
TUGboat, Volume 8 (1987). NO. 3 2 70

Notes:

Charles Karney states, " . . I haven't fully ex-

plored the parameter space. If anyone knows

of a better (or 'authorized') solution. I'd ap-

preciate hearing about it."

[Karney%??C. MFEnetQLLL-MFE . Arpa]

John Gourlay has diagnosed an unexpected

modification to the pen path as blacker in-

creases, causing the diameter of such letters as

.lo'' to decrease; the details are discussed in

his article in TUGboat 8#2. page 20. The

parameter values given here are a compromise.

allowing most characters to keep their original

sizes. although the value of blacker .*is not quite

enough to compensate for the thinning inherent

in the printer.'' There is still "an inconsistency

in the weights of characters. Nevertheless,

[Gourlay] feel[s] that this set of parameters is

considerably better than the ones that result

from the bconjectural' parameters, and also

better than the 'am' fonts they replace."

Gourlay.Ohio-StateQcsnet-relay

Charles LaBrec's comments: "I have twiddled

the parameters a bit. and this seems to produce

good 12 point cm fonts. I am a bit unsure

because changing blacker. fillzn, or o-correctzon

seem to make no difference for quite a large

range of values. I can't remember exactly,

but you will get the same results as [these]

for .4 < blacker < .9, -.8 < fillzn < -.I. and

0 < o-correctzon < .7. But this probably makes

a good starting point."

[crlQnewton. phys ics . purdue . edu]

[Edxtor's note: The value given in TUGboat

8#1 for decln fillzn should have been - . 2 , not

+.2.]

Stan Osborne: "The decln mode [Mr. LaBrec]

suggested did not fillzn correctly and was too

black for the smaller point sizes. His choice

of settings produces small sized fonts that are

much blacker than the small cmr's found in

the cmr book (Vol E). . . . I found the [above]

values of blacker and fillzn to produce readable

small fonts for an LN03.. . . These values were

not carefully tested for larger point sizes. (I
stopped experimenting when I got something I

liked and I had verified that larger sizes were

also usable.) [. . . lucbvax! d u a l ! db i ! s tan]

5. Janene Winter has found these settings "to be

optimal for the IBM printers". This informa-

tion was transmitted by Dean Guenther along

with his site report (TUGboat 8#2, page 10).

6. Matthias Feyerabend: '.Fonts tested are CMRS,

CMR10. CMR12 and CMSSI17 for a full range

of settings for blacker and fillzn."

7. Doug Henderson: Preliminary reasonable look-

ing fonts produced for these three printers.

Since the Linotype typesetters are fairly expen-

sive I cannot do extensive testing. Anyone have

one and want to donate some use for testing?

Please let me know.

[dlatex@cmsa. berkeley . edu]

Halftone Output from TE;rZ

Adrian F. C!ark

Don Knuth's article in TUGboat volume 8 num-

ber 2 described the development of a number of fonts

which allow halftone output-pictures-to be incor-

porated into 'I$$ documents. This article chronicles

the author's experiments into halftone production

on a particular computer/laser printer combination.

VAX/VMS and the LN03. It is important to under-

stand that the picture is actually typeset, not just in-

serted into the final output by some printer-specific

\ s p e c i a l command: the following results can, in

principle. be achieved on a n y output device using a

perfectly normal inlplementation of 'I$$.
In the image processing field. where the author

works, technical reports are invariably crammed

with halftone output. The conventional method

of reproducing pictures is photographically. This

is slow and expensive, particularly for internal re-

ports with small distributions. Moreover, unless

great care is taken over the photographs-using a

flat-screen CRT. calibrating films. standardising the

processing, and so on-much of the visual impact

can be lost. Hence. the possibility of incorporating

imagery into document without recourse to a

dark room is very attractive.

A great deal of work has been carried out into

the properties of the human eye. One result is that

the eye is only really capable of distinguishing about

64 grey levels. although it is very good at detect-

ing boundaries between regions of slightly differing

grey level (see, for example, "Digital Image Process-

ing" by R. C. Gonzalez and P. Wintz. published by

Addison-Wesley in 1977). Another result is that the

eye is much more sensitive to boundaries in dark

regions than in light regions.

