
310 TUGboat, Volume 17 (1996), No. 3

Macros

Fast and secure multiple-option tests

Jordi Saludes

Introduction

Some of us are teachers and have to evaluate the
performance of students many times a year. In
such cases multiple-option tests are a very common
solution and with the introduction of optical mark
readers automation of the grading process has
become possible. However in case of space or
time constraints, such devices give no real help: In

a crowded examination room we have to produce
several versions of the exam to prevent peeking.1

So we have to give the reader service a solution
sheet for each version. On the other hand when
the reader serves a big community the delay in
getting the grades is often too large (at least to give
feedback to the students).

The convenience of using TEX to typeset exams
in di�erent versions by scrambling questions and
answers was �rst addressed in [D]. I tried to go a
step further to help those of us that can not rely on
special hardware. I propose a procedure to easily
make many versions of multiple-option tests, that
relieves the teacher of a boring task at the cost of
charging the students with a bit more of work.

The teacher prepares the test using a macro
package to be described below (see an example
in appendices A and B). Running the test �le
produces tests in many versions.

In these tests, answers are labeled by (appar-
ently random) integer numbers. To answer a test
the student, with the help of a pocket calculator,
adds the label numbers of the answers he thinks to
be right and writes the totals in the bottom of each
page. The student identi�cation and page totals
are the only marks allowed in the exam. To avoid
errors in the addition, label numbers displayed are
in fact multiplied by a small factor like d = 7 or
d = 13 (that we call the detection factor), thus the
total must be also multiple of d.

Since di�erent versions have di�erent label
numbers and moreover answers are scrambled, this
is a secure protection against copying. Second, since
the answers are coded in only a number, entering
exams in a computer for grading can be very fast.
(See some suggestions at the end of the paper.)

The knapsack problem. It is an ancient puzzle:
Given the total weight s of a knapsack and the
weight w1; : : : ; wn of individual objects, determine
which objects are in the bag. In the general case,
this problem is hard when the number of objects is
large. Given the di�erence of computational e�ort
on solving the knapsack problem (going from s to
the objects) versus stating it (going from objects
to s), this problem can be used as a trapdoor

function, giving a public key cryptosystem [S], [Ro].
In this paper I slightly modify this cryptosys-

tem to adapt it for doing tests in the classroom.
Students give their answers by adding the label
numbers of chosen options (encrypting by di�erent

1 Peeking is a very popular sport in Spain.

TUGboat, Volume 17 (1996), No. 3 311

public keys). To get back the answers, the teacher
(who knows the private key) decrypts the total.

In what follows, knapsack problem refers to the
following slightly more general problem:

(B; s): Let B = fB1; : : : ; BNg be a collection of

mutually disjoint sets Bi of positive integers. Given

s a positive integer determine bi 2 Bi [f0g for

i = 1; : : : ; N such that s = b1 + : : :+ bN .
In other words, take an object out of some of

the bags in B such that the total weight be s.
In general (B; s) has no solution or, given a

solution exists, it is possibly not unique. Finding
a solution in general amounts to checking all the
di�erent sums, which is not feasible when the total
number of elements is large.

When applied to the case of student tests, Bi

will be the set of label numbers for the answers
of question i. Choosing bi 2 Bi means marking
the corresponding answer to question i and taking
bi = 0 corresponds to skip this question. This way,
determining the marked answers from the total s
implies the solving of a knapsack problem.

It is important to use a labeling family B for
which the knapsack problem has a unique solution,
for otherwise we would be unable to decide among
several test markings with the same sum. It is
also important that the teacher can easily solve the
problem whereas it must be di�cult for anyone else.
In the following two sections we consider how to
manage that.

Mixed-radix sequences. It is clearly true that
when

nX
i=1

maxBi < minBn+1; (1)

the knapsack problem has a unique solution (pro-
vided it exists) and moreover, it is really easy to
solve the problem by comparing s with the elements
of B1 [: : : [BN arranged in decreasing sequence.

Let us construct a such problem with a given
number of elements: Suppose we want Bi to have
ni elements for i = 1; : : : ; N . Take a sequence wi
recursively de�ned as

w1 = 1;
wi = (1 + ni�1)wi�1 for i = 2; : : : ; N .

