-by-line
copy of the temporary file. Since \openout overwrites the original file, this is an effective way to

"modify" that original file.

Users of UNIX have another option to this way of modifying the data file, although it violates the
spirit of this exercise. They can run, in the background, t a i l -f / tmp/shel l . t e x : /bin/csh and

output editor commands to /tmp/shell. tex. This is cheating, however, since the goal is to write

seemingly useless programs entirely in W.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 2a: A typical BATTLESHIP setup

2.3 Other Database Applications in TEX

Figure 2b: Box representation

-

Despite the intentions of the author to avoid presenting any useful (i.e., typographic) code in this

paper, there is one program that ought to be mentioned.
The author is in charge of "CokeCommn a t the Student Information Processing Board at MIT.

CokeComm is a debit-based system in which members deposit money, Coca-Cola products are delivered
in bulk, and members mark a space on a list whenever they take a can. This calls for a program that
can maintain balances and print out new sheets, properly formatted.

The code for coke. tex, which appears in Appendix B, should be compared to the ANIMALS code.
The comments in coke. t e x are intended to illustrate how to splice the database routines into other

programs.

3. BATTLESHIP
BATTLESHIP is the most well-known variation of a game also known as "Salvo" or "Naval Battle." The

implementation described in this section is based on the Milton Bradley version. BATTLESHIP was
written as an excuse to experiment with arrays and indexed variables in 7&X.

3.1 Rules
This version is simplified slightly by having fixed ship positions. The computer places four ships,
each of a different length, in a ten-square grid. The ship designations and their lengths are "Carrier"

(5 squares), UBattleshipn (4), "Destroyer" (3), and "Submarinen (2). The ships are aligned either
vertically or horizontally, so that each takes up the appropriate number of adjacent grid spaces. A
typical arrangement is shown in Figure 2a.

Once the ship positions have been entered, the second player begins. On each turn, the player selects
a grid location a t which to shoot. The computer responds with the result - either the designation of
the damaged ship or the text "You m i s ~ e d . ~ If all cells of a particular ship are damaged, the ship is

considered sunk; when all ships in the fleet are sunk the game is over.

It is obvious that the naval grid is a two-dimensional array. Unfortunately, does not support
array variables. The command string \array refers to typesetting a collection of elements in row-

column format, surrounded by large delimiters. This is not what we want.

3.2 The Wrong Way
One's first impulse might be to implement arrays as nested boxes, as depicted in Figure 2b. An

array variable might be declared with \neubox\~yGrid and initialized appropriately. In the diagram,
\ b o x \ ~ ~ ~ r i d is the large, dark \vbox, inside of which are ten light grey \hboxes, inside each of which

TUGboat. Volume 10 (1989), No. 4- 1989 Conference Proceedings 693

are ten white \hboxes containing the array elements.
There are a number of disadvantages to this approach. An admittedly trivial objection might be

that there are only 256 box registers, and some of those are reserved. Any programmer who needs

more than 250 different arrays would have difficulties.

A more realistic objection arises when one considers how to extract element (i, j) from \MyGrid.
\ ~ y G r i d needs to be \unvcopyled; the first i - 1 boxes need to be thrown away. The next box needs
to be copied into a scratch box register, which is then \unhcopy'ed. Again we throw away j - 1
boxes, saving the next box, and tossing out 18 - i - j more boxes, before returning the saved value of

\MyGriaj.
If that seems convoluted, consider how to modify the value stored in position (i, j). The neglected

subarrays from the last paragraph now need to be stored up and re-combined correctly. An English
description of how this can be accomplished is left as an exercise to the masochistic reader.

3.3 A Better Way
First, let's examine the simpler problem of a one-dimensional array. What is needed is a way to refer

to a unique value pointed to by the two fields ArrayName and Index.
Fortunately, Q,X has a pair of primitives (\csnarne and \endcsname) that allow us to do just that.

Everything between the \csname and \endcsnarne is evaluated and formed into a control sequence.
This control sequence can then be used like any other.

One needs to exercise caution in setting this up. If the Index is a \count, then it needs to be
forcibly expanded into characters by using \the. If it's a constant (or a macro), however, using \ the
will cause a TEX error. The solution, of course, is to examine the category of the unexpanded Index

and only use the \ the if Index isn't already a constant.
In code, that results in:

The \ i f \ r e l a x #2 handles the category testing by comparing \relax, a control sequence (which is
considered to be \char256 and have \catcode=l6), and #2, the hdex. If these match, then Index is a
control sequence and the \ i f should insert a \ the to force expansion of #2 to a constant. The period
after the #I serves to separate the ArrayName from the hdex.

There are a number of advantages to this method. First, \csname allows digits to be part of the
control sequence, which is normally not allowed. This protects the array elements from direct access.

Second, since TEX has to do minimal evaluation for any array reference, this method is the fastest
for both reading and writing array elements.

Third, the contents of the array can be anything, and need not be the same between elements. One
control sequence can be a macro, another can be a \count register, and yet another can be a \vbox.

Fourth, the h d e x of the array can be any string, including alphabetics. Space is allocated only for

the elements that are used, and arrays can be indexed on, for example, the last names of students in
a class.

3.4 Using \ e l t
Reading an array element is as simple as \elt{My~rid}{l7). Writing to an array element is a bit
more tricky, since \def\elt{~~~rid}{l7}{value} will result in redefining \ e l t to be MyGrid and

typesetting the striig i7value. Using \expandafter, we can have the \ e l t macro expanded into the
control sequence that we want to define:

To save typing \expandafter, it is convenient to define \put as follows:

\put is called with three arguments. The first is the version of \def to use (e.g., \defy \edef,

\outer\def). The second and third are the ArrayName and Index, respectively. \put first finds the

694 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Array-Index Name and stores it in \ A I N A M E . I t then constructs the correct version of the \expandaf t e r
technique, causing the token after the third argument to be taken as the value.

This will be problematic once an element has already been assigned a value, since the \edef will

expand the desired element all the way to that value. Therefore, we need to copy over the definition

of \ e l t into the definition of \put, which also saves us the effort of using \AINAME:

\def \put#i#2#3{%

\expandaf t e r #l\csname #2. \ i f \ r e l ax #3\the\f i #3\endcsname)

3.5 Two-Dimensional Ar r ays and t h e Naval B a t t l e

It is not difficult to modify this code to use two index variables and act as a two-dimensional array,
which is what the BATTLESHIP program, whose listing is in Appendix C, does. The program starts
off by defining \put and its counterpart, \ ge t (which is a better name than \ e l t now that we are

not putting a call to \ e l t in \put). It then initializes the ten-square grid to d "Zn (for zero). This
version does not feature random ship placement, so the four ships are hard-coded in the next section.

The macro \damage will record damage to the ship whose counter is passed; it then uses \ s t r i n g
to use the name of the counter as the name of the ship in the message.

The main loop follows. One of its distinguishing features is the use of - ^ C to prevent the user
from confusing '&X by inputting something other than a coiirdinate in the form <letter><digit>,
with <letter> in the range A to J and <digit> any digit from 0 to 9. Another useful point is that
\csname will make an unknown control sequence expand to \ re lax , which is how BATTLESHIP checks
for invalid coiirdinates.

3.6 Po ten t i a l Applicat ions

There are a number of uses for array variables in '&X. The most significant of these is a combination
of an array of records with the database routines discussed in Section 2. A fde could be read into an
array, manipulated as a truly random-access database, and then written out (over the original file)
at the end of the session. Code to do this, as well as all the code in the appendices, is available for
anonymous FTP from 18.72.1.4 (geva l t . m i t .edu).

4. Conclusion
There are other games that offer interesting challenges to the TEX programmer. For example, a full
implementation of BATTLESHIP, not to mention any card game, would require a fairly good pseudo-
random number generator, using '&X's simple integer arithmetic facilities.

Why program games, or any non-typographical code, in 'l&X? First, as can be seen from the
COKECOMM application, routines written for games can find use in Ureal'7 '&X programs. Second, one

is more likely to experiment if the end result is actually fun. Third, the results are more interesting to

other people, who can learn from one's experiment, as this paper testifies.
And, besides, it's nice to have something to show people who still use Scribe.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix A: ANIMALS

1 % begin: animals %ex-----------------------

2 % Animals (in TeX, no less! ! !)

3 %
4 % This is the program that uses a binary tree of questions to

5 % guess the type of animal of which the user is thinking.

6 %
7 % Andrew Marc Greene

8 % <amgreene(Dathena.mit.edu>

9 % Student Information Processing Board, MIT

lo % March-April 1988

11 %
12 % Cleaned up April 1989

13 %
14 % Moral support (i. e., "You can' t do that! Show us! ' ')
15 % provided by the Student Information Processing Board

16 % of MIT.

17 %
18 % Instructions on running this program:
19 %
20 % tex animals

21 %
22 % Think of an animal. The program will try to guess your animal.

23 %
24 % YOU will be asked a whole bunch of yes/no questions. This is a

25 % Spartan implementation, so answer with a capital Y or W. When

26 % the program finishes going through its tree, it will either have
27 % guessed your animal or it will ask you to enter a question that
28 % it can ask to differentiate between your animal and its guess.
29 % It will then ask you which one is 'yes. '
30 %
31 % Here's where I declare all my variables, etc.
32 %
33 % "curcodefl is the current index into the data file.

34 :! "tempu is a temporary holding variable.

35 % "1~" is a loop counter
36 % "ifamg" is a general-purpose flag. amg are my initials.

37 % "ifreploopn controls loop repetitions.

38 % "ifmainlooprep" controls repetitions of the main loop.

39 % "inp" is the input file.

40 % "outpH is the output file.

41 :! "amgY" and "amgNJ' are character constants. Why I did it this way I

42 % don't remember.

43 %
44 \ n e w ~ ~ ~ n t \ ~ ~ ~ ~ ~ d e \ ~ u r c o d e = i \ n e w ~ ~ u n t \ t e m p \ t e m p = O \ n e ~ c o ~ t \ l ~

45 \newif\ifamg\newif\ifp\newif\ifreploop\newif\ifmaidrep

46 \newread\inp\newwrite\outp\def\foofi

47 \def \amgY(Y)\def \amgN<N>

48 %
49 % The data file consists of records stored in the following format:
50 %
51 % Record Number <newline>
52 % Question <newline>

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

/, If-Yes-Goto-Record lumber <newline>

f, If-No-Goto-Record lumber <newline>

%
% The following routine scans the data file until it reaches the
% record requested in \curcode
x
\def \Scan(

{\loop

\global\read\inp to \thisrecnum

\ifnum\thisrecnum=\curcode\amgf'alse\else\~gtrue\fi

\if amg

\read\inp to \foo % Discard unwanted record
\read\inp to \foo

\read\inp to \foo

\repeat33

%
% The following routine displays the question and waits for a Y or N
% answer
%
\def \query(

<\read\inp to \question

\immediate\writei6<)

\message~\question3

\GetYN

\if yn

\read\inp to \foo\global\curcode=\foo\read\inp to \foo

\else

\read\inp to \foo\read\inp to \foo\global\curcode=\foo

\f i

33
%
% The following routines deal with the user's input

% \vread (verbatim read) ignores <newline>s and makes <space>s normal
% \GetYN gets input and repeats until it gets a Y or N response.
%
\def\vread#l~\catcode'\^^~=9\catcode'\ =12\global\read-I to #I3

\def \GetYN(

<\loop

\vread(\bar>

\def\baz(\bar3

\reploopfalse

\if \amgY\baz\global\yntrue\else

\if\amgN\baz\global\ynfalse\else\replooptrue\fi\fi

\ifreploop

\immediate\writel6(Hey, you! Answer Y or N, please.)

\message(Please enter Y or N -->>

\repeat

33
%
% The following routine is called if the "Goto-Recordyy is -1,
% meaning that the program didn't guess correctly and is clueless.

% It gets the new animal and the differentiating question, and
% modifies the data file. Actually, it makes a modified copy of

% the file, then copies the temporary new one over the old outdated

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

107 % one.
108 %
loo \def\WewAnimal<

110 \immediate\writel6<Well, I'm stumped. What animal did you have in mind?)

111 \vread(\usersanimal)

112 \immediate\writel6(OK. What question would let me tell the difference?)

113 \vread<\userquery)

114 \immediate\writeI6(Is the answer to that question Yes or No if I ask about)

115 \message(\usersanimal?>

116 \curcode=-I

117 \GetYN

118 \Scan

110 \read\inp to \lastcode\lc=\lastcode

120 \closein\inp

121 %
122 % Open up the files. These names are system-dependent. *FLAG*

1 2 3 %
124 \openin\inp=/mit/amgreene/TeXhax/animals.dat

12s \immediate\openout\outp=/tmp/animals-new . dat
126 %
127 7, Read through the inp file, copying all records that don't need to
128 % be changed, outputting modified versions of the changed ones (and
n o % discarding the old), and appending the new records.

130 %
131 (\loop

132 \read\inp to \foo

133 \amgtrue

134 \ifnum\f oo=\temp\amgfalse\fi

135 \ifnum\foo=-i=\amgf alse\fi

136 \if amg\immediate\write\outpC\ioo)

137 \read\inp to \foo\immediate\write\outpC\foo)

138 \read\inp to \foo\immediate\write\outp<\foo)

130 \read\inp to \foo\immediate\write\outpC\foo)

140 \amgtme

141 \else\ifnum\foo=\temp

1-12 \immediate\write\outpC\foo)

143 \imediate\write\outpi\userquery)

144 \immediate\write\o~tp(\number\lc)

145 \global\advance\lc by I

146 \immediate\write\outp(\number\lc)

147 \read\inp to \animal\read\inp to \foo\read\inp to \foo

148 \amgtme

i re \else

150 \lc=\lastcode

151 \ifyn\WriteUsers\WriteAnimal

152 \else\WriteAnimal\WriteUsers

153 \amgfalse\f i

154 \fi\fi

155 \ifamg

156 \repeat3

157 \immediate\write\outp(-1)

158 \immediate\write\outp(\number\lc)

15s \closeout\outp

160 \closein\inp

698 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

161 %
162 % low copy the temporary file over the original one
163 %
164 % These filenames are also system-dependent. *FLAG*

165 %
166 \openin\inp=/tmp/animals-new . dat
167 \ immediate\~pen~~t\~utp=/mit/amgreene/Teax/mals.dat

168 (\loop

169 \read\inp to \foo

170 \immediate\write\outpC\ioo)

171 \amgtrue

172 \ifeof\inp\amgf alse\f i

173 \ifamg

174 \repeat)

175 3
176 %
177 % This routine is called by NewAnimal and writes the record for
178 % the user's new animal
179 %
180 \def\WriteUsers(

181 \immediate\write\outp<\number\lc)

182 \immediate\write\o~tpCIs it \usersanimal?)

183 \immediate\write\outpO

184 \immediate\write\outp<-1)

185 \global\advance\lc by I)

186 %
187 % This one writes the modified old animal
188 %
189 \def \WriteAnimal(

190 \immediate\write\outp<\number\lc)

191 \immediate\write\outp(\animal)

192 \immediate\write\outpCO)

193 \immediate\write\outpC-l)

194 \global\advance\lc by 1)

195 \~penin\inp=/mit/amgreene/TeXhax/animals.dat % *FLAG*

196 %
197 % NOW we get into the main routine.
i s 8 % It simply repeats the scan-query loop until it gets a 0 (right answer)
199 % or a -1 (wrong answer, I'm stumped), and calls the appropriate routine.

200 %
201 \loop

202 \temp=\curcode

203 \Scan\query

204 \maidreptrue

205 \ifnum\curcode=O

206 \immediate\writel6(Thank you for using Animals. I'm glad I got it right.}

207 \maidrepf alse

208 \else

20s \ifnum\curcode=-l\~ewAnimal\mainlrepfalse\fi

210 \fi

211 \if mainlrep

212 \repeat

213 %
214 % Ah, the joys of a job well-done. We can now exit to the system, knowing

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

215 % that the world is a slightly better place for our efforts.
216 %
217 % The following line of code, probably the most profound in the entire
218 % program, sums up this philosophy of life in four characters. The

210 % Puritan work ethic is embodied in this amazingly meaning-laden
220 % command designed by Donald Knuth.
221 %
222 \bye
223 end: animals,tex--------------------------

Appendix B: CokeComm
1 begin: coke.tex---------------------------

2 %
3 % CokeComm program for SIPB

4 %
5 % Andrew Marc Greene

6 % <amgreene(Dathena.mit.edu>

7 % Student Information Processing Board, MIT

s % March 1989

9 %
lo \newif\ifamg

11 %
12 % Macros for typesetting each person's entry on the list

13 %
14 \def\person#1#2#3#4{% Name, username, cans, paid

15 \v~ox{%

16 \hboxC%

17 \hbox to i.5in{\strut#l\hfill)\hbox to .5in{\hfill#3\quad)%

18 \hbox to .7in~\hfill\$#4\quad)\bubbles)%

10 \hbox{\hbox to 2.7in{\strut\tt #2\hfill)\bubbles))\hnile)

20 %
21 %
22 \newbox\fivebubbles

23 \ s e t b o x \ f i v e b u b b l e s = \ h b o x ($ \ c a l ~ \ c a l (O \ c a l O \ c a l O \ c a l O \ $3
24 \def \f ive{\copy\fivebubbles~

25 \newbox\bubblebox

26 \setbox\bubblebox=\hbox{\five\five\five\five\five\qquad\five\five\five)

27 \def\bubbles{\copy\bubblebox)

28 %
ZQ \hsize=8in\hoffset=-.75in

30 %
31 \font\title=cmbxiO at 17.2667pt

32 \font\coltit=cmbxl2

33 %
34 \headline={\hfil)

35 {\centerline{\title CokeComm Sheet3

36 \bigskip{)

37 \vbox(\hbox{

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

38 \strut\hbox to 1.5in(\coltit ~ame\hfill)\hbox to .5in(\coltit cans\Mill>%

39 \hbox to .7in(\coltit Balance\Mill)\hbox to \wd\bubblebox~\coltit

40 Soda\hfill {\sl --Fill in circle--)\Mill Juice)>\hrule))

41 \f ootline=C\hfil)

42 %
43 \def\flu~h(\immediate\closeout3\closein2~

44 %
45 % Here3 s an old friend. . . (from Animals)

46 %
47 \def \vread#1#2{\catcode '\--M=S\catcode ' \ =12\global\read#l to #23
48 %
49 %
50 % ---- END PREAMBLE ----
51 %
52 % Last changed 20-Mar-89

53 %
54 \def\NextRecord(

55 \vread{2)(\pname)

56 \vread(2){\obalance)

57 \vread<Z)<\ocans)

58 3
59 %
60 \immediate\openout3=coke.dat

61 \immediate\openin2=oldcoke. dat

62 \new~~unt\balance\newcount\cans\newcount\numb\newcount\dollars\newcount\rcount

63 \loop

64 \immediate\writel6<---------------- ~~~t person----------------- 3
6s \ifeof2\amgfalse\else\amgtrue\fi

66 \ifamg

67 \NextRecord

68 \balance=\obalance

69 \cB~s=\oc€U~S

70 \immediate\writel6(\pname (\uname)3

71 \message(Total Deposits :)

72 \vread(-l)(\adddep)

73 \advance\balance by\adddep

74 \message(Enter sodas: 3
75 \vread(-l>(\sodas)

76 \advance\cans by \sodas

77 \numb=\sodas

78 \multiply\numb by 35

79 \advance\balance by -\numb

80 \message(Enter juices: 3
81 \vread(-I)(\ juices)

82 \advance\cans by \juices

83 \numb=\juices

84 \multiply\numb by 45

85 \advance\balance by -\numb

86 \edef \nbalance(\the\balance)

87 \dollars=\balance

88 \divide\dollars by100

89 \multiply\dollars by100

90 \numb=\balance

91 \advance\numb by-\dollars

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Appendix C: BATTLESHIP

1 begin: battle.tex-----------------------

2 % Battleship in TeX

3 %
4 % Andrew Marc Greene

5 % MIT Project Athena

6 % and

7 % Student Information Processing Board

8 % Version 1.0 April 1989

9 %
10 % Battleship is a registered trademark of the Milton Bradley Corp.