TUGboat, Volume 8 (1987), No. 3 271

The halftone font used here is more or less the

same as the 'double-dot' font described by Knuth. It

has some 65 different grey levels, represented by the

ASCII characters '0' (white) to 'p' (black). In princi-

ple, all one needs to do is to convert the grey levels

of the individual pixels ("picture elements") of an

image to the appropriate characters of the halftone

font and sprinkle in a few 7$$ commands to ensure

that the lines of the image are lined up in the output.

The only minor complication is that this se-

quence of characters includes '\'. ' - ' and '-'. which

have special meanings to TEX. These must be

treated specially. Knuth's approach was to delimit

the picture data between macros. \beginhalf tone

and \endhalftone. which disable the special char-

acters in a similar way to the 'verbatim' macros

in Appendix E of .'The w b o o k " . The approach

developed by the author is much less elegant and

builds larger disc files, but does not require special-

purpose macros. Each line of the image is built up

as a single \hbox. These lines are stacked into a

\vbox. with the inter-line skip turned off. Finally,

the \vbox is enclosed in another \hbox, which makes

it easier to handle the picture in constructs such as

\ c e n t e r l i n e . The scheme can be summarised as:

The \ha l f tone command is used to select the

halftone font, which must have been loaded with a

command such as

assuming the TFM file is called HF300. TFM.

A FORTRAY SUBROUTINE. TEXPIC. was writ-

ten to output images to files in this format. The

image is represented as a REAL array dimensioned

as (M, N), where M is the number of pixels per line

and N the number of lines. (The use of a REAL ar-

ray to hold data which are usually 8-bit may seem

a little strange. but this representation has many

advantages-for example, when Fourier transform-

ing an image.)

Since we would normally like our pictures to

have the best contrast. TEXPIC scans through the

image to find its minimum and maximum. then

scales the output to make full use of the grey levels

in the halftone font. For most purposes. a single

CALL TEXPIC(PIC, M , N , FN)

is sufficient. FN is a CHARACTER variable or quoted

string holding the output filename.

Of course. there are occasions when we would

like to compare pictures. so fixing the contrast is

sometimes desirable; hence. TEXPIC has associated

routines to fix the range of intensities (ZRANGE) and

re-select automatic intensity scaling (ZAUTO), which

must be invoked before TEXPIC to have an effect.

Similarly. TEXPIC can plot negative pictures as well

as positive ones: DONEG tells it to output subsequent

pictures as negatives and DOPOS returns it to the

default state.

Inserting the picture into a document prepared

with plain QX is quite simple. using commands to

generate a 'float', such as

\midinser t

\ cen te r l ine{ \ inpu t p i c t u r e)

\ end inser t

for a picture in the file PICTURE. TEX. To draw a

border around the picture, as for the examples pre-

sented here, one would define a macro \border

The picture would then be set with

\centerline(\border{\input pic tu re))

The procedure with UTEX is somewhat differ-

ent. The most sensible approach is to use the f i g u r e

environment (not the p i c t u r e environment)

\begin(f igure)

\ c e n t e r i n g

\mbox{\input p i c t u r e \ r e l a x)

\capt ion{. . .)

\end{f igure)

This generates a 'floating' figure. which usually sur-

faces a t the top of the next page of output. The

\ r e l a x following the filename in the \mbox com-

mand ensures that UTEX knows where the filename

ends. To draw a border around the picture. replace

the \mbox with a \fbox.

It is traditional to test out new image process-

ing techniques on the 'girl' picture from the image

database of the Gniversity of Southern California's

Signal and Image Processing Institute. She is shown

in Fig. 1 (64 x 64 pixels). The output was plotted

on a standard LN03 laser printer using version 10 of

Flavio Rose's DVI2LN3. For those unfamiliar with

the LN03. it is a 300 dpi. white-writing laser printer

TUGboat, Volume 8 (1987). No. 3

Figure 1: The Ubiquitous 'Girl' Image

based a Ricoh mechanism, supporting the down-

loading of fonts into on-board and plug-in RAM

cartridges. The quality of Fig. 1 may not appear

to be particularly good. but this is due to the com-

paratively low spatial resolution of the image data:

approximately 256 x 256 pixels are needed to give a

visually satisbing result-as we shall see.

Unfortunately. the standard LN03 will not out-

put images of much greater than 64 x64 pixels: if one

tries to do so. it generates "band too complex" errors

and produces broad white bands in the output. The

actual cause of this is not known; however. it seems

to be because the LN03 buffers plotting commands

internally rather than writing their resulting glyphs

into a bitmap. When the print operation actually

starts. the driving microprocessor cannot translate

the commands sufficiently quickly.