(2)

and set Bi = fjwi j j = 1; : : : ; nig for i = 1; : : : ; N .
It is easy to show that this collection ful�lls condi-
tion (1). The sequence (wi) is called a mixed-radix

sequence2 for (ni). An algorithm for solving the
problem using (wi) will be given below.

Modular arithmetic. We say that integersm and
m0 are congruent modulo k (m � m0 (mod k)) if
and only if m � m0 is a multiple of k. Given m
a positive integer there is exactly one 0 � r < k
such that m � r (mod k). This number is the
remainder of the integer division of m by k and will
be denoted m mod k.

We will consider now other knapsack problems
related to equation (2). Take

k � (1 + nN)wN (3)

and 1 < v < k an integer coprime with k (i.e.,

gcd(v; k) = 1), and consider the problem for ~B =

f ~B1; : : : ; ~BNg where ~Bi = vBi mod k. Since the
map x 7! vx mod k is additive, it relates weights
and totals of (B; s) with the corresponding ones

of (~B; ~s). Therefore the new problem also has
the uniqueness property, albeit condition (1) is
not longer true. In fact modular multiplication
totally distorts the order relation of (1) making the
knapsack problem much more di�cult.

We will use just this kind of knapsack systems
to label the answers of the students sheets. Since,
given a sum, there is exactly one combination of
answers adding to this total. But, on the other
hand, not having the answer labels a clear order it
is not feasible to recover the answers from the sum.
Thus we can safely have a stack of answered sheets
on our desk with the students nosing around.

The problem is far easier for the teacher, since
she knows not only the sum ~s and v but also the
key k. To get the answers she has to:

1. Solve ~s � vs (mod k) for s. This implies
computing the multiplicative inverse �v of v
modulo k, namely a positive integer such that
v�v � 1 (mod k).

2. Find b1 : : : ; bn in the original problem for s.
Since this problem has a mixed-radix sequence
(w1; : : : ; wN) we can easily �nd the solution by
iterated integer division.

See below in the grading section for a description of
the algorithms used.

2 These sequences appear, for example, in the
old British monetary system and in the measure
of time [K]: To convert days, hours, minutes and
seconds from/to seconds, we consider the sequence
59, 59, 23 that gives w1 = 1, w2 = 60, w3 = 3600,
w4 = 86400.

312 TUGboat, Volume 17 (1996), No. 3

Preparing a test

To make a test, we write a �le foo.tex such as the
one in appendix B. We begin the �le with \input

knst.tex to load the macros and give commands
like \title or \date to complete the header. Now
we issue \plainversion to instruct TEX we are
in plain mode and then \test{hki} to begin the
exam. We choose the key k in the range of TEX
integers, its magnitude depending on the number
of questions per page wanted: the more questions
the larger the value (see the section on choosing
numbers). This number (to be kept private) allows
the encryption/decryption of the test. Now we give
the questions as follows

\qtn hquestion texti
\anw h1st option texti

\anw h2nd option texti
...

\endqtn

We mark each right answer using \Anw instead of
\anw. The package will display a warning if there
is no marked option or an error if there are many.
Remember that in the student versions, questions
(and answers inside questions) will be scrambled, so
avoid using expressions such `In the question above'.
However we can write `None of the above' options,
by using \fix. This command will keep following
options (inside the current question) in place.

Anyway, if we want to keep the question order
while scrambling answers we can put a \fixqtn

right after the \test command.
We can force a page break with \newpage

between \endqtn and the next \qtn. The �le ends
with \endtest.

Making student versions. Now we delete (or
comment out) \plainversion in foo.tex and pro-
vide a version number 1 < v < k by assigning v
to counter \verno before the \test command. I
suggest to take v large since that way the generated
label numbers appear as randomly chosen. As
stated before, k and v must be coprimes, otherwise
we will get an

Invalid stepper/version number

error. (See also the section on choosing numbers for
suggestions on how to take these.)

We are now in production mode. Each time we
run TEX on this modi�ed �le we obtain a student
test (version v). Instead of manually changing
\verno for each di�erent version of the test, we can
use \stepversion command as explained below.