11 %
12 %'ttttL%%%%%%%%%'ttttL%%%'ftrL%YL%%%%%%%%'tttLYL%%YtL%%%YL%'tLftL%%'tL%%%'ttttL

takes four arguments:

the variant on \def

the array name

the two index values

Array-handling code (modified to handle two-dimensional arrays)

AIN .t#l#2#3#4C\expandafter #I% \def -- but first find the AME

22 \csname #2% begin the \csname and use the arrayname

23 .\if \relax #3\the\f i #3. % first index

24 \if\relax #4\the\fi #4\endcsname 3% second index and end the \csname
25 %
26 %
27 % \get takes three arguments:

28 % the array name

702 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

29 % the two index values

30 %
31 \def \get#l#2#3<\csname #I% same as above....

32 .\if \relax #2\the\fi #2%

33 .\if \relax #3\the\f i #3%

34 \endcsname)

35 %
36 %%'A%%%'A%'t/tt~A%'X'f~rtA'~A%'rrA%'rrA%'f/rrt~~A%'~~r/~h%'!tA%'~rrr/~A%'tA%'~A%'rflA%%
37 %
38 % \say is a useful shorthand for "output to screen"

39 %
40 \def\~ay#l<\immediate\write16<#1))

41 %
42 %%'l/ftA%'t~rrA%%'A%'~tA%'fA%'A%'t~tt~rA%'A%'A%'~h%%%'A%%'t/t~%'r~A%%'tlr/rr~rA%%%'t~%%
43 %
44 % Initialize the array to all "Z"

45 %
46 \newcount\idx\newcount\idy

47 \idx=O\idy=O

48 \loop

49 \edef\~dx<\ifcase\idx A\or B\or C\or D\or E\or F\or G\or H\or I\or J\fi)

50 \put<\def)IMyGrid>C\Idx)C\idy)o%

51 \advance\idx by 1

52 \ifnum\idx=lO

53 \advance\idy by 1

54 \idx=O

55 \fi

56 \ifnum\idy<lO

57 \repeat

58 %
5 9 %%%'A%'rrrttrlrrrrrtrrA%'rrtrrA%'rrrA%'A%'rrrA%'rrA%%'A%'A%'A%%'A%'A%'rtttrrA%'A%%'L%
60 %
61 % Display welcome message

62 %
63 \say<Welcome to Battleship.)

64 \say<(Battleship is a trademark of Milton Bradley))

65 \say<)

6s \say<This version uses fixed-position ships.)

67 %
68 %%%%%%%%%%%'rlr~~rf~rA%'rlr~%'~fA%'rA%'~X'A%'~A%'A%'~/L%'~lA%'/lA%%%'~ttr/~/A%'l~A%
69 %
70 % Position the ships. Future versions will use a random-number

71 % generator to provide a different game each time.

72 %
73 \~ut<\def)<MyGrid)<D3<43<Cl% Carrier has 5 spaces

74 \put<\def)<MyGrid)<E><4)<Cl

75 \~ut<\def l<MyGridlCFl<41<C>

76 \~ut(\def)<MyGrid)<G)<4)<C)

77 \put<\def)<MyGrid)<H><4HC3

78 \put<\def)<MyGrid)<l3<Bl% Battleship has 4

79 \~ut<\def)<MyGrid)CBl<23CBY

80 \~ut(\def 3<MyGridl<Bl<3HBl

81 \putC\def lCMyGridl<B3<4HB3

82 \put<\def)<MyGridl<G3<3><Dl% Destroyer has 3

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

83 \put{\def)(MyGrid)<G3{83{D>

84 \put{\def){My~rid){G>{9>CD>

85 \put<\def)<MyGrid)<J3<G>CS3% Submarine has 2

86 \put{\def){MyGrid>{J3{7><S3

87 %
88 %'ttttCrLrtttA%'LrLttrLttAY;ttrLtrrr~rLrrCttLrrrttrL/;trtttLrLrttrLrrrrLtA
89 %
so % Initialize some counters

91 %
92 \newcount\turns\turns=O% Number of turns it takes to win

9s \newcount\hits\hits=i4%% Number of hits it takes to win

94 \newcount\carrier\carrier=5% Number of hits to sink each ship

95 \newcount\battleship\battleship=4

96 \newcount\destroyer\destroyer=3

97 \newcount\submarine\8ubmarine=2

98 %
99 %
100 %%%%%%'ttttttA%%%%%%%'rtA%%'tA%%%%'tA%'ttttLA%%YttA%YtA%rtA%rA%'ttArtA%%'tA
101 %
102 % Routines to handle damage to a ship

103 %
104 % \gobble (as defined in the TeXbook, page 308)

105 %
106 \def \gobble#l()% Remove one token

107 %
108 % \damage takes the name of a counter and damages that ship:

109 %
110 \def\damage#l(\advance#l by -1 % Lose one 'hit point'

111 \ifnun #l=O % If there are no more,

112 % Print a 'sank' message:

113 \say{You sank my \expandafter\gobble\string #l ! 3
114 \else% Otherwise, a 'hit' message:

115 \say{You have hit my \expandafter\gobble\string #I.)

11s \fi3

117 %
118 % Note that the above messages used \expandafter\gobble\string #I

119 % to get the name of the counter and strip the \escapechar off the

120 % front of it. The resulting string (because of the way we named

121 % our counters) is the name of the appropriate ship.

122 %
1 2 3 %%%rA%~A%'A%%rA%'t~%'tt//A%'~fk%'Ltt/~~f~/t~t~///~/t/~/ft~~t/~/~/~~L/tt/k
124 %
125 % Give the player a chance to specify a coordinate.

126 % If it's already been used, or is out-of-bounds, \say an error.

127 :! Otherwise increment \turns and print an appropriate message;

128 % If it is a hit, decrement \hits;

129 '/. Whether it is a hit or not, blat the space.

130 % If \hits is non-zero, keep going
131 %
132 %
133 \def \def ab#l#2#3"~{\def \a{#l]\def \b<#~]>

134 \loop

135 \message{Your turn: 3
136 \read-I to \usrinp

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

137 \expandaf ter\def ab\usrinp--C

138 \ e d e f \ ~ (\ ~ e t (~ ~ ~ r i d) C \ a) C \ b >)

139 \if \c\relax

140 \say(~orry, that's not a valid coordinate.)

141 \else

142 \if\c X\say(Sorry , you already shot there . 3
143 \else\advance\turns by I

144 \if \C Z\say(You missed. 3
145 %
146 % Drat! The user hit one of our ships! Record damage to the correct one.

147 %
148 \else\if \C C\damage(\carrier)

149 \else\if\c ~\damage(\battleship)

150 \else\if \c ~\damage(\destroyer)

151 \else\if\c S\damageC\submarine)

152 \fix submarine

153 \fix destroyer

154 \fix battleship

155 \fix carrier

156 %
157 % And record that there was a hit someplace:

158 %
159 \advance\hits by -1

160 \fi% End of the hit-or-miss section

161 %
162 % Record that this space has been shot:

163 %
164 \putC\def3(HyGrid3<\a3~\b)(X)
165 \fix End of the 'shoot here1 section

lee %
167 \fix End of the (in)valid spot section

188 %
169 % We've finished a cycle. If there is any part of the fleet left,

170 % we go around again:

171 %
172 \if num\hits>O\repeat

173 %
174 % Otherwise, we display the player's score and exit.

175 %
176 \say(You have destroyed my fleet. It took you \the\turns\gobblei turns.)

177 \bye
178 end: battlestex---------------------------

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

TQC Users Group
Tufts University, July 20 -23, 1986

P. T. Barnum Auditorium

A Permuted Index for and UTEX

AT&T Bell Laboratories
Room 2C416
600 Mountain Ave
Murray Hill, NJ 07974
chesQresearch.att.com

ABSTRACT

The Permuted Index for m and UT$ was written to help Y)$ designers find the
right command among the extensive list of m, plain m , and UT$ commands.

To prepare the index, a one-line definition was written for each command. These
definitions were run through the UNIX ptx filter, which created an entry indexed by each
key word in each definition. UNIX tools were used to massage the text, and convert the
ptx troff-style output into TJ$ macro calls.

This paper discusses some technical aspects of preparing the Index, and some of the
problems encountered.

1. Introduction
It is easy to tell when someone is having trouble with a typesetting package: they are surrounded by
heaps of nearly-identical printout. Their goal is often simple: to lower a headline or adjust spacing.
When the struggle lasts more than a day, it becomes an Epic Battle.

Epic Battles seem to be a common result when a programmer attempts to stretch typesetting
software beyond the novice examples. They often occur when the "safe driver" winds up on dangerous
curves. The problems can be daunting, especially when the user has no m n i c i a n available. The
m b o o k [Knuth] covers everything, of course. But it is actually three books in one: a beginner's
manual and two levels of reference manual guarded by dangerous-bend signs. Some dangerous curves
are vital, others extremely arcane and usually irrelevant. Which ones should be read, and which
ignored, and by what level of user?

Epic Battles are not confined to l)$ - I have seen proficient troff users in the same state. It
seems that typesetting is a fundamentally difficult task, and these battles come from an incomplete
understanding of complex typesetting programs, languages, and macro packages.

1.1 My problem
My early Epic Battles lasted as long as two days. (I was a manager at the time, and could ill-afford
the time. I took it anyway.) One day I was creating a UTEX style file for a newsletter, including a
table of contents. When I wrote out my contents line to a file, UTEX added lots of strange goo to my
string. I had to tell to stop expanding my macros and just write out the stuff I wanted. There
had to be a command in the T&Xbook somewhere, but how could I find it? I was the w n i c i a n , and
'QXHaX wasn't available. It turns out that I wanted the \string command. It was hiding behind a
double-dangerous curve on page 22 in the m b o o k . (I found it in an example dug out of latex. tex.)
At this point I started thinking about a permuted index for l$$ commands.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 707

% a s i l l y de f in i t i on f i l e

f rog green amphibian found near water

gnat black in sec t found i n the a i r

P U animal found on land
toad green amphibian found on land

gnat- black insect found in the
frog- green
toad- green

gnu-
gnat-

frog-
toad-

gnat- black
gnu- animal found on

toad- green amphibian found on
frog- green amphibian found

frog- green amphibian found near

air. ..
amphibian found near water.
amphibian found on land.
animal found on land.
black insect found in the air.
frog- green amphibian found near water.
gnat- black insect found in the air.
gnu- animal found on land.
green amphibian found near water.
green amphibian found on land.
insect found in the air.
land.
land. ..
near water.
toad- green amphibian found on land.
water. ...

gnat

frog
toad

gnu
gnat

frog
gnat

gnu
frog
toad
gnat

gnu
toad

frog
toad

frog

Figure 1: Some sample definitions and a permuted index of their definitions

1.2 A permuted index
A permuted (or keyword-in-context) index contains an alphabetical listing of each keyword in each
command's definition. Figure 1 shows a short, silly example. The UNIX manual [Unix] has a permuted
index for locating the correct text filter or command. There wasn't one for T@, so I decided to write
one. I even had a shot at the first definition:

\ s t r i ng : don't mess with the following t e x t I a m writ ing out

2. Building the Index
The Permuted Index is generated from a file of definitions. The file is processed by a few UNIX filters
to create a file of T@ macros. These are read into a UTEX file to create the Permuted Index. The
index consists of three chapters summarizing the commands for T@, plain w, and BTEX, and a
combined permuted index of all these commands. It is well over one hundred pages long.

2.1 Command definitions
The first chore in creating the Index was to collect a complete list of commands. I had decided to
index plain 'l&X and IAT@ commands as well as 'QjX. Most of the 'QjX commands came from t ex . web.
The plain T@ commands were extracted from p la in . tex, including a couple of internal commands
that I have found useful. Barbara Beeton supplied a list that was a useful cross-check. la tex. tex,

l p l a i n . tex , and I f onts . t e x supplied the IATG commands.
It has taken a long time to create and correct the definitions. I have tried to keep the style uniform

and the definitions useful. A definition should give a fair description of the command's semantics using
consistent keywords. For example, commands that manipulate tokens should have the word "token"
in the definition. A symbol's definition contains the word "symbol", and math mode symbols have
"math symbol" in the definition. Wording should be consistent: does \parskip define the "space",
the "separation", or the "glue" between paragraphs?

708 TUGboat, Volume 10 (19891, No. 4- 1989 Conference Proceedings

frog----green amphibian found near water Note: the four underbars signify

a single tab character

s/-\(. *\I---J\\comC\13U

s/\([- . ? !] \)$ / \ I . / These are the sed commands that

s/$/3/ create the macro call.

1

\com{f rog){green amphibian found near water. 1

Figure 2: Generation of the command description macros

I battered my copy of the W b o o k hunting down definitions, and annoyed several mathematicians

about the math symbols. I suspect real W p e r t s could improve on some definitions, and novices could

suggest keywords that should appear in some definitions.

Most command definitions are easy. For example:

[\time1 current time of day

Some are not. Consider \expandafter, which has the following definition in the l)#book (p. 213):

T)TJ first reads the token that comes immediately after \expandafter, without expanding

it; let's call this token t . Then 'lJ$ reads the token that comes after t (and possibly more
tokens, if that token has an argument), replacing it by its expansion. Finally 7l&X puts t
back in fiont of that expansion.

My definition:

I\expandafterI expand the token following the next token

It doesn't have to be complete, just enough to guide the careening driver.
Proficient w p e r t s (and others) can certainly find definitions that miss the mark. I welcome

corrections and suggestions.

2.2 The command definition input files
The definitions for UTEX, plain w, and T)$ are stored on separate files. The definitions are

used in three different ways:

1. The filters in Figure 2 generate the com macros in three separate files. These are used in the

chapters that summarize the command definitions.

2. They are processed by ptx to create the file with the index macro calls.

3. Lines beginning with %%%\def are extracted and the %%% is stripped off. These are special

definitions that are read directly into the document before the commands and index are read.

Figure 3 demonstrates the processing steps on a very simple command definition file. Notice that

a single command definition permutes to five index entries.
Each definition fle has a simple format. There is one line per definition. Each line has a command,

followed by a tab character, followed by the definition. Lines beginning with %%%\def are special

definitions, described below. Other lines beginning with a % are ignored. Figure 4 shows some actual

w definitions.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 709

% This is a sample input file
% Comments and special lines have '%' in column one
% Note: four underbar characters stand for a single tab character
frog----green amphibian found near water

I egrep -v " - % " Strip comments and special en-
tries &om the file.

frog----green amphibian found near water

auk -Fn C----I" \
'C print $1 type "1" \ Format for the ptx -r option.

11 ---- --- I1 $2 1' \ type is set to "P" in this exam-

type=P ple.
t

frog{P)----frog--- green amphibian found near water

I sed 's/\(C-. !?]\)$/\I./' Suffix period if no punctuation
present.

frogCP)----frog--- green amphibian found near water.

1 ptx -r -f -t -w 200 -i eign

. .xx "" I1f rog--- green" "amphibian found near water. " "" frogCP3

. .xx " I t "I1 "frog--- green amphibian found near water." "" frogCP)

..xx "I1 "frog---" "green amphibian found near water." "" frogCP)

..xx " " "frog--- green amphibian found" "near water." "" frogCP)

. . xx "I1 "frog--- green amphibian found near" "water. It I t " frogCP)

Convert from troff to T@-style
sed 's : -\ . xx "\ ([-"I *\) " 'I\ ([-"I *\) " \ macros. Discard unused macro

"\([-"I*\)" " \ ([-" I* \)" \
parameters. (The actual com-

\(Ĉ Cl*\>C\(C-)1*\>3$: \ mand is on a single line. It is
\\ptxC\2)C\3H\5)C\s) : broken up here to accommodate

t
this annotation.)

\ptxCfrog--- greenHamphibian found near water.)Cfrog)CP)

\ptxOCfrog--- green amphibian found near water.)Cfrog)CP)

\ptxCfrog---)(green amphibian found near water.)Cfrog)CP)

\ptxCfrog--- green amphibian foundHnear water.3Cfrog)CP)

\ptxCfrog--- green amphibian found near)Cwater.)Cfrog)IP)

Figure 3: Sample processing of a command file

TUGboat, Volume 10 (1989), No. 4 1 9 8 9 Conference Proceedings

!\-I discretionary hyphen

1\/1 italic correction

%%%\def\showspaceCC\tt\char'\ 33
+showspace+ space character

I \above 1 fraction with rule thickness

I \abovedisplayshortskip I extra glue above displays following short lines

I\abovedisplayskipI extra glue above displays

I\abovewithdelims) fraction with specified rule and delimiters

I \accent 1 put an accent over the next character

Figure 4: Sample command definition input file

2.3 Editing the Index
The machine-generated permuted index in the UNIX manual was extensively hand-edited. Knuth said
in the Wbook that he prefers hand-editing of index entries. But I expect to make many revisions to
the command definition file, and hand edits to my ptx output would be lost. I must make do with
automated editing. There are a few things that help.

For one thing, not all words in a definition are useful keywords. By default, ptx consults a file
named eign for a list of uninteresting words. The default file was not useful, since it included words
like "left" and "right", which are certainly important keywords for the Index. So in the end, I built a
list based on the original file and careful examination of the Index.

I built a script to locate pairs of adjacent lines that define the same command. In such cases,
something is usually wrong: perhaps a command is defined twice, or something is amiss in the definition.

Finally, there is a filter to remove lines that are sorted in a non-obvious way. Ptx sorts on the
ASCII character set, but it isn't obvious to a human where entries like % should appear. Also, actual
command names tended to clutter the listing. Here are some entries that were rejected:

$- dollar sign symbol. $

. %- percent sign (1 . %
\above- fraction with rule thickness. \above

'- acute accent (6).

I can print a full list the rejected entries to make sure nothing important is ignored.

2.4 Macros

The \ptx macro formats each definition. It used to be fairly complex when I tried to wrap long
definitions around on a line. The problem led me deep into W ' s paragraph-formatting algorithm,
a wonderful but dangerous territory. After an Epic Battle, I gave up. A fairly simple version of the
macro now truncates definitions.

Since the Index has to display the name of every T)$ command within a line of text, it needs a
good embedded verbatim environment. I took the macro from the 2&Xbook7s manmac .tex that uses
pairs of vertical bars to delimit verbatim text. It works fine in straight text, but fails in some cases
when used in an argument to a macro. Since all definitions in the Index are formatted by macros, this
was quite a problem. The failure stems from the argument processing: ?&K pre-scans the arguments
with varying attention to the text's meaning. The 14TEX \verb command demonstrates the problem
in Figure 5.