However. the LN03+ device (a field-installable

hardware and firmware upgrade) has a full-page

bitmap. and is quite capable of printing off large pic-

tures. (However. a little care is needed in setting up

the terminal line to which the printer is attached.)

There is another problem in producing these

large pictures. and it concerns itself. Since Q j X
was designed for typesetting text rather than pic-

tures, its memory capacity is too small. Increasing

the size of the memory (i.e.. mem-size) is obviously

feasible, at least on VAXen, but there is a snag: w
was written to use 16-bit integers for subscripts into

the memory arrays. However, the change file mecha-

nism of WEB and the careful way in which TEX was

written makes the conversion of 16-bit integers to

32-bit integers quite straightforward. (It is also nec-

essary to disable some of W ' s initial consistency

checking.)

When the author did this, producing a "big

w". he found that the 16-bit and 32-bit versions

of were identical in almost every respect. The

(wa(utable file was a few percent bigger, probably

due to the increased menlory space rather than the

different integer representation. Likewise. the string

pool and format files were slightly larger However,

there is n o perceivable impact on execution times.

(In fact. the author replaced the 16-b~t version with

big without telling users-and no-one noticed
any difference!)

Thls may seem a little surprising at first. but

an examination of the (pseudo-) assembler gener-

ated by the PASCAL compiler provides the answer.

The machine code generated for variables declared

as 0 . 65535 (or. indeed. 0 255) is zdentzcal to that

for. say, 0 262144. 32-bit integers are used in all

cases. (This does, of course, not apply to packed

arrays.) Moreover, TEX 1s very frugal in the way

it handles its memory arrays. always re-using the

same region if possible; this keeps the page fault

rate low. Since the VAX initialises all memory to be

.demand-zero' when a program is loaded. there is no

real increase in the system overhead due to unused

regions of %X's menlory

The version of T@Y at the author's site has a

large enough memory capacity for four 256 x 256 pic-

tures (or one 512 x 512 picture!) in addition to the

usual text, fonts and macro definitions. This allows

users to put a few images into floatlng figures. as de-

scribed above. without overflowing w's memory.

For example. a 256 x 256 picture is shown in Fig 2.

Indeed. to a certain extent. the physical size of

a picture on the printed page determines the max-

imum number of pixels which can be plotted. Im-

ages of 512 x 512 pixels are more or less standard in

the image processing community, while satellite im-

ages used in remote sensing applications have sev-

eral thousand pixels on a side! Hence. if the im-

age size exceeds a proscribed maximum (256 pix-

els. say), TEXPIC must znterpolate between pixels

to reduce the size of an image. Another associated

SUBROUTINE, TEXMAX, is used to tell TEXPIC the max-

imum number of pixels which can be output. If the

M dimension of an image exceeds this value, the im-

age is interpolated down to this plottable maximum

number of pixels.

There are many ways to perform the interpo-

lation. The theoretical optimum is to use a sin x/x

interpolation function (usually achieved via Fourier

transformation). but this is slow Cubic or linear

interpolators tend to be used in practise. Recognis-

ing that w output of a reduced 4000 x 4000 pixel

image will inevitably be inaccurate. TEXPIC uses

a linear interpolation scheme. However, since lin-

ear interpolators usually blur edges (a particularly

undesirable effect). it attempts to reduce the blur
by using a context-sensztzve interpolator. This in-

TUGboat, Volume 8 (1987), No. 3

Figure 2: A 256 x 256 Lake Scene

274 TUGboat, Volume 8 (1987), No. 3

terpolates between two sets of triplets of pixels sion does clever things with filenames and channel

at right angles and selects the value on the line numbers. The big change file incorporates

with maximum gradient. For example. Fig. 3 is a an editor interface and automatic determination of

200 x 200 pixel image. reduced from a 512 x 512 batch or interactive use (see TUGboat vol. 8 no. 2

image in this way. p. 177). It is. of course, specific to VMS. but may
All the software described here is available. be useful for people making similar enhancements

TEXPIC and supporting routines exist in both stan- on other machines.

dard FORTRAN and VAX FORTRAN: the VAX ver-

Figure 3: Mandrill Image, Reduced to 200 x 200Pixels from 512 x 512 Pixels