The mechanism. In both plain and production
mode, the package computes the label numbers
of answers and uses vertical boxes to compose
questions and answers.

In plain mode (when \plainversion is issued),
label numbers are not displayed and v = 1 is
assumed. TEX keeps track of wi's, info about
questions, page breaks, and records all this stu� in
�le foo.ans (as \opts and \pagebot commands).

Note that a page break may occur by

� Key overow. As soon as wi > k, the page is
terminated in order to keep condition (3) true.
The question being processed will be placed in
the next page. In the log �le foo.log, this
condition is signaled by a `*' just before the
shipping of the page.
� Normal page completion. This is the result
of undisturbed TEX page builder. This case
includes forcing page breaks using \newpage.

In both cases TEX writes a \pagebot line in
foo.ans. This command will be used later in
production mode to determine the page breaks.
Each question generates a TEX \mark carrying the
question number i and corresponding wi. This
information is used to �ll the \pagebot and to
correct future overestimated wi's.

In production mode, the boxes containing ques-
tion and answer text are scrambled using the code
in [M]: Depending on the parity of a shift register
r questions/answers are appended or prepended to
the current list. We can use \SRset to set r.
The value r = 0 means no scrambling at all. In
this mode \newpage instructions are skipped, since
page breaking depends only on previously recorded
\pagebots.

The macro package deals with the following
�les:

� foo.dvi. In plain mode it contains the plain
version of the test with questions numbered
and correct options marked. In production
mode it contains a scrambled student test with
label numbers.
� foo.ans is generated at plain step and read on
production. It contains relevant information
for breaking pages and grading, such as the
key k and the detection factor d. For each
question it includes the number of options and
the position of the correct answer.
� foo.aux is an auxiliary �le generated by
\stepversion containing v and r assign-
ments. If we put \stepversion{hti} just
before \endtest, where 1 < t < k is an in-
teger coprime with k, TEX will step both the

TUGboat, Volume 17 (1996), No. 3 313

scrambler r and the current version number
by v t � v mod k, and then it will write
commands to set the new value of v and r in
foo.aux. This way, without having to change
foo.tex, each new TEX run will give a new test
with di�erent scrambling and version number.

To work like that, command \test in production
mode obtains the value of v as follows:

1. If \verno > 0 use this value as v; this branch
is taken when we set \verno by hand at the
beginning of the test;

2. Otherwise search for a �le named foo.aux and
expand it.

3. If this �le is not found, read command from
console. This option could be useful in envi-
ronments supporting pipes (like UNIX).

Grading exams

To grade an exam we have to collect the totals and
version number v. A program then computes the
multiplicative inverse �v modulo the key k and uses
it to decrypt totals and obtain the options that the
student chose.

I give now the algorithms to decode and grade
exams from the total and version number in the
awk language. The reasons are twofold: First,
this language is easily readable, and second, the
program really works without the hassle of declaring
variables, opening �les, etc. However, I do not
recommend this program for real life usage, because
it works with only one page (a total), and because
computations are done in oating point. In my
machine this means exact integer arithmetic if the
magnitude of the numbers involved is less than 231.
Thus we can run into a loss of precision when using
large keys and/or version numbers and, what is
worse, no noti�cation of that loss will be given.

For more serious usage, I have a C implementa-
tion which uses a Binary Extended Euclid Algorithm

to avoid multiplication of large numbers [C, page 18]
and it is not limited to a unique page. I intend to
submit it to the CTAN archives.

Decoding. Assume we have a data �le, with
lines containing version number v, total ~s and an
identi�er for each student.

38353 11073202 First student

2567 4672433 Second student
...