The f i s t \mac call works. The second and third die from unmatched curly braces. The fourth
doesn't work because I4TEX's \verb is not defined with \long. I am not sure why the fifth call fails. It
appears to be trying to process the \newif command. (Other \newxxx definitions fail as well.) Also, a
few commands caused problems with my filters: double quotes would confuse the patterns that match
the troff macro fields; commands containing a blank would cause unwanted permutations by ptx.

It took an Epic Battle to convince me that I couldn't figure out a solution to the parameter

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 71 1

\long\def\mac#lC

\beginif lushlef tl

#I

\endiflushleft33

\macCThis is a test of string: \verbl\stringl)

\macCThis is a test of string: \verbl)lI

\macCThis is a test of string: \verbliI)

\mac(This is a test of par: \verbl\parl)

\mac(This is a test of newif: \verbl\newifl)

Figure 5: Attempted verbatim in a macro call

problem using verbatim. I now use pairs of plus signs to delimit the names of macro calls that display
the offending commands.

3. Results
The Permuted Index has been well-received. It clearly meets a need for many TEX users. I found that
it was useful in its own preparation, a good sign.

The \string command now has the following definition in the Index:

I\stringl expand a control sequence into character tokens

This is a reasonably accurate definition. Would it have helped me three years ago? I am not sure.
Does a precise definition help the user find the command? Or should some commands be less precise
but contain more familiar words to aid the novice.

Constructing the Index has taken far more work than I expected. Even so, further work is needed
on several problems:

1. Better definitions are needed for some commands, especially those with difficult semantics.

2. I'd like to improve definitions for the novice.

3. I'd still like to solve the problems of line wrap in the index.

4. Foreign language versions could be useful. Also, other macro packages could be included.

4. Update
The Conference attendees made a number of useful suggestions. First, I am indebted to a number of
people for improved definitions, especially Barbara Beeton and John Hobby. Here are a few suggestions
that I will try to adopt in the next release of the Index:

1. The command names will be included in the Index, as well as listed separately as they are now.

2. The separate list of command names should be hidden in the back of the index: they are not as
useful as I thought.

3. Several simple keywords, like 'page' and 'paragraph', don't yield as many entries as they should.

4. Simpler words are probably preferable to more accurate ones. For example, 'space' should prob-
ably be used where 'glue' is more precise.

712 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

5. Availability
The Permuted Index is available as Computer Science Technical Report 145 from Computer Science
Research at Bell Laboratories. Send inquiries to neera9research. att . corn or

Neera Kuckreja
Room 2C551
AT&T Bell Laboratories
600 Mountain Ave
Murray Hill, NJ 07974

After some review and revision it will be published in the m n i q u e s series, which will be available
from the Tj$ User's Group.

At present, the source code is not available. For now, I would like to have some idea of the actual
number of copies in use. I will consider special requests for the source for foreign language and other
macro package versions.

Bibliography

Knuth, Donald E. The 7)jXbook. Reading, Mass.: Addison-Wesley, 1984.

UNIX Time-sharing System Programmer's Manual, Vol. 1. 10th ed. 1989.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Users Group
University of Washington

August 23 - 26, 1987

UTEX Memos and Letters

Los Alamos National Laboratory
Group C-2, MS B253
Los Alamos, New Mexico 87545
sxs@lanl.gov

ABSTRACT

Letters and memos at Los Alamos National Laboratory (LANL) are formatted in
accordance with rules established in the Laboratory's Ofice Procedures Manual. UTEX
style files were written to let people produce letters and memos without worrying about
a complicated set of rules. Macro and template files are distributed through the Labora-
tory's Change Control system. A testbed of several hundred test files is used to minimize
bugs in the distributed versions.

There is a choice of Computer Modern fonts or Postscript fonts. Memos and letters
can be printed in Roman or typewriter typefaces. When called for, classification labels
will be printed on every page. Headers on pages following the first page are compiled
from information found on the first page. Letters can handle multiple addresses. Default
options are provided where applicable, and error messages warn users about missing
information fields.

1. Introduction
In 1984, a Publication Strategy Team was formed a t Los Alamos National Laboratory to make decisions
about future directions to be taken in text formatting and publication.1 One of the decisions reached
was to choose UTEX, T$, and t r o f f as the text formatters that would be supported by the Computing
and Communications Division. EATEX was picked as the formatter of choice due to its ease of use and
declarative interface. UTEX, written by Leslie Lamport, is a document preparation system based on

w.
To encourage people to use EATEX, the Computing and Communications Division embarked on a

project to provide UT$ style files for commonly used Laboratory documents, such as memos, letters,
and reports. The formats of these document types are well established at LANL, and have been
formalized in the Ofice Procedures Manual (OPM).

2. Approach
We started with the memo style because it is the most frequently used document type. We wanted to
provide an easy to use, well-documented utility, capable of producing memos in accordance with the
OPM. I became the designated I4T$ macro writer. At the time I knew how to use and install T@X,
but I had no experience with I4T$ or with writing 'I)$ macros.

My hope was to be able to write the UT$ style file using nothing but UT$ commands. I began
by using UTEX'S picture environment to format the memo header and the list environment to format
the opening and closing lists in the memo. When I began to work on the user interface and second-page
headers, however, it became obvious that I was going to have to learn a lot about writing macros in
T@X. UTEX by itself is not well equipped to handle the loops, the ifs, and the token manipulation
necessary for writing a sophisticated macro package. To increase my limited knowledge of TEX, I took

lThis work was performed under the auspices of the U S . Dept. of Energy.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 715

TUG'S courses on writing T@ macros, UTEX macros, and output routines.
Studying UTEX'S macro files was essential in writing the memo macros. The macro files that I

borrowed from include l a t e x . tex, I f onts . tex, l e t t e r .doc, a r t i c l e .doc, and art 10. doc. I began
by copying over half of l e t t e r . doc , Lamport's letter style file, into the memo style file. This was
useful for defining basic elements of the memo such as page layout, paragraphing, and many of UT#'s
environments. The article style files provided the figure, table, and bibliography environments. Code
taken directly from the letter and article styles provided over one quarter of the final memo style file.

The 1atex. tex file is a large collection of macros that define elements of UT$ common to all
UTEX styles. Some of l a t ex . t ex l s macros, such as \ @ i t e m and \@outputpage, were lacking one or
two features needed for memos. In these cases, I copied the macros into the memo style file, making
and commenting changes to the necessary lines. During debugging stages, faulty interaction between
l a t e x . tex and the memo style file was common. It was helpful to temporarily move selected 1a tex . tex
macros into the memo style file, where \typeout commands could be used to follow execution.

After the memo style file had been distributed to LANL's T@ community, I began to work on the
letter style file. Most of the memo style transferred directly to the letter style, and new features were
added where needed.

It took about three person-months of work to complete the memo style file, and another month or
two to finish UTEX letters. A month or so of this time was devoted to learning inside and out.

There was perhaps a two-week investment in getting familiar with UTEX1s macro files. Several weeks
were spent working on the testbed for memos and several more weeks on the testbed for letters.

In the sections below, I will talk about many of the features and some of the programming tricks
used in the memo style file. I will then talk about some of the features unique to the LANL letter style
file.

3. UTEX Memos

3.1 Layout of a UTEX file
The format of a memo's source file is similar to the general layout of any UTEX document.

The preamble, commands such as

Body of memo

The \documentstyle command is used by UTEX to load in the memo. s t y style file, which defines
all the commands used to print a memo. An optional argument asks for an eleven or twelve point font
rather than the default ten point size.

The philosophy of the preamble is to free the user from having to know anything about the layout
of the opening or the closing of the memo. The preamble contains all the commands that affect the
opening and closing of the memo. These commands may be entered in any order. The style file ensures
that everything will be printed in the right place. One doesn't need to know, for example, whether
the distribution list comes before or after the list of enclosures.

716 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

All of the preamble commands are optional. When a preamble command is omitted from the
preamble, one of three things happens. One, that part of the memo, such as a list of enclosures, may
not be required in a memo, so it is simply omitted from the memo. Two, there may be a default for
that command. For example, if no font is given for the body of the memo, the Computer Modern fonts
will be used. Three, if the omitted command is required, such as the \ t o command, the memo will be
printed with that field left blank. A warning message will be printed in the log file that tells the user
how to fix up the input file.

The \opening command prints the header on the first page of the memo, including the information
that tells who the memo is going to, the sender's mail stop, and so forth.

The body of the memo comes after the \opening command. One can use any of the standard
IAT$ commands within the body of the memo.

The \closing command prints the part of the memo that comes after the body of the memo. This
includes the sender's initials, the distribution list, the list of enclosures, and so on.

3.2 Opening of a Memo
Here is an example of the beginning of a memo file that uses all of the fields that can be printed in a
memo header. Figure 1 shows the top of the printed memo from this example.

\documentstyle(memo)
\to(A. S. Harris, X-7, MS B257)
\from(S. R . Groves, X-7 , MS B257)
\thru(L. S. S t ee l e , X - 5 , MS B567)
\subject(Interrupt ion of Building Schedule)
\reference(Memo, Maestas t o P l a t z , March 12, 1989, CT-6-88)
\reference(Subject OPM-1-3, Office Procedures Manual)
\mailstop(B257)
\telephone(7-4555)
\symbol(X-7)
\serialnumber(lll)
\headerfonts(postscript)

Los Alarnos National Laboratory
Los Alarnos,New Mexico87545 memorandum

TO: A . S. Harris, X-7, MS B257 D A ~ June 19, 1989

~ R U : L. S. Steele, X-5, MS B567 MAIL STOP~LEPHONE: B25 7 / 7-4555

FROM: 5 . R. Groves, X-7, MS B257 SYMBOL: X-7-111

SUUECT: INTERRUPTION OF BUILDING SCHEDULE

REFERENCES: 1. MEMO, MAESTAS TO PLATZ, MARCH 12, 1989, CT-6-88

2. SUBJECT OPM-1-3, OFFICE PROCEDURES MANUAL

A series of unfortunate events has interrupted the building schedule of

the RTX project, causing us to reauest a oostuonement of the work shown

Figure 1: Opening and first paragraph of a memo

Notice that the subject line is always printed in uppercase. In this example, two references were
mentioned. When one reference is given, the word "REFERENCE" is printed rather than "REFER-
ENCES" (see Figure 2). The \ thru, \serialnumber, and \reference information is optional. When
the \serialnumber is not given, the \symbol will be printed by itself, without the trailing dash.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 717

When the \ t h ru command is not used, a different style of header is printed. Figure 2 shows an
example of a memo printed in the "thru-less" style. It is worth noting that the user does not have to
be aware that there are two different styles of memo headers. The style file selects the right header on
the basis of the information given in the preamble.

Los Alamos National Laboratory
Los Alarnos,New Mexico 87545 memorandum

TO

FROM

SYMBOL

SUBJECT

3.3 Fonts

A. S. Harris, X-7, MS B257 OAE August 1, 1989

S. R. Groves, X-7, MS B257 MAIL STOPITELEPHONE: B257fl-4555

X-7-111

INTERRUPTION OF BUILDING SCHEDULE

REFERENCE: MEMO, MAESTAS TO PLATZ, MARCH 12, 1989, CT-6-88

A series of unfortunate events has interrupted the building schedule of the RTX project, causing us to
request a postponement of the work shown on Job Order J87940.

The recent period of inclement weather has delayed delivery of the metal toms being trucked in from

Figure 2: Opening of a memo with roman typeface and no \ th ru

There are four possible arguments to the \headerf onts command: tex , pos tscr ip t , l a f onts , and
memopaper. Each does its best to mimic the pre-printed memo paper that secretaries push into a
typewriter. When T@ fonts are used, the Computer Modern fonts closest in appearance and size are
used. While this provides only a rough approximation of the correct fonts, this option is the default
for the \headerf on ts command. Computer Modern fonts allow printing of a memo with a bare-bones
installation of TEX.

When \headerfonts{postscript} is used, Postscript fonts are used to print the header. The
hollow letters used to print "Los Alamos" are created by using a \ spec ia l command to include
Postscript code into the dvi file. In order for this to work, ArborText's DVIPS must be used to create
a Postscript file. At Los Alamos we have standardized on DVIPS as the Postscript driver. All the
commonly used systems (VAX/TJNIX, VAX/VMS, Sun, Apollo, and IBM PC) have site licenses for
DVIPS.

The best looking fonts for Los Alamos headers come from The Metafoundry in Dublin, Ohio;
these are accessed by using the \headerf onts(1a.f onts} command. We bought a site license for these
fonts so that all our users have access to them. If a user has installed these fonts, a header that is
indistinguishable from the pre-printed memo paper can be printed.

Users also have \headerf onts{memopaper} available to print their memos on pre-printed memo
paper. In this case a piece of memo paper is put into the printer. Of course, there is usually a problem
when trying to print onto a pre-printed piece of paper: the UTEX output will very rarely line up just
right with the "TO:," the "FROM:," and so forth. To overcome this problem, the user can specify
a horizontal and vertical correction to match any particular combination of printer and pre-printed
header paper.

3.4 The Body of the M e m o
Any command mentioned in the Lamport's UTEX manual can be used in the body of a LANL memo.
The first version of our memo style followed Lamport's letter style in leaving out the table, figure, and
bibliography environments. Some of the first calls I got were from people asking why they could not
use the figure and bibliography environments in their memos. So I added them into the second version.

There are two styles of memos at LANL. The commonly used one is single-spaced with block

718 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

paragraphs. There is another one for memos of ten lines or less that is double-spaced with indented
paragraphs.

For the body of the memo, a user can specify either Postscript or Computer Modern fonts. The
user can also choose between the Roman or typewriter typefaces. Some users feel (strongly) that a
memo that looks like it came out of a typewriter looks more professional than one that came out of a
printer. Others feel that the typewritten look is humbler and less extravagant looking, therefore better
for obtaining grants and funds. So I provided the typewriter typeface.

One of the more difficult challenges in writing LANL's style files was to accommodate the typewriter
typeface. In regards to everything from hyphenation to vertical spacing to list formats, TE;Y and UTEX
are designed with a variable spaced font in mind. To truly emulate a typewriter, it is necessary to have
all the lines spaced evenly down the page and characters spaced evenly across the page. This requires
an \if statement and parallel code at nearly every turn.

3.5 Closing of a M e m o
Here is the input that creates a memo with most of the options that can be printed in the closing of a
memo. Figure 3 shows the closing of the printed memo from this example. Not shown in this example
are command calls that print 'LEnc. a/sn and "Attachments a/s."

\originat or(srg)

\typist(jak)

\signature{Betty J . Donaldson}
\signer{bjd)

\approvalCR. J. 07Conner \\ ST Division Leader)
\cy(T. J. Benton, WX-5, MS G780 \\ A. L. Salazar, X-7, MS B257)
\encCGraph, Dan K. Lookce, TP-3, MS B882)

\encCDrawing No.\ 3988-R)

\attachmentsCGraph, Fallout vs . \ Image Time, TP-3, MS B881)
\attachmentsCMemo, Maestas to Platz, March 12, 1989, CT-6-88)

\distribution(K. C. Jordan, C-5, MS B775 \\
M. K. Solomon, TP-1, MS B233 \\
A. J. Gomez, TP-2, MS B234 3

UTEX'S list environment provides an easy set of tools for formatting the various types of lists used
in the memo macros. The list environment does not keep track of widow and orphan lines, however,
so code was added to UTEX'S \@item definition to keep the first two and last two items of a closing
list together on the same page. There are also page breaking commands that allow the user to begin
a specified closing list on a new page.

3.6 Classification Labels
At Los Alamos some memos are classified secret, confidential, or ~nclassified.~ When using a type-
writer, paper is used that has the classification marked on the top and bottom of the page. If
fonts are being used in the memo, the font cmssl0 scaled \magstep5 is used to approximate the pre-
printed classification paper. If Postscript fonts are used, a \special command uses Postscript code
to simulate the tall, skinny, and bold font used on pre-printed classification paper. DVIPS's overlay
facility is used to overlay the classification labels on each page. A 29-point Helvetica font is compressed
horizontally and then overstruck to give the desired look.

4. Token Formats
Many of the lists used by the memo commands can have multiple entries. The list of items can be
specified in one command call with double backslashes separating items on the list. A list of items can
also be built up by multiple calls to the same command. For example:

\cy(R. T. Smith, C-2, MS B263 \\ Files)

2 ~ o r more on treating classification labels, see Pollari's article in the 1988 TUG Conference Proceedings, pp. 43,
48-49, in m n i q u e s 7 -Ed.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 719

We will not need your services until the torus has arrived and has been

installed by our technicians. Work may then proceed as outlined in the

original set of milestones.

Betty J. Donaldson

BJD-SRG:jak

APPROVED BY:

R. J. O'Conner date

ST Division Leader

Enc. 1. Graph, Dan K. Lookce, TP-3, MS BE82

2. Drawing No. 3988-R

Attachments:

1. Graph, Faliout v.s. Image Time, TP-3, MS BE81

2. Memo, Maestas to Platz, March 12, 1989, CT-6-88

Distribution:

K. C. Jordan, C-5, MS B775

M. K. Solomon, TP-1, MS B233
A. J. Gomez, TP-2, MS B234

Cy: T. J. Benton, WX-5, MS G780

A. L. Salazar, X-7, MS B257

Figure 3: Last paragraph and closing of a memo

and

\cy(R. T. Smith, C-2, MS B263)

\cy<Files)

are equivalent. A macro named \Qtoksinput takes care of building up these lists. When a command
such as the \cy above is called, it in turn issues a command of the form:

\Qtoksinput(cy)(R. T . Smith, C-2, MS B263 \\ Fi les)

\Qtoksinput then increments a counter that keeps track of how many \cy's there are on the list. The
list items are appended to a token variable that has the form:

\@tokscy={R. T. Smith, C-2, MS B263\\Files)

5. Parsing Token Variables
The construction of second-page headers will illustrate the parsing of variables that have embedded
newlines. Second-page headers mention everybody's name that the memo is addressed to. On page
one, the addressee's name, group, and mail stop are given, separated by commas. On the second-page
headers however, only the name is listed. For example, if the addresses are specified by:

\toiA. B. Carroway, Z-I, MS B234 \\
D. E. F r i t z , Y-2, MS B345)

the second-page header appears as in Figure 4. The internal representation of the "TO" field for this
example would be the token variable:

\@toks to=C~. B. Carroway, Z-1, MS B234\\D. E. F r i t z , Y-2, MS B345)

The parsing of this token variable is done by macros based on one of Knuth's dirty tricks mentioned
in the w b o o k (1984:375). This dirty trick is called \b tes t . It searches for an asterisk in a token
variable and returns true or false depending on the success of the search.

720 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

A. B. Carroway
D. E . F r i t z

June 15, 1989

The r e c e n t p e r i o d of inclement weather h a s d e l a y e d d e l i v e r y of t h e meta l
t o r u s b e i n g t r u c k e d i n from Brown and Armbruster Metalworks, I n c . , i n

Figure 4: Second-page header

Two clones of \btest are needed to parse \Qtoksto; one parses for the double backslash token

and the other parses for a comma. Besides reporting the success of the search, the macros store the

parts of the token variable that come before and after the search token.

To parse \Qtoksto, a loop is executed until all the people's names have been extracted from
\@toksto. First the macro \@tonewlinepull is called (see below) with \Qtoksto as its argument.