Concatenate foo.ans with the data �le and run
awk using the following code:

First initialize some variables

BEGIN {wa=1;nqn=0;}

Read instructions from the ans �le getting k, d and
computing wi using (2). The ans �le includes a
\Key line that gives k and the detection factor d
(columns 2 and 3):

/Key/ {key=$2; df=$3; next}

/pagebot/ {next} # ignore pagebot

It has also an \opts line for each question, which
describes the number of options, the index of the
correct answer, and the current value of wi at
the moment it was computed. Note that due to
di�erences between the point where wi is computed
and when the TEX page builder activates, the values
of the last column in an \opts line can be over-
valued; I use this column only to have a look at the
inner workings of the package. The true values of
wi are computed one at a time as follows

/opts/ {nqn++;w[$2]=wa; wa*=($3+1);

rb[$2]=$4; next}

On lines from the data �le, print the line and get v
and ~s. Using the Extended Euclid Algorithm as in
[K], [C], solve the equation

v�v + km = 1;

(it gives �v in u1)

{print $0; # print entire record

u1=1; u3=$1; v1=0; v3=key;

while(v3!=0) {

q=int(u3/v3);

t1=u1-v1*q;

t3=u3-v3*q;

u1=v1; u3=v3;

v1=t1; v3=t3;

}

if(u1<0) u1+=key;

The instructions ti ui � qvi are the critical ones:
If q and vi were large at some step, the result could
be wrong.

We have now to compute s = �v~s mod k where
~s is in column 2. It is not possible to do it by
straight multiplication since both �v and ~s are large,
so we proceed by converting �v to binary radix
and converting multiplications to iterative modular
sums in order to give the plain sum s in s:

for (i=0; u1>0; u1=int(u1/2))

bb[i++]=u1%2;

sp=($2/df)%key;

for (s=0;i>0;) {

s=(s+s)%key;

if (bb[--i]==1) s=(sp+s)%key;

}

314 TUGboat, Volume 17 (1996), No. 3

Now the quotients of iterate division by w1; : : : ; wn
will give the exam answers b1; : : : ; bn.

for(i=nqn;i>0;i--) {

b[i]=int(s/w[i]); # answer of qtn i

s%=w[i];

}

Comparing bi with the correct answer gives the
grade. Note that a null quotient means an unan-
swered question.

for(i=1;i<=nqn;i++) printf "%d ", b[i];

print ""; # new line

nra=0; nwa=0;

for(i=1;i<=nqn;i++) {

if (b[i]==0) # No answer

c=" ";

else

if (b[i]==rb[i]) {

c="+"; nra++ # Right

} else {

c="-"; nwa++ # Wrong

}

printf "%s ", c;

}

print ""; # new line

print nra,"right,",nwa,"wrong.";

}

Customizing

Style commands are grouped near the end of the
macro �le. They include

� \headline: the headline of each page in pro-
duction mode;
� \pheadline: the headline in plain mode;
� \footline and \pfootline: the same for
footlines;
� \qtnprompt: material to be put in front of
question in plain mode. Usually the question
number;
� \anwprompt expands to material that goes
before each option in production mode. Uses
\labelno which delivers the suitable label
number;
� \df: the detection factor d. Fine detection
factors are 7 or 13 (but not 4, 3 or 11) which
detect a lot of mistypings and transpositions;
� \preanwskip must expand to a vertical skip
between question and �rst option;
� \qtnskipmust expand to vertical skip between
questions.

Choosing numbers. Since wi's grow exponen-
tially (see (2)), we are usually forced to take k very

large but bounded by 231 (the greatest TEX integer),
thus limiting the number of questions per page. For
example, no more than 19 true/false questions �t
on a page. On the other hand, taking k near that
upper bound will cause us trouble when used in
combination with the \stepversion command. A
rule of thumb is: The product of the stepper t by
the key should already be a TEX integer, namely
tk < 231.

Besides k, we have to choose 1 < v < k coprime
with k. This is easy to manage simply by trying v
at random: In case v is not coprime with k, we will
get an

Invalid stepper/version number

error displayed on TEXing, so we have to try again. I
recommend to take v large, for otherwise the answer
labels of the initial questions appear in increasing
sequence, thus providing students with unwanted
clues on the setting and the key. A few experiments
will quickly familiarize us with the right procedure.

A way to get a good v at �rst try consists on
taking k free from low prime factors: From [S] we
see that, given k, the ratio of valid v's is �(k)=k
where �(k) stands for the Euler function. This
ratio depends mainly on 1 � 1=p where p is the
least prime factor of k. We can get both k and v
coprime and large by taking prime numbers3 and
multiplying them until we have a su�ciently large
k. Use the same procedure for v, but now take care
to not choose any of the primes used in k.