The tokens before the \\ in \@toksto are put into the token variable \@toksbef orenewline and the
tokens after the \\ are put into \@toksafternewline.

\def\@tonewlinepull#l{\let\@nlsave=\\\let\\=\rel~

\expandafter\@tonewlinepullone\the#l\\\@empty

\ifQnewline\expandafter\@tonewlinepullthree\the#1\Qempty

\else\f i\let\\=\Qnlsave]%

\def\@tonewlinepullone#1\\C\Qtoksbeforenewline={#l~%

\futurelet\next\Qtonewlinepulltwo)%

\def \@tonewlinepulltwo#i\QemptyC\Qtoksaf ternewline={#lYh

\ifx\@empty\next\@newlinefalse

\else\Qnewlinetrue\f i)%

\def\Qtonewlinepullthree#1\\{\@toksbeforenewline={#l)%

\futurelet\next\@tonewlinepullfour)%

\def\Qtonewlinepullfour#1\Qempty(\@toksafternewline={#l)%

\ifx\@empty\next\@newlinefalse

\else\@newlinetrue\fi)%

For example, if one has the expression:

\Qtoksto={A. B. Carroway, Z-1, MS B234\\D. E. Fritz, Y-2, MS B345)

then executing the command \@tonewlinepull\@toksto will cause the names to separate into LLbefore"
and "after" components:

\Qtoksbef ore new line={^. B. Carroway , Z-1 , MS B234)

and

\@toksafternewline={D. E. Fritz, Y-2, MS B345)

A macro named \@tocommapull (see below) is then called with \@toksbef orenewline as its argument.

The \@tocommapull macro definition is a bit simpler than \@tonewlinepull, since it is not neces-

sary to determine \@toksaftercomma. Executing \@tocommapull\@toksbeforenewline in the above

example leaves:

\@toksbeforecomma={A. B. Carroway]

TUGboat, Volume 10 (1989)' No. 4 - 1989 Conference Proceedings

which is saved into another token variable named \@toksheader. This finishes the first time through
the loop. After a second time through the loop,

\Qtoksheader={A. B . Carroway\\D . E. F r i t z)

which can then be used to print the second-page header.
The height of the second-page header is calculated and is used to set the values of \topskip,

\headsep, and \ textheight . These values change between the first page and the second page, so they
are set to their new values after outputting page one in UTEX'S \@outputpage macro.

6. UT# Letters
UT# letters are quite similar to UTEX memos. Most of the information needed on the first page
header of a letter is entered into the file the same way as for memos. The closing portion of a letter is
virtually identical to that of a memo.

Nevertheless, UTEX letters do have several features that memos do not offer. For example, it
is possible to adjust the width and height of the body of a letter to give it a balanced look. Two

interesting features in UTEX letters are the ability to print multiple addresses and the ability to print
mailing labels.

6.1 Multiple Addresses
In letters, a single address is specified like this:

\to(John Binnington, Manager\\
Technical Information Division\\
Brookhaven National Laboratory\\
Associated Univers i t ies , Inc. \ \
Upton, Long Is land , NY 11973)

A single address is printed on the left side of the header, as shown in Figure 5. For multiple

addresses, one \ t o command is used for each address. If two addresses are called for, they will both
be put on the left side of the header. When three or more addresses are called for, the addresses are
split into two columns. Half of the addresses go in the left column and the other half go in the right
column. If there is an odd number of addresses, the extra address goes in the left column. Figure 6
shows a letter with five addresses:

Los Alamos National Laboratory
LosAlamos,New Mexico 87545

D A ~ June 15, 1989

IN REPLY REFER TO: IS-DO-82-144

MAIL STOP: P 3 6 0

TELEPHONE: (505) 667-4355

(FTS) 843-4355

John Binnington, Manager

Technical Information Division

Brookhaven National Laboratory

Associated Universities, Inc.

Upton, Long Island, NY 11973

Dear Sir:

We are happy to announce the dates for the third annual Library Manage-

ment Meeting, March 23-25, 1983. The meeting will be held here at the

Figure 5: Letter with one address

The user can override a multiple address layout by using \ l e f t t o and \ r i g h t t o to specify which
addresses should go in which column.

722 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

DATE: June 15, 1989

INREPLYREFERTO: IS-DO-82-144

Los Alamos National Laboratory
Los Alarno~New Mexico 87545

John Binn ing ton , Manager
T e c h n i c a l In format ion D i v i s i o n

Brookhaven N a t i o n a l Labora to ry

A s s o c i a t e d U n i v e r s i t i e s , I n c .

Upton, Long I s l a n d , NY 11973

R. R. Dick i son , Manager
L i b r a r y System

Oak Ridge N a t i o n a l Labora to ry

Oak Ridge, TN 37830

J u a n i t a L. G a r c i a

L i b r a r y S c i e n c e S p e c i a l i s t

T e c h n i c a l L i b r a r y

Sand ia N a t i o n a l L a b o r a t o r i e s

Albuquerque, NM 87115

MAIL STOP: P360

TELEPHONE: (505) 667-4355

(FTS) 843-4355

Roy Nie l son , Head

L i b r a r y Department

Lawrence Berke ley Labora to ry

U n i v e r s i t y of C a l i f o r n i a

L i b r a r y , Bldg. 50, Room 134

Berke ley , CA 94720

Wayne Snyder, Manager

Technica l In format ion

Ba te l l e -Nor thwes t

P a c i f i c Northwest N a t i o n a l

Labora to ry

P.O. Box 999

Rich land , WA 99352

Lad ies and Gentlemen:

We a r e happy t o announce t h e d a t e s f o r t h e t h i r d annua l L i b r a r y Manage-
ment Meeting, March 23-25, 1983. The mee t ing w i l l be h e l d h e r e a t t h e

Figure 6: Letter with five addresses

6.2 Mailing Labels
The way I do mailing labels is similar to the way Lamport does them. I have added macros so that the
user can print onto labels of any size, so long as the labels are in a two-column format. If the following
is specified:

the labels will be printed on label paper that has one-inch high labels, with the top label being one
half inch from the top of the paper.

The easiest way to print labels is to print them onto a regular piece of paper with a laser printer.
If you like the way the labels look, you can then copy them onto any label paper that can be used
in a copying machine. Most letters only have one address and a return address. After Xeroxing and
peeling the two labels off, you can turn the label paper end to end and Xerox one more set of labels.
This leaves you with a bunch of unusable labels in the middle of the label paper. To overcome this
problem, there is another command that lets the user specify how many labels have been peeled off
the sheet of labels. The command \skiplabels{2) will print the first label on the third label of the
mailing label paper.

6.3 When an Inch Is Not an Inch
Unfortunately, if you try to print a sheetfull of one-inch high labels on Apple Laserwriter or QMS-800
Postscript printers that we have around here, the printing at the bottom of the page will be higher on
the page than the labels. This is because these two printers do not accurately print a vertical inch: if
you ask for 9 inches, these printers will actually print 8.8 inches. To compensate for this we use:

\maillabelheight{l.Olin) % For our QMS-800

\maillabeltopmargin{.6in) % For our QMS-800

The newer printers that we have, such as the Varityper, the Dataproducts, and the NeXT printers do
not need this correction.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 723

6.4 Print ing and Parsing Address Tokens
From an internal point of view, the token variable for addresses is different from the other token
variables. An \@endto token is inserted after each address. For example, if the following two addresses
are called for:

\toCPerson One\\Town One)
\toIPerson Two\\Town Two)

the information is stored in a token variable like this:

\@toksto{~erson One\\Town One\Qendt o Person Two\\Town Two\@endt 0)

Address tokens are parsed to retrieve individual lines in the addresses for two reasons. For one
thing, the second-page header uses, by default, the top line of each address. For another, if a line of an
address is too long to fit on a single line, the remainder will be indented on the next line (see Figure 6).
This is accomplished by printing each line of an address as an item in l&T$'s list environment.

To print the addresses, a loop within a loop is executed. The outer loop calls a macro named
\@toendtopull that is quite similar to \@tonewlinepull, described above. \@toendtopull stores
the next address to be printed in a token variable named \@toksbeforeendto. An inner loop then
pulls out individual lines from \@toksbef oreendto by calling \@tonewlinepull. Without going into
gruesome details, the general form of this is as follows:

\beginClist){)(.....)
% Goes th ru longloop once per address.
\longloop
\ i f (there ' s another address)

. . .
% ex t r ac t next address
\item
% Goes t h r u innerloop once per pr in ted l i n e .
\innerloop

...
% ex t r ac t next l i n e
...

% Pr in t t h e next l i n e .
\the\@toksbef orenewline
...

\ i f (there a r e more l i n e s i n t h i s address)

\par
\innerrepeat

\longrepeat
\end(l is t)

The macros \longloop and \innerloop are clones of plain.tex's \loop definition. The trick is to
have different names for all the macro names used by \loop, \longloop, and \innerloop.

6.5 T h e mlb File
Ordinarily, the aux file would be used to store the mailing label information for printing at the end of
the job. However, the f igure , t ab l e , and bibliography environments also use the aux file in a way
that is incompatible with mailing labels. So I defined a new file suffix m l b to indicate the file that is
used for printing mailing labels.

7. UNIX Tools
I use the Emacs editor on a Sun workstation with ArborText's Preview to write and debug the style
files. Emacs makes it easy to write editor macros for doing such things as commenting out lines or
adding various kinds of \typeout commands.

Sccs, UNIX's source code control utility, is a great help for keeping track of incremental changes
in the style files. Sccs allows you to recover previous versions of a file. There were several times when

724 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

attempted methods went awry. Sccs made it easy to go back to the latest version that worked and to
try a better method.

During development of the s ty file, I indent to indicate structure, and I comment as much as
possible. When distribution time comes around, the s ty file is copied to the doc file. I use sed,

UNM's stream editor, to automatically strip unwanted indentation and comments from the s t y file.

8. Testing
I have 180 test files for the memo style and 220 for the letter style. I try to keep the individual tests
simple, so there's not too much to look at in any test. I test all of Lamport's UTEX commands in
addition to all of the commands specific to the memo or letter style. I print the purpose of each test
in four places: in a comment a t the top of the file, at the top and bottom of the printed output, and
in the log file.

The test directory is divided into sub-directories to group various kinds of tests. For example, there
are directories for testing headers, page breaks, error messages, and classification labels. There is a

UNIX C shell script that will run UTEX on all the test files. Another script collates all the log files,
filtering out almost everything except filenames and error messages. Most dv i files can be previewed
on the Sun, although some dvi files contain Postscript code that cannot be previewed on a Sun.

When the style file gets to an almost debugged stage, small changes are often made that affect
the output of only a few of the test files. To avoid having to repreview all the test files, I wrote a
utility DVIDIFF based on UNIX'S diff command that compares dvi files. The differences are printed
out in clumps of ASCII lines corresponding to places in the dvi file that are ASCII, and lines of hex
corresponding to places in the dvi file that are binary. When a difference between two dvi files is
found, DVIDIFF shows where to look in the printed output.

9. Version 2.09 # Version 2.09
Using UTEX commands in my style files turned out to be a pain in the neck. When I upgraded UT$
from version 2.09 <9 Mar 1987> to version 2.09 <4 Aug 1988>, UTEX'S definition of \parbox changed,
and vertical space disappeared from my memo output in several places. It was not so difficult to fix
up the problem, but it did point out the vulnerability of UT*. Many users are not even aware when
their version of UT# changes, and therefore cannot be expected to look around for new versions of
the memo and letter style files. It sure would be nice if there were a tripUT$ to bring TE;Y's stability
to the world of UTEX.

10. Documentation and Distribution
At LANL, we have a group that writes local documents. They have written documents that explain
how t o use UTEX memos and letters. The documents include instructions for usage and installation,
a list of error messages, and sample memos and letters.

Files are distributed for all the commonly used operating systems. The distributed files are the
sty file, the doc file, a sample input file that uses most of the available commands, and a readme file
with installation instructions.

At LANL, software changes for the commonly used operating systems are regulated through the
Change Control system. The Computing and Communications Division distributes a monthly ICN
Change Bulletin that announces new utilities and new versions of existing utilities. Software changes
on mainframes are installed on a given day of the month. System managers of workstation networks
have more flexibility as to when they want to install software.

The Change Control system makes it easy to announce software, since one Bulletin article an-
nounces a new version of the style file for most of the major system. The files are available to most
users through our Common File System, which can be accessed by most of our computers. The ex-
ception to this rule is the IBM PCs. Style files for IBM PCs are distributed on diskettes through an
organization called PC STORE.

11. Conclusions
UTEX memos and letters are useful utilities to have in an organization. Almost everybody writes a
memo or a letter once in a while. UT# memos and letters are welcomed by UTEX users and encourage

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 725

others to learn UT#.
UT$ is a popular document system for many reasons. The user works on the content and leaves

the formatting to UTEX; the user doesn't have to continually fuss with fonts and vertical spacing;
UTEX macros are consistent across document types; most desired document features are there and
well documented.

These strengths were compelling enough to make it worthwhile for us to provide our users with
UTEX memos and letters. Of course, there is a price: it takes quite a bit of effort to taylor a style file
to the numerous UTEX commands and environments. On the plus side, however, UTEX encourages
the macro writer to go the extra nine yards in writing a complete and easy-to-use command set.

Bibliography

Knuth, Donald E. The m b o o k . Reading, Mass.: Addison-Wesley, 1984.

Lamport, Leslie. BT$: A Document Preparation System. Reading, Mass.: Addison-Wesley, 1984.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Inserts in a Multiple-Column Format

GARY BENSON, DEBI ERPENBECK, AND JANET HOLMES

Gary Benson

MS D417
Los Alamos, NM 87545
gsb9lanl . gov

Debi Erpenbeck
MS D418
Los Alamos, NM 87545
d j eQlanl . gov

Janet Holmes

MS D417
Los Alamos, NM 87545
j ahQlanl . gov

ABSTRACT

A few years ago, we approached the problem of placing inserts (or "objects") auto-
matically in a multiple-column format. Among the issues we encountered were enabling
users to place an object wherever they desired following a textual reference (the "place-it-
here" option); placing objects that spanned columns into a page while maintaining text

flow in a one-pass system; and creating a text-flow pattern that followed the style of the

physics journal Physical Revzew. We use a stack-like method of storing objects to create

solutions to these problems.

1. Introduction
In October 1986 we became intrigued by the problems caused when inserts or objects, such as figures

and equations, must be placed within a multiple-column TE)l format. Such text/figures/equations

formats are common in documents we process at Los Alamos National Laboratory in our composition
section. Therefore, we felt we had to find a (hopefully simple) way to solve the figure-placement (or

insert-placement) problem within TEX. The goal of our first attempts was to place inserts at the top
and bottom of pages in a three-column report format.

We were able to complete the 'I)$ coding required to solve this first problem in about forty hours

and produced the desired results. However, reports designed by various groups at Los Alamos required

different insert-placement rules - frequently ones that would not permit the simple top or bottom

insertion. At this point, therefore, our thoughts turned to the larger problem of placing inserts either

after a textual reference or down and to the right of a reference. Because of other work assignments,
we produced only design notes and sketches at first. In February 1989, however, we received a request

from the editors working on a journal at Los Alamos for Tj$ macros that would direct the placement

of inserts according to the style of the Physical Review in a two-column format. This gave us the

opportunity to work with insert-placement rules considerably more complex than our original problem.

2. Definition of the Problem
The Physical Review format requires that several basic rules be followed. These are:

1. Material must be easily included into multiple-column (in this case two-column) text.

2. The insert must always fol l~w the textual reference to it , which means that, depending on its

position within the article, it could conceivably fall at the top of a page, at the bottom, or anywhere

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 727

0 - the page number that is currently being processed
user specified - in which case the program will try to place the insert on the specified page

Note: this does not apply to "place-it-here"-type objects; see item 6 below.

4. \endmulcolinsert . Shows where the inserted object ends and places the object on the stack.

5. \ba lance to th ispoin t . This macro balances the material that TJ$ is going to put on the current

page between two columns and makes a top insert of the balanced material.
6. \ re f i n s e r t a d j = a dimension value . Use this macro to position a "place-it-here" object after its

reference. We found that, in some cases, an object is not placed correctly (for example, between the
word "Figure" and the number "1" with each on a separate line). This macro is a "fudge factor"

to ensure proper placement in such cases, and goes before the \beginmulcolinsert macros.

The above macros required a few additions t o format articles according to the Physical Review

specifications. Notably, Physical Review uses reading flow indicators, or "reader bars," to guide the

reader's eye in the direction of text when the text flow is interrupted by a figure or equation that spans

two columns. We show an example of Physical Review page layout using these reader bars in Sec. 4,

examples 3 and 4. The additional macros supporting a Physical Review-style format are given below.

1. \phyrevtrue . This draws reading flow indicators when a \ba lance to th ispoin t macro is encoun-

tered. I t draws J to indicate that the text above

the line is a section and draws I to indicate that

the text below the line is a section.

2. \phyrevfalse . This cancels the effect of \phyrevtrue .
3. \noclubtext l ines{n) , where n is the number of lines of text ("club lines") allowed to sit by

themselves in a column below an insert. At Los Alamos, we usually require five or more lines to
appear in such a position, so the \noc lubtex t l ines argument would be 5.

4. \copy\upreadbarbox . This sequence of commands creates an upward-pointing reader bar at the

position specified in the text.

5. \copy\downreadbarbox . Likewise, this sequence of commands creates a downward-pointing reader
bar a t the position specified in the text.

3.4 Design a n d Implementa t ion Concerns

The coding for the macros listed in Section 3.3 required about 100 hours. Up to ten objects can be

stored on the stack at one time. Only versions of TEX that have their registers doubled can process

code using these macros; i.e., Sun and VAX systems.
Early in the design we realized that users may mistake features of these macros for bugs and that,

to avoid user confusion, we'd better document what the code does not do as well as what it does do.

For example, take the case of an object that is referenced in the right column but spans two columns.

This situation will process correctly only if there are no multiple-column-spanning objects already in

place that had been referenced in the left column. (This is a one-pass system, remember .) With this
macro package, the program will place the object referenced in the right column on the next page.

We divided the processing code so that it would be easy to introduce new coding and allow fault

(bug) detection. Some of the bugs we suspected were not bugs, but resulted from our inability to foresee

results. There were, as usual, a number of typos and "why did I do that?"-type problems. However,

there are still several elusive bugs that need to be found. For example, the following conditions

occurring together in a document cause some text to be dropped:
1. The first page of the document contains a \ba lance to th ispoin t , which creates an object contain-

ing text and graphics that is placed on the stack as a top object. The next object is an equation.

2. The second page of the document contains two top and two bottom objects. \noc lubtex t l ines

is set to 5 to avoid club text at rnidpage.
3. The third page, like the first, contains a \ba lance to th ispoin t , creating an object containing text

and graphics that is placed on the stack as a top object, and an equation follows as the next object.
However, text is suddenly missing from the top of this page, We've worked around this situation

by placing the two top and two bottom objects from the second page within a full-page object, but

this fix seems clumsy.

730 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

4. Examples

4.1 Example 1: A Simple Example

p-r r w k d hom . pwbn bs e r, , SKU bun Ihm en-4 Ihc btUm of Ue (hrowh a
horn J5heh, o m from h1-, J B P w m JIM &pole and v .upped to E+ be- wxlh - w% dh-
and (-5sond lim.1 u m . ~ m PUJ +?Jon2 urbon MI. Up (o 2HIU t-

Ti.. I. n,. r * rvur"bd u - y l u ~ I h'.# w .'.'.,ru'nl * k t

LAKBCE I1 horn Lo. U-. TO dau, only Ihr s.n be "Ljcn-3 md r m j c n S * d dunw yl rwk

rsn hu ka m ~ ~ r u c w h e I h s e w e - msmpvYI I!-- v mrmdiy otmd ins rwk
-7th rsn .hould br h . 1 ~ ~ -q ~ b u a ~ - L- ~ h o d y .fir the md of lnjnlcn .mi ~ r -

prosh U, ~b. dcnm of rim& neucmn wmw ported t o the LIV(5CE ncuuon pmductmion Larp,e

1

This is a simple example of a page with two

inserted objects. The first is a top object

and is placed automatically at the top of the

page. The second is a "place it here" (or ref-
erenced) object that is placed about midway
on the page after its reference in the text.
(Note that the object is placed correctly after
its reference.) The reference point is flagged
by "(*Second Figure*)". The first part of the

code for this example is given below.
The first object's coding was placed be-

fore the start of the text. By coding this

way, a compositor can group all the top and
bottom objects in a report together in one

place. Compositors like this feature because

they tend to think of object placement in
terms of "Fig. 1 at the top of page 5, Pic-

ture 3a at bottom of page 7," etc. However,
because the number of objects that can be

placed on a stack at any one time is ten, a

report with more than ten inserts will require
more than one grouping of top and bottom

objects. Only the referenced objects must be
embedded within text.

%
% ex1 . t e x

%
\vsize=50pc % Set t h e vs ize so macros know i t s value

\hsize=39pc % Set t h e h s i ze

\ input mulcol2 % Load t h e mulcol / inserts macros

\ input ex-macros % Load the macros f o r t h e examples

\ p a r s k i p = ~ p t

\beginmulcolC2)C18.5pc) % Begin mul t ip le columns

%
% F i r s t f i g u r e , a t op objec t

%
\beginmulcolinsertCt)C2)(l)(i3

\lfigure{10pc>~30pc)(~his an example of a t op objec t t h a t spans 2

columns)C3

\endmulcolinsert

\ l e f t l i ne (\b f I."INTRODUCTION)

The Proton Storage Ring (PSR) a t Los Alamos func t ions a s a high-current

accumulator o r pulse compressor t o provide i n t ense pulses of 800 MeV

protons f o r t h e Los Alamos Neutron Sca t te r ing Center (LANSCE) s p a l l a t i o n

Neutron Source. The neutron sca t t e r ing community has seen severa l

proposals f o r s imi l a r neutron sources based on compressor r i ngs feed from a

proton l i n a c e . g . , SNq from J\" u l i c h , one from Moscow, JHP from Japan, and

(*Second Figure*)

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

A portion of the log for example 2

The i n s e r t s t a r t s i n t he l e f t column

and only spans t h e l e f t column

>> Placing bottom i n s e r t number 4

The i n s e r t s.t;arts i n t h e r i g h t column

and spans only the r i g h t column

>> Removing i n s e r t 3 , from s tack

>> Removing i n s e r t 4, from s tack

>> [Finished page 21

C3l
>> Processing i n s e r t number 9 , t o be placed on page 3

>> Processing i n s e r t number 10, t o be placed on page 3

>> Processing i n s e r t number 11, t o be placed on page 3

>> Processing i n s e r t number 12, t o be placed on page 4

>> Processing i n s e r t number 13 , t o be placed on page 4

>> Processing i n s e r t number 14, t o be placed on page 4

>> I n s e r t 9, and reference moving t o page 4

>> I n s e r t 10, and reference moving t o page 4

>> I n s e r t 11, and reference moving t o page 4

>> I n s e r t 8 , referenced i n l e f t column

and spans the r i g h t column

>> Placing referenced i n s e r t number 8

Overful l \vbox (0.38889pt too high) has occurred while \output i s ac t ive

>> Removing i n s e r t 8 , from s tack

>> [Finished page 31
C4I
>> I n s e r t 11, w i l l not f i t in l e f t column

Moving it t o page 5, as a top i n s e r t and

leaving t h e reference on the current page

>> Placing top i n s e r t number 7

The i n s e r t s t a r t s i n t he r i g h t column

and spans only the r i g h t column

>> Placing top i n s e r t number 6

The i n s e r t s t a r t s i n t he l e f t column

and only spans the l e f t column

>> Placing top i n s e r t number 5

The i n s e r t s t a r t s i n the l e f t column

and spans the r i g h t column

>> Placing bottom i n s e r t number 12

The i n s e r t s t a r t s i n t he l e f t column

and only spans t h e l e f t column

>> Placing bottom i n s e r t number 13

The i n s e r t s t a r t s i n t he r i g h t column

and spans only t h e r i g h t column

>> Placing bottom i n s e r t number 14

The i n s e r t s t a r t s i n the l e f t column

>> I n s e r t 9 , referenced i n l e f t column

and spans the r i g h t column

>> Placing referenced i n s e r t number 9

4.3 Example 3: What's Nice About the Fizzrev Shuffle.
This example illustrates the use of the macros to produce Physical Review-style documents and illus-

trates the advantage of using this style.

734 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The example is broken up into two sections. The first section represents the output without using

the Physical Review style; the second section shows the result of using this style. The example makes
up a "before-and-after" sequence.

Before

lru J.3 :I

l'"r 6 LA*= 6, Ulrn ur .uuvlr c*vr-&.u. Iu,
oiluu.M ru~aucr 2 ul m uld L. .%, = f x $

ii- I")

,!('I = ' x+
'I r:

N L h w L LLc 6bLlu;: ~ k . . - ~ , k I

'lLllr6Lk.l ,vur.r u a ynr*Lilulr 6 . L ayru ~L.ru-"r.l

u d r L ~ r A- 6. yvr l l r l C L k I--. I k y z w r

~ l v r r slr~.zdl~..l LC,. OII~IILIIYC. 1 0 u a/,bLk,u LI. nl

a,d .. Ulr 1-u y u Y w k n r.LL"m1 LUAU Ulr L e u
PL Lu Ulr l u r u 2 u . l G r u r a u lL*rrL.rr. L k Id-
c"r':)-yrrk u r r ,.auk .kkrrwvr luuuJ Cl,"&n.v

The points of reference of the objects (equa-
tions) being inserted are flagged with "(* eq.
no. *)" - for example, (*5-14*).

On the first page of the "before" example,

the equations flow correctly up until Eq. 5-14.

This equation did not appear after its refer-
ence because of its size; thus, it was moved

to the top of the next page. Equation 5-17

is referenced in the right column and placed
two lines below its reference. This could have
been corrected by use of the \ref i n s e r t a d j

dimension register. Equation 5-19 was too
large to fit after its reference and thus was

moved to the top of the next page.
The only two-column-spanning equations

that were set correctly in the "before" exam-

ple are Eqs. 5-22 and 5-24, which occur on

page 3.

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

% m a t e r i a l i n TeX1s memory
\beginmulcolinsert~r3{2}C13Cpg.n0.~ % r = r i g h t h e r e , 2=spans two columns,

l=starts

% i n 1st column, pg.no.=on t h i s page #

t h e o b j e c t % Equation, f i g u r e , t a b l e , t e x t , o r

combinat i o n

\endmulcol inser t % End of t h e o b j e c t and s i n g l e column mode

In addition to the objects discussed above, the fizzrev macro package formats a journal's title

page, figure captions (including figures inserted with the psfig macro package), three levels of section

headings, and textual references and numbers for equations (using a placeholder instead of an equation

number). The line lengths of the title and running heads are both user-adjustable. See the listing below
for definitions of available macros in the fizzrev package.

Using the two-column macros from inside one's own macros makes writing macros like \ r e f r u l e

easier; neither the macro designer nor the user needs to worry about the details of getting out of
two-column mode to center the rule. The following coding was required to implement the reference
rule:

\ d e f \ r e f r u l e (% Begin def

\phyrevf a l s e % Don't draw read ing f low i n d i c a t o r s he re

\beginmulcolinsert(r3€2~~1}€0) % r = t h e r u l e i s an i n s e r t , 2=spanning

% two columns, l = s t a r t i n g i n t h e

% l e f t column, O=on cur ren t page
\vskip2pc % Leave some white space

\ c e n t e r l i n e (\ v r u l e w i d t h i 6 . 5 ~ ~ depthopt h e i g h t . 5pt) % Center t h e l i n e

\vsk ip l .5pc % Leave more whi te space
\endmulcol inser t % End of i n s e r t

\phyrevtrue % S e t i n d i c a t o r s back on

3

4.5 Fizzrev M a c r o Definitions

Following each definition, is an example of how to use the macro in a paper. See the Fizzrev Users
Guide for complete descriptions.1

formats the abstract. The argument is the text of the abstract.

\ a b s t r a c t { ~ h i s i s an a b s t r a c t .)

for the name of the author's affiliation. The argument is the

name of the affiliation.

\ a f f i l{Los Alamos Nat ional Laboratory)

used when there is more than one author/affiliation pair.

\ a u t h o r s { ~ a n e ~ o e) \ a f f i l { ~ a n d i a Nat ional ~ a b o r a t o r y)

\autoauthorf a l s e or t r u e : switch for user control of running author headline. It is set true
in the fizzrev package to enable automatic generation of a run-
ning author headline on even-numbered pages. \authauthor-

f a l s e will cause the macros to prompt the user for a running

author headline.

\ a u t o t i t l e f a l s e or t r u e : switch for user control of running title headline. It is set true in -

the fizzrev package to enable automatic generation of a running
title headline on odd-numbered pages. \ a u t o t i t l e f a l s e will

cause the macros to prompt the user for a running title headline.

Available from the authors.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

\f igcount:

abbreviation for the multi-column \beginmulcol macro
\beginmc{2){20.5pc}

abbreviation for the multi-column \beginmulcolinsert nmcro.

\binsert{r){2){1){2) "Place it right here, span 2 columns,

start in 1st column, and put the object on page 2."

abbreviation for the multi-column

\balancetothispoint macro.

abbreviation for the multi-column \endmulcolinsert macro.

abbreviation for the multi-column \endmulcol macro.

used to reference an equation in the text and number it. ' 'See
Equation \eq{\qa). A + B = C \eqno(\qa) . ' ' \qa is just

a placeholder, the \eq macro will evaluate the placeholder to

the current number stored in the equation counter.

used to set the caption and leave space for the figure. Argument

1 is the height of the figure, argument 2 is the width of the figure,

argument 3 is the caption excluding a label (i.e., Fig. I) , and

argument 4 is a switch for a box outline (set to 1 for on, 0 for

off). \f ig{20pc){20. 5pc){This is a caption.){I}

used to control the figure number. \f igcount=3 to get a figure

labelled "Fig. 4".

\getheaderf ooterinf o{}{}{}{} : provides the information for the header and the footer. Argw

ment 1 is the volume number, argument 2 is the issue number,

argument 3 is the title, and argument 4 is the author's name.
\getheaderf ooterinf 0{12}{35)(~i t le}{~uthor}

used for standard italics text. \it{emphasis)

used to set a journal titlepage and page parameters. See also

\P~P.

\phyrevf alse or true:

used for figures that are lettered, i.e., Fig. 1A. The argument is

the needed letter. letter{^)

for text and math at nine point. Shouldn't be needed but it is

available. {\ninepoint This text will be in 9-point.}

used instead of \ ~ a ~ e n o macro. The argument is the first page

of the journal or the paper. \page{l)

switch that controls the drawing of reading flow indicators, true

for on, false for off. Set to true in the fizzrev package.

for use with PSFIG macro package. Argument 1 is the height of
the figure, argument 2 is the width of the figure, argument 3 is

the figure caption, excluding a label (i.e., Fig. 1)' and argument

4 is the name of the Postscript file. \~ostscriptf ig{20pc}
(20. 5pc){This is a caption.){f igurel .ps)

for a paper's title page. Will set up the \vsize and the headline
size for a paper.

argument is a date. The word "Received" and the opening

and closing parentheses are added by the macros and centered.

\recvd{3 March 1989)

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 739

\ref rule: centers a rule before the references, leaving white space before

and after the rule.

for times roman font. Ten point default font for text.

the hsize for the running author headline. Defaults to 32 picas.

\rauthorhsize=28pc

the \hsize for the running title headline. Defaults to 27 picas.

\rtitlehsi~e=28~c

for a level one -heading. Argument is the heading, will be cen-

tered in bold and set in all caps automatically. Macro will leave

the appropriate vertical spacing. \section{This i s a sec-

t ion heading)

for a level-two heading. Argument is the heading, will be cen-

tered in bold. Macro will leave the appropriate vertical spacing.

User must type the argument using mixed case.
\subsection{~his is a subsection heading)

for a level-three heading. Argument is the heading and it will
be centered in italics. Macro will leave the appropriate vertical

spacing. User must type the argument using mixed case.
\subsubsection{~his is a subsubsection heading)

the default point size used for a paper. Shouldn't be needed but
it is available.

the \hsize used for the title on the titlepage of the paper. De-

faults to 38 picas. \titlehsize=36pc

PHYSICAL REVIEW A
GENERAL PHYSICS

L:, - L.,,

L;. - 1.. Z h l L + .

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

--,,--.,.a...&,~, I*,. sir- ----
. r r r - m . . - b . MWp.,.!.-i d I

b h d . .
--- &,I--

d .. - .==.rZg-% d,."-l7+ q-, .g- "l)

Pr.r-uk.e.*sf-- ..na
- ~ - (b . k - . L d . .
-.*sf-- nr -;I".LL I L,/~"Y.I~?~,

1. D. r .-.g ,- - -a 6% 4

(leu).

n c. ow -r u. - m. ra* sr, w (wn.

n. A. r CMCM r, r - - n- r r na
Osm

TUGboat, Volume 10 (1989), No. 4-1989 Conference Proceedings

What Next?
We need to simplify the code for these macros and make it smaller. It would be nice if PCs
and Macintoshes could use it.

We want t o start processing flowing text as objects.

There is a need for one- and two-column footnotes.
Document the code.
Port the "place it here" code to three columns so it could be used for other formats.

A Comment on the Future of TjjX
must be enhanced with multiple-column formatting, object-placement options, and other related

commands if it is to remain viable in the years ahead. WYSIWYG systems (such as Interleaf and
Frame) that combine WYSIWYG with batch formatting in an effort to allow users to use tags for

Standard Generalized Markup Language (SGML), will be tough competition for 'I)$ as it now stands.
In addition to these features, math formatting will soon be offered by Frame.

With content tagging (SGML) soon to be a way of life for most of us as we enter the age of
knowledge information processing, a good batch formatting system in the public domain would be of
great value. We would like that system to be m. We have a lot of experience to draw upon.

However, the program can't perform the tasks its competitors are beginning to be able to address.
Some of the other enhancments we would like to see include:

1. An input file that could be buffered so that processing could be done on the contents of the buffer.

A command such as \inputbuff ersize2000 would establish the size of the buffer in bytes.
2. The ability t o do string searches on the contents of the buffer and process the buffer up to the

point a string match was found. It would also be useful if string searches could be done on

the contents of any box and the match point returned. Commands such as \vsplit\mybox to

\f indstring(string arg)would then be possible.

3. The ability to write the contents of the unprocessed buffer to another file.

4. The ability to write contents of any box or delineated string to an ASCII file.
5. The ability to create multiple dvi output files.
6. The ability to assign a variable as a real, as well as a dimension or count register. Full floating-point

arithmetic would be available on these variables.

TUGboat, Volume 10 (1989)' No. 4- 1989 Conference Proceedings

7JjX Macros for COBOL Syntax Diagrams

Unisys Corporation
19 Morgan Avenue
Irvine. CA 92718-2093

ABSTRACT

COBOL syntax diagrams have a unique format that has evolved into an industry-
wide standard. This format is particularly difficult to accommodate without treating the
diagram as artwork. When a manual contains over a hundred syntax diagrams, as several
of our manuals at Unisys do, the production process becomes quite unwieldy.

However, T G ' s math mode can be exploited to allow inclusion of COBOL syntax
diagrams within the document itself. This paper presents macros that typeset COBOL
syntax diagrams. The paper is divided into two parts: the f is t demonstrates how to use
a set of macros to create the diagrams, and the second part lists and explains the actual
macro definitions.

1. The Diagrams
COBOL diagrams are composed of four basic kinds of elements: items that are required, items that
are optional, items that offer a choice, and items that can be repeated. In addition, COBOL diagrams
can contain reserved words, which are displayed in uppercase, and programmer-supplied information,
which is displayed in lowercase.

These elements can be combined to form diagrams that are quite complicated. But first, let's look
at each element by itself. The composition of the macros used to create these elements is discussed
later in this paper (see Section 2).

1.1 Required Elements
Required elements are underlined. For example, the VALUE clause looks Like this:

VALUE IS literal

and can be coded using simply the \req macro:l

\syntax(%
\req(VALUE) IS l i t e r a l

3

If several required items occur in a row, they must be identified individually. For example,

produces

MOVE CORRESPONDING identifier-1 identifier-2

COBOL syntax diagrams always begin with the \syntax macro.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

1.2 Optional Elements
Optional elements are enclosed in square brackets. For example, the IF statement looks like this:

IF condition [THEN] statement-1 [ELSE statement4] -

and is coded using both the \req and \option macros, like this:

\req€IF3 condition \option€!THEN!) statement-1 \option{!\req(ELSE)

statement-2! 3

The function of the exclamation points (!) 2 in this example is not intuitively obvious. They are
necessary to delimit optional elements that are composed of more than one item. When a series of
items appears in an \option macro, it is a good idea to stack them one atop another in the macro
call to keep track of where one item ends and another begins. For example, the RECORD clause
contains a stack of optional items, of which one or none can be chosen:

COMPUTATIONAL CHARACTERS
RECORD CONTAINS [integer-1] integer-2

The coding for the RECORD clause gets a little more complicated and looks l i e this:

\syntax€%
\reqCRECORD) CONTAINS \option< ! integer-1 \req{TO) !) integer-2
\option(!ASCII!

!COMPUTATIONAL!

!COMPUTATIONAL-2!

!DISPLAY !

3 \opt ion€ ! CHARACTERS !

!\req€WORDS)!

1
3

1.3 Choice Elements
Elements that offer a choice are very similiar to optional elements. However, instead of being enclosed
in square brackets, they are enclosed in curly braces to indicate that one of the items within must be
chosen. For example, one form of the OPEN statement looks like this:

OPEN {- } filename REEL - NUMBER
OUTPUT

and is coded thusly:

\syntax€%
\reqCOPEN) \choice{ ! \req€INPUT) !

!\reqCOUTPUT)!

3 f ile-name \req€FEEL-NUMBER) \choice(!literal !
! dat a-name !

1
3
As in optional elements, each of the items in a choice element must be delimited by exclamation points.

1.4 Elements That Can Be Repeated
When an element can occur more than once in the syntax of a command, it is followed by a series of
dots called an ellipsis. For example, the ADD command can operate on any number of variables:

} . . .TO identifier-n
ADD {literal

The exclamation point was chosen as the delimiter because exclamation points are not members of the ANSI-standard
COBOL character set.

744 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

The ellipsis is produced with the \repeatable macro. The ADD command is coded as:

\syntax(%
\req(ADD3 \choice(! iden t i f i e r !