Final notes and hints.

� Bring a portable computer at the examination
room and grade exams ipso facto.

� Collect totals in a memory pocket calculator
and upload to the main computer later.

3 See [Ri1] or [Ri2] for a table of such numbers.

TUGboat, Volume 17 (1996), No. 3 315

� If your students have e-mail access, take the
exam and provide each student with a control
number depending on the total he gives. Ask
them to send you a message with the version
number, total and control. Process your mail
box to give a list of grades or write a program
for mailing back the grade to the originator.
� Using the dviconcat utility in mass production
can save you a lot of work. Instead of making a
bunch of dvi �les, use that tool to concatenate
all the versions into a big dvi. This way the
printer driver has to initialize only once.

References

[C] Henri Cohen, A Course in Computational Al-

gebraic Number Theory, Graduate Texts in
Mathematics. Springer (1993).

[D] Don De Smet, TEX Macros for Producing

Multiple-Choice Tests, TUGboat 12, 2 (1991).
[K] D. E. Knuth, Seminumerical Algorithms, Ad-

dison-Wesley (1981).
[M] Hans van der Meer, Random Bit Generator in

TEX, TUGboat 15, 1 (1994).
[Ri1] P. Ribenboim, The Book of Prime Number Rec-

ords, Springer.
[Ri2] P. Ribenboim, The Little Book of Big Primes,

Springer.
[Ro] Kenneth H. Rosen, Elementary Number Theory

and its Applications, Addison-Wesley (1993).
[S] Manfred R. Schroeder, Number Theory in Sci-

ence and Communication, Springer (1990).

� Jordi Saludes
Edi�ci de l'ETSEIT (TR5)
Colom, 11
08222 Terrassa, Spain
saludes@grec.upc.es

316 TUGboat, Volume 17 (1996), No. 3

Appendix A: Example

A test April 1995

Name: :

Each question has only one right answer. For each page, add the numbers at the left side of your answers and write the total
by the �. Divide the total by 7. If your addition is right, the quotient must be integer (But this does not mean that your
choices were correct). Do not forget to write down your name, but do not write anything else in the exam sheet.

Boolean question

2097123 � True;
4194246 � False

This question has a `�xed' option at the end.

4295536 � Not so well;
2147768 � This is the right option;
6443304 � Clearly wrong;
8591072 � None of the above.

Example question with a displayed equation Z
@S

! =

Z
S

d!:

1610826 � Option f;
1342355 � Option e;
805413 � Option c;
536942 � Option b (and right);

268471 � Option a;
1073884 � Option d;
1879297 � Option g;

Fuzzy question

6291369 � Quite true;
3941021 � Quite false;

Is this the last one?

1590673 � Who knows;
3181346 � Choose me;
4772019 � None of the above;
6362692 � All of the above.

Page 1. Version 38353. � = �=7 =

Appendix B: File foo.tex

\input knst.tex

\date{April 1995}

\title{A test}

\verno=38353\SRset{162521}

%%\plainversion

\test{1234531}

\qtn Example question with

a displayed equation

$$\int_{\partial S}\omega=

\int_S d\omega.$$

\anw Option a;

\Anw Option b (and right);

\anw Option c;

\anw Option d;

\anw Option e;

\anw Option f;

\anw Option g;

\endqtn

\qtn This question has

a `fixed' option at the end.

\Anw This is the right option;

\anw Not so well;

\anw Clearly wrong;

\fix\anw None of the above.

\endqtn

\qtn Boolean question

\anw True;

\Anw False

\endqtn

\qtn Fuzzy question

\Anw Quite true;

\anw Quite false;

\endqtn

\qtn Is this the last one?

\anw Who knows;

\anw Choose me;

\fix\Anw None of the above;

\anw All of the above.

\endqtn

%\stepversion{1243}

\endtest

Appendix C: The macros

%%% knapsack test macros.