! l i t e r a l !

3 \repeatable \reqCTO3 ident i f ier -n

3

1.5 Formatting Commands
Because COBOL syntax diagrams are quite complicated, their length often exceeds a single line. Left
t o its own devices, TJ$ will break the diagram at some point between two elements. For example, the
MULTIPLY command is automatically broken between the seventh and eighth elements:

MULTIPLY { identifier-1) BY {identifier-2)
- GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] 1. . .

literal-1 literal-2

You can insert \par commands to override W ' s line-breaking algorithm and instead force the line
to break earlier in the diagram. For example, if you wanted to break the above diagram into two
approximately equal parts, you would code:

\req{GIVING)

\par
ident i f ier -3

\opt ion(%

! \reqCROUNDED) ! 3
\opt ion(%

! , ident i f ier-4

\opt ion(%

producing:

MULTIPLY { identifier-1) {identifier-2)
literal-1

-
GIVING

BY literal-2

identifier-3 [ROUNDED] [, identifier-4 [ROUNDED] I.. .

A \par command can be used only to produce a line break between two elements - it cannot be
used in the middle of the \option or \choice macros. If you want a line break inside an \option or
\choice macro, you should use the \midbreak macro. For example, the RECORD portion of an FD
statement is quite lengthy:

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS] [DEPENDING ON data-nam

CONTAINS integer-6 integer-7 CHARACTERS

A line break is needed in the second item of the choice element. If you insert a \midbreak command
after the CHARACTERS item, you obtain a more satisfactory diagram:

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [m integer-5] CHARACTERS]
[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

2. The Macros
Before we can define the macros, we must declare a few variables, define the font, and make the
exclamation point an active character so that it can be used as the delimiter in the \option and
\choice macros:

\newif\ifmchoice

\newif \ifmoption

\newif \ifmreq

\newif \if mrepeat

\newif \if started

2.1 The \syntax Macro
All COBOL syntax diagrams must begin with the \syntax macro. \syntax sets up the environment
and adds some white space before and after the diagram:

\long\def\syntax#l(%

\begingroup

\cobf ont

\textfontl=\cobfont

\mathcode'-="012D

\let! =\startorstop

\baselineskip=l2pt

\lineskip=2pt

\parindent =Opt

\pretolerance=l0000

\medskip

#I

\medskip

\endgroup

1%

The macro definition must be preceeded by \long so that \par commands can occur within the
diagram to force line breaks.

The macro loads the font defined as \cobf ont, defines \cobf ont to be the font accessed when TEX
is in math mode, and changes the \mathcode of the hyphen. By default, a hyphen maps to a minus sign
in the Computer Modern Math Italic font when it is encountered in math mode (Knuth 1984:153-154,
344, 351). By changing the \mathcode, we map the character to the hyphen in the normal text font.
This is necessary at Unisys because some of our reserved words in COBOL contain hyphens and they
look strange when the hyphen is displayed as a minus sign. Your site may encounter similar problems
with other characters - if anything ends up something other than you expected, you should check the
character's \mathcode and modify it to something more appropriate.

All of this font wizardry is local to the group, so if TJ$ enters math mode outside of a syntax
diagram, it uses the default cmti 10 point font and maps characters using the definitions of plain. tex.

The \syntax macro also defines the active character ! to be a call to the \startorstop macro,
described below in Section 2.5.

The settings of \baselineskip, \lineskip and \parindent control amounts of white space.
\baselineskip determines white space between vertically stacked items in a choice of optional el-
ements. \lineskip determines white space between lines of a diagram when the diagram is too long

746 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

to fit on a single line. And \parindent determines how far the diagram is indented from the left
margin.

The \pretolerance command is necessary to tell rn it is OK to break lines and create under-
full \hboxes. When w ' s own line-breaking algorithm analyzes COBOL syntax diagrams, it finds
breakpoints only when math mode is turned off. This conveniently occurs between each element of the
diagram, but TFJ calculates the badness of each of these breakpoints to be so extreme that it ignores
them all unless \pretolerance is set very high.

Finally, the \syntax macro uses the \medskip macro of plain.tex to surround a COBOL syntax
diagram with a certain amount of white space.

2.2 The \req Macro
All the \req macro does is underline an item. All that is required is to enter math mode and use
W ' s \underline command. However, sometimes TJ$~ encounters the \req macro when it is already
in math mode, so some logic is required to determine if math mode should be turned on and off.

2.3 The \option Macro
The main function of the \option macro is to enclose the parameter text in square brackets ([I) .
The parameter text can be quite complicated and can contain calls to the \req macro or the \choice
macro. The parameter text always contains at least two exclamation points (!) to delimit items in
the optional element.

\long\def\option#lC%

\begingroup

\startedf alse

%
\ifmmode\relax\else\moptiontrue$\fi

%
\lef t\lbrack

\vcenterC%

\vboxI%

\cobf ont

1

1%
3%

\right\rbrack

\ifmoption$\moptionfalse\fi

\endgroup

3%

% Local to the group.

% As with \req, math mode
% may or may not need to be
% entered .

% Left square bracket

% Load the desired font.

% Right square bracket.
% End math mode if need be.

The commands \left and \right allow TEX to determine how tall the square brackets need to
be. These two commands are what make 7JjX so ideal for COBOL syntax diagrams (Knuth 1984:148).
By using them, you make TJ$ stretch and shrink the brackets to correctly enclose the items, so you
don't have to worry about the effect of adding or deleting items as the syntax of a COBOL command
changes.

The entire parameter text is enclosed in a \vbox so that the \vcenter command can be used to
center the text within the square brackets.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

2.4 The \choice Macro
The \choice macro is exactly l i e the \option macro except that it encloses the parameter text in
curly braces ({)) rather than square brackets.

\def\choicet#l(%

\begingroup

\startedfalse

\ifmmode\relax\else\mchoicetrue$\f i

\lef t\lbrace

\vcent erC%

\vbox(%

\cobf ont

1

3%

3%
\right \rbrace

\ifmchoice$\mchoicefalse\fi

2.5 Exclamation Points and the \startorstop Macro
The format of COBOL syntax diagrams requires that if more than one item occurs in an optional or
choice element, the items must be stacked one on top of the other. Since T@ is designed to stack a
series of \hboxes one atop another, this requirement is easily met by enclosing each item in an \hbox.
But typing \hbox{ and) around each item gets a little tedious and takes up extra space on the line;
you can make the exclamation point (or any character you choose) an active character and let do
some of the work.

If you make the exclamation point an active character and then assign it to be a control sequence
that calls a macro, you can use that macro to determine if the exclamation point denotes the beginning
or the end of the item. For example:

\def\startorstopC%

\if started

\egroup
\startedf alse

\else

\hbox\bgroup

\startedtrue

\f i

3%

% Order of commands is important here. Flag
% should be turned on INSIDE the hbox and turned
% off OUTSIDE the hbox.

Thus when the construction !RECORD IS! is encountered, it is transformed into \hbox{RECORD IS).

Using \begingroup and \endgroup in the \option and \choice macro makes the value of the
\started flag always local to the group. This enables nesting of elements, for example:

\opt ion(!LABEL \choice(!RECORD IS !

!RECORDS ARE!) STANDARD!)

If the value of \started is not local to the group, the exclamation point before LABEL is correctly
identified as the starting point, and \started set to true. But when encounters the exclamation
point before RECORD, the \if started command is evaluated as true and T@ attempts to end an
\hbox when actually it is supposed to start a second \hbox!

In fact, the whole concept of using a single character for a macro call can be carried to extremes.
What if, instead of requiring the user to remember that he needs to use the \option macro to get

748 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

the square brackets in his diagram, we allow him to just type an opening square bracket where the
optional element begins and a closing square bracket where the optional element ends? The following
commands would allow this:

This works great, but the analogous situation of allowing curly braces to be used for choice elements
creates complications. Once the curly braces are made active, they can no longer be used as they were
originally intended to define macros, delimit parameters in macro calls, and generally serve as beginning
and end or group markers. So then some other characters, perhaps parentheses, must be redefined to
take on the traditional function of the curly braces, and then what will you do when you want to use
parentheses in their normal context?

Pretty soon things become quite confusing to a person familiar with the traditional workings of
Q X . But if you can keep your character codes straight, all this re-defining of character functions might
be helpful to a person sitting down to code COBOL syntax diagrams who is totally unfamiliar with
w. Users might find it helpful to be able to type:

-RECORD- CONTAINS

[! integer- I -TO- ! 1

[! ASCII
!COMPUTATIONAL!

!COMPUTATIONAL-2!

! DISPLAY !I

[! CHARACTERS !

! -WORDS- ! 1

instead of what was previously described in this paper to obtain a syntax diagram for the RECORD
clause.

2.6 The \repeatable Macro

Like the \req macro, the \repeatable macro is quite simple. It boils down to entering math mode, if
need be, and calling the \ ldots macro of pla in . t ex to create the ellipsis indicating repeatability:

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

change tasks. The solution to this awkward method was to transfer the entire procedure to within the

editor. Hence the editing environment, used the most in the production of a 'I)$ document, becomes

the environment that controls the entire process.

Once the basic sequence of producing, previewing, and printing a document was simplified to a few

keystrokes, more sophistication was soon desired. The following is a partial list of significant features

the authors believed important enough to include in the initial editing macro package.

capability of inputting various kinds of information easily and efficiently

0 instantaneous graphical display of fonts and font information

0 a complete context-sensitive help system for and the editor

automatic text reformatting and w control code modification

representing T$$ macros as modified ASCII characters

2. Editing Environment
The text editor of choice is KEDIT, the PC version of the IBM mainframe editor XEDIT. KEDIT is

an extremely powerful and versatile editor. Together with the procedural language REXX, practically
any task can be simplified to the touch of a key. The principle advantage of KEDIT, because it is

programmable, is that it can emulate most text editors (not word processors). Users of this interface

will not need to learn a new editor - a fate on par with a root canal gone awry. KEDIT can be made

inanely simple, such as EDLIN, or as sophisticated and complex as the user desires. Thus, the TEX
interface is completely uncoupled from the editing process.

There are several features within KEDIT that enable it to be so versatile. It allows the user to

create synonyms, such that any command can be called by a different name. For example, the term

"translate" could be substituted for the command move, if that term was more comfortable to use. It

can also be abbreviated to any length desired. Using the same example, the "translate" synonym could
be specified as "tr", "tran", or "transl". The ability to define macros and assign them to almost any key-

or user-defined command name is what makes KEDIT unarguably superior to non-programmable text

editors. These macros can be simple functions used to save key strokes for frequently used commands
or a technique to avoid having to go to the editor's command line or to DOS to perform a certain task.

The macros are also able to call other macros, such as the 'I)$ interface, which can all be accessed by

hitting a single key.
A rudimentary example of redefining keys in KEDIT is the authors' modification of the opening

and closing curly brace and square bracket keys. Whenever the user is in the editing environment, an

opening square bracket [will return a C character. Likewise, a closing square bracket I will return a

) character. This is useful not only for m, where square brackets are not generally used a s control

characters,l but also for C programming. To eliminate confusion, one of the authors has actually

switched the keys on his keyboard to signify this modification.

Mansfield Software Group's Personal REXX is an easy to understand yet powerful procedural

language written specifically for the IBM-compatible personal computer.2 Besides an extensive array
of commands for file handling, text manipulation, and parsing, the one feature that is primarily used

in Personal REXX is windowing. This greatly simplifies the T@X process by using windows to display

various types of helpful information or to control various options.

3. Interface
A single keystroke invokes the Tj+ interface. Presently, this is reserved for the F10 key. When this

key is hit, two windows will be displayed, as shown in Figure 1.
The top window has five categories of control: Format, Inpu t s , Preview, P r in t , and Spell

Check. The particular w formatter (e.g. W T l , 'I)$, IATEX, pQX. . .) which can be toggled by
hitting the F4 key, will appear in the highlighted box in the upper left; in this case, the formatter is

W T l . The left window shows the function key options for format control, which are self-explanatory.

Note that the authors are referring only t o w, and not aTEX, where the square bracket is of course as

crucial as t h e curly brace -Ed.

REXX is also available on several other small computer platforms; for descriptions, see Kubik (1989) or

Tokicki (1988), both on Amiga REXX.

752 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 1: Screen display of the invoked T)$ interface

Control is cursor-selected using the left and right arrow keys. Hitting the right arrow key will highlight

the Inputs control option and a new lower window displaying six new function key options will appear.

The function keys F1 through F6 are used for inputting W T 1 blocks, W T 1 models, font sets, math
sets, specific fonts, and tables, respectively. This control option will be discussed in more detail in the

next section.

The two control options Preview and P r i n t are similar in function. The F1 key will list those

files in a window that have already been formatted (dvi files) and can be cursor-selected to preview or
print. The F2 key for the print control option will list those files that have previously been prepared for

printing (for the authors' systems, * . hp files). The remaining function keys modify how the output will

be presented. Specific to the print control option, an additional window display is located in the lower

left that provides a general perspective of how the printer output will appear. The starting and ending
page of the document will be shown in the upper right corners of the "pages". The orientation is also

clearly displayed as being either portrait (right-side-up) or landscape (sideways). The short paragraph

written on the starting page is a summary of options that cannot be easily shown in text-mode. These
options include the number of copies per page, the margin offset for odd and even pages, magnification

of the print, and whether font information will be echoed prior to printing. Figure 2 shows on example

of the print controller option.

The options used for a particular printout can be saved to file. For sets of options that are used

frequently, these files can be quickly retrieved by hitting the F12 key and cursor-selecting the file that

contains the desired printing options. Once selected, the short paragraph displayed on the starting

page will reflect a summary of the new options.

The last control option, Spell Check, loads a spell checking utility into memory when the F1

key is hit. The authors have installed Webster's New World Spelling Checker on their systems. Any

spell checker, however, can be used to suit the taste of a particular user. The dictionary option, which

is activated by hitting the F2 key, will open a window that lists several auxiliary dictionaries that

may be cursor-selected and added to the standard dictionary. This is necessary for files such as 'I)$,
that contain numerous commands or markup which would not normally be accepted by a standard
dictionary. The auxiliary dictionary may have a list of "incorrectly" spelled commands that the spell

checker will assume to be correct and thereby speed up the process. Under the Spell Check window

TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings 753

Figure 2: Screen display of the print controller option for the 7&X interface

appear several other utilities to "aide" in the writing process. A dictionary and thesaurus may be
loaded. Also, Rightsoft's Rightwriter may be invoked on the TEX source file.

4. Inputting Information
The authors learned TEX and how to use the W T 1 macros at Washington State University (Pullman,

WA), where the W T 1 macros were developed. The T)jX interface at WSU (on an 13M mainframe)

was what the authors first modeled their original interface after. The Q X T I macros have the somewhat

unique ability to change the global format from within the T@ source file, see w T 1 (1987) or Riley
(1989). This can best be accomplished by loading basic document control files (blocks) from disk into

the 7&X file. The document control blocks are simple ASCII files that contain the necessary W T l
markup to alter particular formats. This allows document processing to be greatly simplified. From

within the editor, it is possible to open a window, display the 37 document component blocks (by
name) and cursor-select any formatting block that will automatically be loaded into the file being

edited. Figure 3 shows the screen after the window has been opened, displaying the m T 1 document
control blocks.

For example, if a document is being created with a non-standard paper size and margin widths,
loading the page. blk block into the current file (page-p in Figure 3)

% Default page dimensions and margins
\pageformat(\pagelength(llinl % 792pt = Ilin

\pagewidthC8. 5in) % 612pt = 8.5in

\t opmarginC lin) % 72pt = lin

\bottommargin(lin)

\lef tmargin(l.2in) % 86pt = I. 2in
\rightmargin(lin)

\bindingadjust(Oin)

)% end pagef ormat

\normalbottom % text height will be the same for each
% page. Bottom lines will be even.

754 TUGboat, Volume 10 (1989), No. 4 - 1989 Conference Proceedings

Figure 3: Sample window display of W T I control blocks that may be selected for insertion

and changing the dimensions of interest (substituting values within the appropriate {) braces), will

easily adjust the page format. Markup does not have to be remembered, nor syntax for typing the

markup, and time is saved with respect to loading the same file from DOS. The ability to also include
document models or style sheets at the touch of a key is equally simple. It is this process that makes

creating T)$ documents a much easier task in comparison to manual insertion of Tj$ control codes.

The window interface allows the user to display and easily select any font available to w. This
is accomplished by displaying all files with an extension of * . tfm into a window (a scrollable window

since there are usually so many files) and then cursor-selecting as many of the font names that are

necessary. The macro will read the name, perform a decimal-to-roman numeral conversion on the font
size within the file name, and then insert a line into the TEX file that correctly loads the font for TEX.
For example, to load the font cmssil7, a window is displayed with all the font names, much like Figure

3, and the user cursor-selects the cmssil7 font by hitting the Enter key. Upon leaving the window,
the current line in the editor will have the following line added after it: \f ont\cmssixvii = cmssii7

a t 17pt (this can be seen in the second line of Figure 5). This not only saves time and frustration

looking up what fonts are available, but also introduces a consistent font nomenclature. The authors

also like to keep the following types of files located in this input window environment:

W T l blocks

TEXT1 models/style sheets

T&YTI font sets
W T 1 math sets

multiple ruled and aligned table formats

graphical input files (e.g., clip art and scanned images)
Font Metric files (tfm files)

75 standard Computer Modern (CM) fonts
63 W T 1 fonts

0 resident and cartridge printer fonts
down-loadable soft fonts

0 Postscript fonts

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Whenever the highlighted section or "cursor" is located on a file name that can be selected for
input to the current file, hitting the F11 key will open another window that contains the contents of

that file for immediate viewing purposes. This feature is used throughout the interface as well as other
editing utilities.

4.1 Graphical Help Facility
The ability to easily display font files in a window for automatic selection led to the desire to have

a graphical display of the fonts. This would give the user an idea of what the fonts would look like
on an output device without having to use a previewing program or a sample printout. It could

also be used to show what default sizes and magnifications were available, and how to invoke them.
Two commercially available software packages, ZSoft's Publisher's Paintbrush and PCX Programmer's

Toolkit, were used to create this graphical font help system.

The graphics format used is ZSoft's pcx format, a pseudo-standard in the PC arena for graphics.

The latest version of ZSoft's Paintbrush package includes a utility called hp2pcx. exe. It converts files

(both graphics and text) produced for the HP laser printer to the pcx format. Thus, it is a trivial
process to convert Tj$-generated laser printer output to the pcx format.3 Another utility, called PCX

Programmer's Toolkit from Genus Microcomputing, is needed however, to quickly display the graphical

file within the text-mode editing environment. The tool kit contains several useful PCX utilities; one
will take a group of pcx files and load them into a library and another will instantaneously display

the pcx file to the screen from a library.4 This provides sample font files for all of the TJ$ fonts to be

stored in one common library and displayed at the touch of a key from within the editing environment.

The process of generating the standard 75 TEX font files (plus as many as needed for specific resident

printer fonts, soft fonts and the like) was simplified by creating a database of the font names, sample
output text, and the sizes of available fonts. Tj$ could then produce the entire set automatically. This

font database was formatted with W T l using one driver file that contained the necessary \ h a l i p

commands and markup to produce the * . dvi files. A DOS batch file would convert all the *. dvi files

(using \mapif ication=473) to a temporary * .hp file (HP LaserJet format, 300 dpi) and then convert
the files to the pcx format. The files are loaded into a library and are available for display within the

editor. Figure 4 is an example of a graphical font display file.

Besides the graphical font display, the authors have found that other information is easier to

comprehend by means of graphical output rather than by using just standard descriptive ASCII text.
For example, when loading font sets with W T l , a graphical display file of the particular family shows

which faces are available. Also, general TJ$ help files are available in graphics format to illustrate

quote marks, dashes, special characters, and ruled tables.

5. General Help Facilities
Several help facilities have been written to assist the user not only with the interface but also

within the editor and KEDITIREXX macros. For each screen or window, the function keys (Fl--F12)
are usually displayed along the bottom of the screen (see Figure 1) with an abbreviated word or phrase

describing their function. Complete and separate help menus for key combinations involving the A l t

and C t r l keys will be displayed by hitting the key combinations Alt-h and Ctrl-h, respectively.

Particular to 'J$$ files (any file with an extension of *. tex) , C t r l - \ will determine if the cursor is on

a TEX command; if so, an ASCII help file describing that command will be shown in a window that
can be scrolled forward and backward using the PgDn and PgUp keys. When the A l t - \ combination

is hit, a listing of TJ$ commands, their correct abbreviations, and short synopsis will be shown in a

window. The same help information as for the C t r l - \ key combination can then be accessed by hitting

the Enter key when the highlighted line is located on a particular command.

3 Tha.t is, it is the TEX output, consisting of the METAFONT-produced down-loaded *.pk font files in HP's pc l

format, that gets converted t o the Paintbrush *.pcx format. This process is not available with most graphics

conversion utilities, e.g. Hijaak or IMSI's Graphics Transformer. However, hp2pcx has never disappointed the

authors.

The utility supports standard graphics cards (CGA, EGA, VGA, and Hercules), as well as Super VGA cards

(8 0 0 ~ 6 0 0 modes provided by Tseng, Paradise, and Video Seven). The automatic display mode can easily be

over-ridden t o force an image onto the screen in any desired mode.

756 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

Figure 4: Typical 'I$$ graphical font help display file

5.1 Example of a REXX Editing Macro for TEXTI Conversion
There is a feature that eases the creation of w documents that can serve as an example illustrating

the inter-relationship between the editor and REXX, the procedural language. Displaying the text

on the monitor in a form that resembles the format after 'I$$ formats the text is a desirable way to

edit and view files. For example, a file could have one line of text that will produce three lines
of centered text when formatted and printed. It would be more readable to have three centered lines

appear in the editor.

Taking this one step further, and using outlines as an example, it would be suitable to have text
appear in outline format on the screen with text incrementally indented for each outline level. Also,

for editing purposes, it would be advantageous to allow the particular outline level to be easily changed

to another level. In one operation, the text will be reformatted for the screen display and the TEX
control sequences that format the text will change to alter the final 'I$$ output. This is performed
within the editor by hitting one key, Alt-L, that loads the key definitions for list levels and displays

the definitions along the bottom of the screen, as shown in Figure 5.
Keys F1 through F7 will create up to seven levels of outline lists, while Alt-F1 through Alt-F7

will, if the cursor is anywhere within an outline level, alter the current indent level. For example, if the

outline had a section in the third indent level and the user wanted to alter this to a second level, then

hitting Alt-F2 would change \li13 t o \ l i l z 5 and re-format the text with appropriate indentation.

This feature allows quick and painless editing of list levels for W T 1 .

6. Problems and Idiosyncrasies
No system is without its flaws. There are some recommendations on the use of the interface that

significantly increase its performance. The way REXX is located in memory, applications should not
be made resident while the user is in the KEDIT environment unless they are removed from memory

before exiting the editing environment. The availability of LIM Expanded Memory Specification (EMS

memory) alleviates the problem of overloading DOS with large macros or window information. To make

the system run faster, the macros should be placed in a virtual disk. A significant amount of time is

Here, \ l i 1 3 and \ l i 1 2 stand for \ l i s t l e v e l 3 and \ l i s t l e v e l 2 , the automated list macro for the W T 1 macros.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings 75 7

Figure 5: Screen display of outline list file in list editing mode.

taken if macros have to be constantly read from the hard drive. The T)-$ interface has been designed

assuming the user has an extended keyboard; the standard keyboard restricts a portion of the features
of the interface from being applicable. At this time, there is no elegant accommodation for the standard

keyboard.
From an aesthetic viewpoint, the standard PC graphics cards (e.g., VGA and EGA) include the

option of setting the number of lines that are displayed on the screen. The authors prefer 28-line mode
for several reasons. Many of the utility macros, although still functional in other line modes, simply

look best in 28-line mode. Also, the authors have modified many of the default ASCII characters

(those above decimal 128) to letters and shapes that are useful for display solely in this mode. These

modified characters can be made for other line modes, but, although not a difficult task, it is very time
consuming. The entire Greek alphabet, including upper-case letters, has been installed in a modified

character set. These Greek letters, which represent simple ASCII numerals, are macros that will print

their corresponding character. This "substitution" is useful for typing mathematical equations. Not

only will the equation appear more representative of what will be printed, but will also shorten the

typed length in the file, thus making it easier to read and debug. The authors have also added character
shapes that permit two types of three-dimensional border effects and a descending capital E used in a

text-mode w. are shown in Figure 1.

7. Portability
The practicality of the TjjX interface would not be appreciated if it could not be easily transferred
to other PCs with a wide variety of associated hardware and support software. The first attempt to

copy the TEX interface to another computer proved to be awkward, because the authors had written

into the macros several commands that were specific to the directory setup and hardware of the host

computer. Some major modifications were immediately implemented. All paths and file identifications

were removed from the macros and condensed into a single file, called conf i g . kex, from which each
macro then calls and retrieves particular information. Therefore, the only file that needs to be altered

when copying the KEDIT and REXX files is conf i g . kex. which will "personalize" the TJ$ interface

for individual PCs. In addition, there are REXX functions located in several utility macros that are

able to distinguish the hardware setup of the user's computer. For example, the REXX pcfloppy

758 TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

command will return the number of floppy disks available to the system. This command is useful for

a PCTOOLS-type of utility that enables the user to easily move to and scan other directories.

8. Conclusions
The TJ$ interface has served the intended purpose the authors were originally trying to achieve: to

speed up the creation and modification of TEX documents and to bypass the need to memorize markup.

In the process of creating this interface, many additional macros, not necessarily related to TEX, were

implemented to complement the editing software. There are a number of projects the authors feel

would be extremely useful for the interface but have yet to be accomplished or finished.

1. The formatter, Arbortxt's p w , when encountering an error, will not return the line number

of the error back to the calling routine. I t would be convenient to immediately return to the

location of the error in the editing environment so that it can quickly be corrected. However, there
is a roundabout solution to this problem. The error line number is written to the * . l og file that is

created when the TEX file is formatted. It is possible to read from this log file and retrieve the line

number, but this method is exceedingly inefficient. The authors will wait for the next version of

pT)$ to see if this problem is addressed. Hopefully, by means of setting an environment variable.
2. An example of the auto-reformatting of text has been presented in this paper for T ' T l ' s list

level markup. Similar auto-reformatting will include block quotes, labels, centerlines, hanging

paragraphs, justification (right and left), and subheadings.

3. Many of the W T l font sets are incomplete. For example, a majority of the font sets omit the

bold italic font. In the future, all the font sets will contain the six standard text faces: roman,

bold, italic, typewri ter , SMALL CAPS, and bold italic. These extra faces will be created using

PC-METAFONT.

4. An interesting addition to the input control option of the interface, besides those already mentioned,
would include clip art. The integration of graphic pictures and figures that could be cursor-selected

and viewed (similar to the font sets) would be very useful. This addition is already in progress.

There is virtually no limit to the TEX interface, other than given that it is a text-mode only editing

environment. The foundation has already been made; all new ideas are simply "tacked" onto the

option windows and given new function keys to implement them.

Bibliography

Kubik, Kim. " A m i g a w . . . or How Envy Was Resisted and Knowledge Found on the Road to

OoC." TUGboat 10:65-67, 1989.

Riley, Don L. Using W T I : A Set of 5!&X Macros at Sandia. Livermore, CA: Sandia National

Laboratories, SAND89-8238, 1989.

Rokicki, Tomas. "The Commodore Amiga: A Magic TEX Machine." TUGboat 9:40-41, 1988.

 TEXT^ : Reference Manual. Computing Service Center, Washington State University, 1987.

TUGboat, Volume 10 (1989), No. 4- 1989 Conference Proceedings

T@C Users Group 1990 Membership Form

Request for Information

The TEX Users Group maintains a database and
publishes a membership list containing informa-
tion about the equipment on which TEX is (or will
be) installed and about the applications for which

is used. This list is updated periodically and
distributed to members with TUGboat, to permit
them to identify others with similar interests. Thus,
it is important that the information be complete
and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of rn and the hard-
ware on which it runs. (Operating system informa-
tion is particularly important in the case of IBM
mainframes and VAX.) This hardware information
is used to group members in the listings by com-
puter and output device.

If accurate information has already been pro-
vided by another TUG member at your site, indi-
cate that member's name and the same information
will be repeated automatically under your name. If
your current listing is correct, you need not answer
these questions again. Your cooperation is appre-
ciated.

rn Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

'l&X Users Group

P. 0 . Box 594
Providence, Rhode Island 02901, U.S.A.

rn For foreign bank transfers
direct payment to the 'l&X Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza

Providence, Rhode Island 02903-2449, U.S.A.

rn General correspondence
about TUG should be addressed to:

'l&X Users Group

P. 0 . Box 9506
Providence, Rhode Island 02940-9506, U.S.A.

Name:
Home []
BUS. [I Address:

- - -

1 Qtv 1 1990 Membershi~ITUGboat Subscri~tion (Jan.-Dec.) I Amount I
New (first-time): [] $35.00 each
Renewal: [] $45.00; [] $35.00 - reduced rate if renewed before February 1,1990
Mailing charges per subscription: Canada/Mexico - $5; Europe - $10; Other Countries - $15

TUGboat back volumes 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Circle volume(s) desired: v. 1 v. 2 v. 3 v. 4 v. 5 v. 6 v. 7 v. 8 v. 9 v. 10

I Indiv. issues $18.00 ea. $18 $50 $35 $35 $35 $50 $50 $50 $50 $70 I I
Issues of TUGboat will be shipped via air service outside
North America. TOTAL ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required)

Membership List Information

Institution (if not part of address): Date:

Title:
Phone:
Network address:

[] Arpanet [] BITnet

[] CSnet [] uucp
[] JANET [] other

Specific applications or reason for interest in 'l&X:

My installation can offer the following software or
technical support to TUG:

Please list high-level TEX users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Status of 7$J: [] Under consideration
[] Being installed

[] Up and running since: -
Approximate number of users:

Version of 7$J:
[] Pascal

[I C
[] other (describe)
From whom obtained:

Hardware on which 'lJ$ is used:
Operating Output

Computer(s) system(s) device(s)

Have You Met Your Mac?
We'd like to suggest a small heresy-that the Apple Macintosh, with our
Textures software, might just possibly be the best vehicle for TEX users
right now. Not just the best low-cost alternative-given the choice of any
system at any price, you could rightly choose the Macintosh and Textures.

If you think the Macintosh is a toy, look at the Macintosh 11. It's definitely
not for kids-16MHz 68020, memory to 8MB, disk to 300MB, large sharp
screens. And Textures is not a ~ ~ c ~ o - T E X ; your TEX files will run unchanged.

Textures gives you TEX at your fingertips-responsive, integrated. Go
from editing this copy, through TEX, to previewing the finished page-one
keystroke, three seconds. Go from page to page-one mouse-click, one
second. Scan the whole page for form, proof it at 12 or 14 or 20 points,
click the magnifier and check that equation at Laserwriter resolution,
instantly. Make your current macro set preloaded in seconds, anytime.

TEX is the world's most capable typesetting software, but TEX doesn't do
pictures. Adobe Ulustrator does do pictures, with a line quality finer than
any technical pen. Or use MacDraw from Claris for technical drawings;
learn it in less than one hour. Image Studio from Letraset does halftones,
hand-painted or scanned. All world-class programs, all only on the
Macintosh. With these tools (and many others), Textures does pictures-
on screen, on paper, beautifully.

We're convinced that Textures and the Macintosh are worth a serious
trial from anyone working with TEX. We'll make it easy for you to see
what we mean, at our risk. If there's a Macintosh in your neighborhood,
order a copy on approval. I f no Macintosh is nearby, let us arrange a
demonstration at a dealer in your area. You'll like what you see.

Call us on it.

Textures
for the Apple Macintosh

Single Copy $495
Educational $395

Blue Sky Research
534 SW Third Avenue
Portland, Oregon 97204
8001622-8398, 5031222-9571
Telex 91 0290091 1

ANNOUNCING:
Michael Spivak,

author of the
A d - = macro package

and The Joy of

The Syn thes i s

All the functionality of Bl$X, with much greaterfiexibility, and all features of A d - Q X , PLUS

complicated commutative diagrams,
4 " ' " e l . ;> %+I\ -

complicated 1
I Group C

Committee A The T~xplorators Corporation
tables,

Unit I Unit 2 Committee B 3701 W. Alabama, Suite 450-273

Side 2
Side

Side 2 Houston, TX 77027
Side

 eft) (Left)

AND MUCH, MUCH, MORE!

0 Latest amst ex. t ex file (version 2.0)

0 M M S - W macro packages
0 300 page Manual (assumes some familiarity with AmS-T~X)
0 Fonts for commutative diagrams: . tfm files, .pk files at 118, 180,240, and 300 dpi, and Meta-

Font sources; MAC versions have fonts for W t u r e s .
0 d v ip a s t e program for including tables in files
0 index program

Single user price $95; Texas orders add appropriate sales tax. Specify MS-DOS (5'/4" diskettes) or MAC;
for other configurations, write for information. Add $8 shippinghandling in U.S. and Canada (UPS 2nd
day air in U.S., first class to Canada), and $35 for air shipment elsewhere. Send check or money order
to the address cleverly hidden in the table. Prices subject to change.

The American Mathematical Society can offer you a basic TEX publishing service. You provide the
DVI file and we will produce typeset pages using an Autologic APS Micro-5 phototypesetter. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

I I Macro-Writing 1 I l"&i Problem Solving I -1 1 Keyboarding / /
Camera Work

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or call 401-272-9500 or 800-556-7774 in the
continental U.S.

DeskJet driver for 'IkX

\\-it 11 The Toolsnlit 11's 1)L.I driver and t ht
llt'\t.lett- f'acliard I)psk.Jet s yo11 get:

I'rint Quality- the precison of' laser printers
(:I00 dpi) \vit hout the price.

Speetl- w i th downloaded fonts. = 1 page pel'
~ n i n u t r on a 1)esk.let. faster on a Plus. -

Q u i ~ t - non-impact printing and no fan.

1.011 a r r only limitcd hy the page size and your
TpXpertisc. $100 for the Dt.sk.Jrt 1)VI driver
(shipping and any salrs tax included). To or-
der or for morr information. call or write:

Hequire5 I H I I f '< ' or rornpatible. hard disk. 512Ii or more
H..\\l. and 1IS-I)OS 2 .1 1 or latrr. This a d , incltldine: the

THE WRITE STUFF,

TEXNICALLY SPEAKING

TEX is the write stuff

TEX is the powerful publishing system that

is guaranteed to make any document you

write easier to read ... andguaranteed to

make that document say the right stuff

about you!

Micro Programs, Inc. is your source for
TEX and related ArborText ~roduc ts

for IBM PC and Sun workstations.

Call Bob Harris on (51 6) 921 -1 351 and

get the name of the deakr nearest you.

MICRO PROGRAMS, INC.
251 JACKSON AVENUE

SYOSSET

Publishing Companion translates

WordPerfect

It doesn't take a Tgper t to use T@.

With Publishing Companion, you can publish documents using T@ with little or no
TEX knowledge. Your WordPerfect files are translated into T g files, so anyone using
this simple word processor can immediately begin typesetting their own documents!

And now, IS-Talk introduces Publishing Companion version 2.0, which translates
WordPerfect 5.0 files into T@.

Other word processors are supported using Mastersoft's WordForWord file conversion utility, $70.

Special Introductory Offer

. Retail Price $249
. Academic Discount Price $1 99

. Introductory Price $1 79
This offer good until January 3 1 , 1990. Upgrade from Publishing Companion V . I .XX is $49.

For the power of T@ with the ease of a word processor, Publishing Companion is your
"best friend' for desktop publishing.

For more information or to place an order, call or write:

KTnLK - COMMUNICA T l O N S a

50 McMillen Ave
Columbus, Ohio 43201

(61 4) 294-3535

DESKTOP PUBLISHING HAS NEVER BEEN SIMPLER
AND WILL NEVER BE THE SAME

Clients include:
Macrorn:

Publishing Companies,
Research Labs,

Academic Departments,
TEX Users world-wide.

Macro Writing for
Publishing:

Addison-Wesley
MIT Press

Brooks-ColelWadsworth
Prentice-Hall

Academic Press
John Wiley and Sons

Pronk and Associates

Macro Writing for
Technical Documents:

Shell Research
American Physical Society

Technical Typesetting

Macro Writing for
Software Companies:

Alpha Software
Cytel Software

Intermetrics Corp.
Saddlebrook Corp.

Grass Valley Group
Technical Support Software

rn-postscript
Interactive Macros:

MIT Press, Addison-Wesley

Teaching TEX:
Beginning, Intermediate and

Advanced Macro Writing;
DEC, MIT, TUG, NCAR.

MacroT~X
A TEX Macro Toolkit.

Maximum flexibility
Style files: Generic, Book, Report, Software Documentation, Letter

and Note style, each notated and easily adapted to your design.

Macros to help form your own font families, including
Postscript font families.

Modular format. Separate files are used for separate functions:
listing macros, tables macros, or indexing macros, for example,
are called in only when needed.
All or portions of MacroT~X may be added to existing macro files.

Source code included.

Minimum hassle
All the features you need for document preparation:

Table of Contents, List of Figures, List of Tables generation

Multilevel headline and footline, Modular page numbering

Section heads, Cross-referencing, Listing

Complete table macros, including tables that continue across pages

Figure, Table and Program Captions

Partial page figure that text will wrap around

Theorem environments, Left-justified equations

Verbatim that continues across pages, Screen Simulation

Bibliography, Glossary, Index generation and formatting

Utilities: Margin control, Footnotes and Endnotes, Diagonal lines,
Drop Caps, Margin notes, Mailing labels, Font charts.. .

I Slides

Single User: $200, Site Licenses Available.

Coming soon: Post-TEX, our new TEX-PostScript package that passes
information from PostScript to TEX to insert encapsulated Postscript
graphics. It passes information from TEX to PostScript to position grey
screens behind code examples, highlight screen simulations, and position
a grey screen in a particular table column entry, as well as and other use-
ful TEX-Postscript macros. Post-TEX works with both TEX and LaTEX.

Amy Hendrickson

57 Longwood Avenue, Brookline MA 02146
TEX, LaTEX, and Postscript Consulting

TEX Plus comes with drivers that get
you where you want to go.. .

in a hurry!

Our drivers for the HP LaserJet
PlusISeries II and Postscript laser
printers won't run out of gas in the
middle of the race, even under severe
memory constraints. Both models
include standard equipment such as
landscape printing, collating, inclusion
of graphics, automatic and interactive
font substitution and more, selected
from an easy to use menu interface.
And (of course) you get a set of CM
fonts.

Our Postscript driver provides support
for internal and downloaded fonts and
includes an .AFM to .TFM translation
utility. With the HP driver you'll get a
utility which translates HP soft fonts
into standard .TFM and .PK files.

TEX Plus, which includes both drivers,
our TEXWRITE editor and CTEX (our

version of TEX for DOS) is yours for
only $195.00. The TEXPRINT drivers
can be purchased separately for
$1 29.00 each. For more information or
to place an order, please contact:

Oregon House Software, Inc.,
P.O. Box 70,
12894 Rices Crossing Road,
Oregon House, CA 95962
(91 6) 692-1 377

Micro Publishing Systems, Inc.
1273 Clyde Avenue,
West Vancouver, B.C.,
V7T 1 E6 Canada
(604)92&0500

TEX Plus is also available from the TEX

Users Group.
TEX is a trademark of the American Mathematical Society.
TEX Plus, TEXPRINT, TEXWRITE and CTEX are
trademarks of Micro Publishing Systems, Inc. All other
product names are the trademarks or registered
trademarks of their respective holders.

Retain all the advantages of and

Save megabytes of storage.

0 Instantly generate any font in any size in any

variation (5-70 points).

0 Automatically create compressed, slanted,

smallcaps, outline or shaded fonts.

Use either CM-compatible Vector fonts or

Micropress professional typefaces, including

Tempo-Roman, Avon Guard, Helvetto, ...

Includes the V w typesetter, 10 instantly scalable type-

faces, VVIEW (arbitrary magnification on EGA, CGA,

VGA, Hercules, AT&T, ...), VLASER (HP LaserJet), VPOST

(PostScript), VDOT(Epson, Panasonic, NEC, Toshiba, Pro-

printer, Star, Deskjet) and manuals.

. List price $399 Introductory offer $249

Introductory offer expires on January 1, 1990. S/H $5. COD

add $5. Wordperfect Interface add $100. Demo $3. Site

licenses available. Dealers inquires welcome. Professional

typefaces and METAFONT sources available for older imple-

mentations of w. Discounts for PcTjjX users.

[Forest Hills New Yolk 1 1 375
::::::::::::::::::::!::::::::::::::::::::::::::::::::

%(7 1 8)-5 75- 1 8 1 @'
i::::.

THIS AD WAS TYPESET BY VTE?(USING SCALABLE FONTS ON A LASERJET. ..

Public Domain T)jX

The authorized and current versions 'I)$ software are available from Maria Code -
Data Processing Services by special arrangement with Stanford University and other

contributing universities. The standard distribution tape contains the source of w
and METAFONT, the macro libraries for dM-W, IATEX, S l i w and HP T@, sample

device drivers for a Versetec and LN03 printers, documentation files, and many useful

tools.

Since these are in the public domain, they may be used and copied without royalty

concerns. They represent the official versions of w. A portion of your tape cost is

used to support development at Stanford University.

If you have a DEC VAXIVMS, IBM CMS, IBM MVS or DEC TOPS operating

system, you will want to order a special distribution tape which contains "ready-to-

run" and METAFONT. If you do not have one of these systems, you must perform

a more involved installation which includes compiling the source with your Pascal

compiler. Ready-to-run versions of 'I)$ are available for other systems from various

sources at various prices. You may want to examine these before ordering a standard

distribution tape.

The font tapes contain G F files for the Computer Modern fonts. While it is possible

to generate these files yourself, it will save you a lot of CPU time to get them on tape.

All systems are distributed on 9 track, 1600 bpi magnetic tapes. If both a distribution

tape and a font tape are ordered, they may be combined on a single 2400' reel, space

permitting.

Your order will be filled with the current versions of software and manuals at the time

it is received. If you want a specific version, please indicate that on your order.

Please use the form on the next page for your order. Note that postage, except

domestic book rate is based on the item weights in pounds. If you want to place your

order by telephone, please call (408) 735-8006 between 9:00 am and 2:00 pm West

Coast time. Do not call for technical assistance since no one there can help you.

We normally have a good stock of books and tapes, so your order can be filled

promptly - usually within 48 hours.

Make checks payable to Maria Code - Data Processing Services. Export orders must

have a check drawn on a US bank or use an International Money Order. Purchase

orders are accepted.

'QjX Order Form

TEX Distr ibut ion tapes: Font Library Tapes (GF files)
- Standard ASCII format - 300 dpi VAX/VMS format
- Standard EBCDIC format - 300 dpi generic format
- Special VAXIVMS format Backup - IBM 3820/3812 MVS format
- Special DEC 2O/TOPS 20 Dumper format - IBM 3800 CMS format
- Special IBM VMICMS format - IBM 4250 CMS format
- Special IBM MVS format - IBM 382013812 CMS format

Tape prices: $92.00 for first tape,

$72.00 for each additional tape.

Documents:

W b o o k (vol. A) softcover .
TEX: The Program (vol. B) hardcover
METRFONT book (vol. C) softcover
METAFONT: The Program (vol. D) hardcover . .
Computer Modern Typefaces (vol. E) hardcover
UTEX document preparation system

. WEB language *
W w a r e * .
B i b w * .
Torture Test for T)$ * .
Torture Test for METAFONT *
METAFONTware * .
Metamarks * .

* published by Stanford University

Total number of tapes
Postage: allow 2 lbs. for each tape

Price $

27.00
40.00
22.00

40.00
40.00

27.00
12.00
10.00
10.00
8.00
8.00

15.00

15.00

Weight
2
4
2
4
4
2
1
1

1
1
1

1
1

Quantity

P a y m e n t calculation:

Number of tapes ordered Total price for tapes
Number of documents ordered Total price for documents

Add the 2 lines above
Orders from within California: Add sales tax for your location.

Shipping charges: (for domestic book rate, skip this section)

Total weight of tapes and books lbs.

- domestic priority mail rate $1.50/lb.
Check - air mail to Canada and Mexico: rate $2.00/lb.
One - export surface mail (all countries): rate $1.50/lb.

- air mail to Europe, South America: rate $5.00/lb.

- air mail to Far East, Africa, Israel: rate $7.00/lb.

Multiply total weight by shipping rate. E n t e r shipping charges:

Tota l charges: (add charges for materials, tax and shipping)

Send to: Mar ia Code , D P Services, 1371 Sydney Drive, Sunnyvale, C A 94087.

Include your name, organization, address, and telephone number.

Are you or your organizaton a member of TUG?

TEX Device Interfaces for VMS

Postscript

LaserJet

TEX Users
Take Note,, , ,
Computer Composition Corporation offers the
following services to those who are creating
their technical files using TEX:

Convert your DVI files to fully paginated typeset pages on
our APS-5 phototypesetters at 1400 dpi resolution.

Files can be submitted on magnetic tape or PC diskettes.

Provide 300 dpi laser-printed page proofs which simulate
the typeset page. (Optional service $1.50 per page)

Macro writing and keyboarding from traditionally prepared
manuscripts in several typeface families via the TEX
processing system. Send us your manuscript for our review
and quotation.

Full keylining and camera work services, including
halftones, line art, screens and full-page negatives or
positives for your printer.

Quick turnaround (usually less than 48 hours!) on
customer supplied DVI files of 500 typeset pages or less.

From DVI files: first 100 typeset pages at $4.75 per page;
100 pages and over at $3.50 per page. Lower prices for
slower turnaround service.

For further information and / or a specific quotation,

call or write Frank Frye or Tim Buckler

--:- =::- - < < -

COMPUTER COMPOSITION CORPORATION
-

E l ' = - . . - - . . -
140 1 West Girard Avenue Madison Heights, MI 4807 1

- . . - = = -- - - - - - - - - - - - - - - -
- - - - -- - - - - - - - - - - - - - -

(3 13) 545-4330 FAX (3 13) 544- 16 1 1
-- - -- -- -- -- -- - Since 1970 -

Typesetting Software
Including METAFONT

Executables $150
With source $300

T u r b o w Release 2.0 software
offers you a complete typesetting
package based on the T@l 2.95 and
METRFONT 1.7 standards: preloaded
plain T@, I4T$, INITEX, VIRTEX,
and plain METRFONT interfaced to
CGA/EGA/VGA/Hercules graph-
ics; TRIP and TRAP certification;
Computer Modern and lAT$ fonts,
and printer drivers for H P LaserJet
Plus/Series 11, Postscript, and dot-
matrix printers. New features in the
HP LaserJet driver put PCX or T I F F
graphics files directly into your TEX
documents. This wealth of software
fills over 10 megabytes of diskettes,
and runs on your IBM P C , USIS,
OS12, or VAX/VMS system.

P o w e r F e a t u r e s : T u r b o w
b r ~ n g s big-machine performance to
your small computer. T u r b o w
breaks the 640K memory barrier un-
der MS-DOS on the IBM P C with OUI

virtual memory sub-system. You'll
have the same sized 'QjK that runs
on multi-megabyte mainframes, with
plenty of memory for large docu-
ments, complicated formats, and de-
manding macro packages that break
other implementations. O n

larger computers, T u r b o w runs up
to 3 times faster in less memory than
the Stanford Pascal distribution.

S o u r c e c o d e : Order the Turbo-
'QX source in portable C , and you
will receive more disks with over
85,000 lines of generously commented
m, T u r b o w , METRFONT, and
printer driver source code, including:
our WEB system in C; PASCHAL, our
proprietary Pascal-to-C translator;
and preloading, virtual memory, and
graphics code. T u r b o w meets C
portability s tandards like ANSI and
K&R, and is robustly portable to a
growing family of operating systems.

W TEX-FAX: Connects T)+ to the
FAX revolution. Send perfect TEX
output instantly, anywhere, without
scanning. With '&$-FAX, any FAX
machine in the world becomes your
output device! Complete with P C
hoard and software for $395 (4800
bps) or $795 (9600 bps).

D e s k t o p P u b l i s h i n g I n t e r f a c e
Opt ion : Converts TE,X output (such
as equations or tables) for direct use
in programs like Ventura Publisher
and Pagemaker. ($50 for P C) .

Availabil i ty & R e q u i r e m e n t s :
T u r b o w executables for IBM PC's
include the User's Guide and require
640K and hard disk. Order source
code (includes Programmer's Guide)
for other machines. Source compiles
with Microsoft C 5.0 or later on the
PC; other systems need 1 MB mem-
ory and a C compiler supporting
L'SIS standard 110 . Media is 360K
5-114" P C floppy disks; other formats
at extra cost.

W No-r i sk t r i a l offer: Examine
the documentation and run the P C
Turho'QX for 10 days. If you are not
satisfied, return the software for a
100% refund or credit. (Offer applies
to PC executables only.)

O r d e r i n g T u r b o v

Order by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
t ra) ; Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quanti
t ~ e s or resale.

Ask for the free, 50-page Buyer's
Guide.

T h e K i n c h C o m p u t e r C o m p a n y

PLIBLISHERS O F TL RDOTES

501 S o u t h M e a d o w S t r e e t

I t h a c a , N e w Y o r k 14850

T e l e p h o n e (607) 273-0222

F A X (607) 273-0484

TEE.
FREE.

Of course you will want Personal T S , Inc. products for their
recognized quality and attractive pices. Bu t on orders of $300 or more,

you'll also get a PC T$ T-shirt. Free.

PTLJET FOR HP DESKJET. Full featured printer
driver for HP DeskJet, PLUS. Laser quality output.

$119

PC '&$ + PTILASER + PTMEW. T ~ x 8 2 , Ver-
sion 2.9: professional formatting and typesetting
results-for amateur prices. Includes INITEX, La-
TEX, AMS-T@, VANILLA Macro Pak, PC TEX
and LaT# manuals. Plus a PTILaser device driver,
to take full advantage of your laser printer. PLUS
the PTIView screen previewer for on-screen pre-
viewing of your TEX documents and immediate
editing. Top performance and low cost make this
our most popular package. $499

PC'&$ + PTILASER. As above, but without the
PTIView screen previewer. $399

P C W + ITIDOT + PTMEW. This package gives
you all the TEX and PTIView benefits, together
with our dot-matrix device driver for reliable, low
cost printing. $399

-

PC'&$ + PTLJET + PTMEW. Same as the above
package, but with PTIJet instead of PTIDot. Laser
quality output. $429

P C W + PTLJET. As above, without the PTIView
screen previewer. $329

PCMF-METRFONT for the PC. Lets you design
fonts and create graphics. (Not for the novice.)
pcMF Version 1.7. $195

PTI LASER HP+, SERlES 11. This device driver
for the HP LaserJet Plus and Series I1 laser printers
takes full advantage of the 512K resident memory.

$195

PTI LASER POSTSCRIPT. Device driver for Post-
Script printer; allows the resident fonts and graphic
images to be used in TEX in documents.

$195

PTI FONTWARE Interface Package. Software to
generate Bitstream outline fonts at any size. (The
Interface is necessary to use Bitstream fonts. Fonts
are not inluded4rder below). $95

PTI FONTWARE WITH SWISS or DUTCH. Same
as above but includes your choice of either Swiss or
Dutch at a special bundled price. $179

BITSTREAM Font Families. An extensive library of
30 type families, in any size you specify, with true
typographic quality. Each family: $179

P E R S O N A L

I N C
To order, just dial

(41 5) 388-8853
12 Madrona Avenue Mill Valley, CA 94941 FAX: (415) 388-8865 VISA, MC accepted.

Requires: DOS 2.0 or later, 512K RAM, 10M hard disk. TEX is an American Mathemot~col Society TM. PCTEX is o Personal TEX, Inc. TM.
Monufocturers' names are their TMs. Outside the USA, order through your local PC TEX distributor Inquire about ovoilable distributorships

and site licenses. This od was produced using PCTEX ond Bitstreom fonts.

A Gourmet Guide to Typesetting
with the AMS -TEX macro package

M. D. SPIVAK, Ph.D.

The J o y of TEX is the user-friendly user's

guide for A N S - w , an extension of w,
Donald Knuth's revolutionary program for
typesetting technical material. A N S - ~

was designed to simplify the input of math-
ematical material in particular, and to for-

mat the output according to any of various

preset style specifications.
There are two primary features of the

w system: it is a computer system for

typesetting technical text, especially text
containing a great deal of mathematics:

and it is a system for producing beautiful

text, comparable to the work of the finest

printers.
Most importantly, T# 's capabilities are

not available only to 'QXperts. While

mathematicians and experienced technical
typists will find that T# allows them to

specify mathematical formulas with great

accuracy and still have control over the fin-

ished product, even novice technical typists

will find the manual easy to use in helping
them produce beautiful technical W t .

This book is designed as a user's guide

to the AM$-T# macro package and details
many features of this extremely useful text

processing package. Parts 1 and 2, entitled
"Starters" and "Main Courses," teach the
reader how to typeset most normally en-

countered text and mathematics. "Sauces

and Pickles," the third section, treats more
exotic problems and includes a 60-page dic-

tionary of special w n i q u e s .
Exercises sprinkled generously through

each chapter encourage the reader to sit

down at a terminal and learn through ex-

perimentation. Appendixes list summaries

of frequently used and more esoteric sym-
bols as well as answers to the exercises.

ISBN 0-8218-2999-8, LC 85-7506

Inst.
Memb. $32, List price $36
To order specify JOYTIT

shipment by surface. For air
delivery, add: 1st book $5, each
add'l $3, max. $100

P R E P A Y M E N T R E Q U I R E D . Order from

American Mathematical Society
P. 0. Box 1571
Annex Station
Providence, RI 01901-1571

or call 800-556-7774 to use VISA or Mastercard.

Prices subject to change.

Updated TjjX Products

AMS-TEX Version 2.0 (Available January 1990)

AJMS'QX, the 'QX macro package that simplifies the typesetting of complex mathematics, has been updated
to version 2.0. AJVFS-T)$ is intended to be used in conjunction with AMSFonts 2.0 (see below). However, if
the purchaser does not need the extra symbols and Euler characters founa in AMSFonts, d&'QX can be

run without AMSFonts. (d & W 2.0 cannot be used with previous versions of AMSFonts.) A M S W
is available on IBM or Macintosh diskettes-either format may be uploaded to many mainframe computers.

AMSFonts Version 2.0 (Available January 1990)

AMSFonts 2.0 are designed either for use with A # m 2.0, or for use with Plain w. (AIvlSFonts 2.0
cannot be used with previous versions of AMS'QX.) There will be two distributions of fonts: one that can
be used on PC's as well as mainframes, and one that can be used on a Macintosh with Textures. The fonts
that will be included on these distributions are:

Font

N a m e Description

CMCSC
CMMIB

CMBSY
EURB
EURM
EUFB
EUFM

EUSB
EUSM

CM Caps and Small Caps

CM Math Italic Boldface
CM Bold Symbols
Euler Cursive Boldface
Euler Cursive Medium

Euler Fraktur Boldface
Euler Fraktur Medium
Euler Script Boldface
Euler Script Medium

Point Font

Sizes Name Description

Point
Sizes

8-9' MSAM Symbols 5-10
5-9' MSBM Symbols (w/Blackboard Bold) 5-10

5-9' WNCYR Cyrillic Upright 5-10"
5-10 WNCM Cyrillic Italic 5-lo**
5-10 WNCYB Cyrillic Boldface 5-lo*'
5- 10 WNCYSC Cyrillic Caps and Small Caps 10"
5-10 WNCYSS Cyrillic Sans Serif 8-10"
5-10
5-10

* 10 point is included in the standard 'QX distribution.
" Developed by the University of Washington

AMSFonts for PC or mainframe

a Font Resolution: 118, 180, 240, 300, 400 dpi (one resolution per order).

a Magnification: All the standard magnifications will be included. The standard magnifications are:

100, 109.5, 120, 144, 172.8, 207.4, and 248.8%.

Format: Available on both 3.5" and 5.25" diskettes, in either high or low density (the default will be 5.25",

high density).

AMSFonts for use on a Macintosh with Teztures

Font Resolution: 72, 144, and 300 dpi (all resolutions included in each order).

Magnification: The standard distribution will include fonts at 100% and 120%. An extended distribution.
which will contain all the standard 'QX magsteps, will also be available.

Format: The Macintosh fonts will be available on double-sided double-density 3.5" diskettes.

PRICES: AJVFS-w: List $30, AMS member $27
AMSFonts: List $45, AMS member $41
AJMSTEX and AMSFonts: List $65, AMS member $59

Shipping and handling: $8 per order in the US and Canada, $15 elsewhere.

H O W T O ORDER: Prepayment is required. Free upgrades are available for those who have purchased
previous versions. When ordering AMSFonts for the PC, specify desired resolution, diskette size, and diskette
density.

For more information: Call the AMS at (401) 272-9500, or (800) 556-7774 in the continental U.S. or write
to: Library, American Mathematical Society, P.O. Box 6248, Providence, RI 02940.

TYPESETTING: I JUST

PER PAGE!
Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM7 and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEX@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 4151388-8873.

T Y P E

*Enhanced ~ T E X with support for extended or

expanded memory

....... 4
COMMITTED

...
.

TO THE FUTURE

I 535 West William Street, Suite 300, Ann Arbor, MI 48103 (313) 996-3566 FAX (313) 996-3573