\catcode`@=11

%% Shift Register

%% from H. van der Meer, TUB 15, 1

\newcount\@SR

\def\@SRconst{2097152}

\def\SRset#1{\global\@SR#1\relax}%

\def\@SRadvance{\bgroup

\ifnum\@SR<\@SRconst\relax

TUGboat, Volume 17 (1996), No. 3 317

\@A=0

\else\@A=1\fi

\ifodd\@SR

\advance\@A by1 \fi

\global\divide\@SR by2

\ifodd\@A

\global\advance\@SR\@SRconst\relax\fi

\egroup}

%% Arithmetic

\newcount\@A

\newcount\@B

\newcount\@C

\newcount\@x \@x=0\relax

\newcount\@y \@y=0\relax

\newcount\@w

\newcount\key

\newcount\df \df=1\relax

\def\qtnno{\the\@x\relax}

\def\inc@#1{\advance#1 by1\relax}

\def\mod@A#1{\@B=\@A \divide\@B by#1

\multiply\@B by#1

\advance\@A by-\@B\relax}

\def\gcd#1#2{{\@A=#1 \@C=#2

\loop\mod@A\@C

\ifnum\@A>0

\@B=\@C \@C=\@A \@A=\@B

\repeat

\ifnum\@C=1\else

\errmessage{Invalid stepper/version

number "#1"}\fi}}

\def\adv@w{{\inc@\@y

\global\multiply\@w by \@y}}

\def\labelno{{\@A=\@B

\mod@A\key\multiply\@A by\df \the\@A}}

%% Boxing and unboxing

\newtoks\pfootline

\newtoks\pheadline

\newbox\lqtn@bx

\newbox\lanw@bx

\newbox\canw@bx

\newbox\cqtn@bx

\def\new@page{\unvbox\lqtn@bx

\vfill\penalty-10000

\global\@w=\verno \adv@w}

\def\append@bx#1#2{%

\setbox#1=\vbox{\unvbox#1 #2}}

\def\prepend@bx#1#2{%

\setbox#1=\vbox{#2\unvbox#1}}

\def\add@anw{\@SRadvance

\iffix@anw

\global\append@bx{\lanw@bx}{\theanw}%

\else

\ifodd\@SR

\global\prepend@bx{\lanw@bx}{\theanw}%

\else

\global\append@bx{\lanw@bx}{\theanw}%

\fi\fi}

\def\add@qtn{\@SRadvance

\iffix@qtn

\global

\append@bx{\lqtn@bx}{\unvbox

\cqtn@bx}%

\else

\ifodd\@SR

\global

\prepend@bx{\lqtn@bx}{\unvbox

\cqtn@bx}%

\else

\global

\append@bx{\lqtn@bx}{\unvbox

\cqtn@bx}%

\fi\fi}

\def\fix{\global\fix@anwtrue\relax}

\def\fixqtn{\global\fix@qtntrue\relax}

\def\qtn{\global\inc@\@x

\@y=0 \@B=0

\ifplain\else

\ifnum\@x>\botqtn

\new@page\@next\fi\fi

\rightanw=0

\global\fix@anwfalse

\setbox\cqtn@bx=\vbox\bgroup

\noindent\qtn@pr}

\def\endqtn{\egroup\add@anw

\ifplain\ifnum\rightanw=0

\immediate\write16{There is no

option marked in question

\the\@x}\fi\fi

\setbox\cqtn@bx=\vbox{\box\cqtn@bx

\preanwskip\box\lanw@bx

\qtnskip}%

\adv@w\wr@anw

\ifplain

\ifnum\@w>\key

\message{*}\new@page\fi

\else

{\@A=\@w \mod@A\key \global\@w=\@A}\fi

\mark{\noexpand

\themark{\the\@x}{\the\@w}}

\message{.}\add@qtn}

\def\Anw{\ifnum\rightanw>0

\errmessage{There are several

options marked in question

\the\@x}\fi

\global\rightanw=\@y

\global\inc@\rightanw

\anw}

\def\anw{\egroup

\ifnum\@y=0\else

\add@anw\fi

\advance\@B by\@w\relax\inc@\@y

\setbox\canw@bx=\vtop\bgroup

\relax\noindent}

\newif\ifplain

\plainfalse

\newcount\verno \verno=0

318 TUGboat, Volume 17 (1996), No. 3

\newcount\rightanw

\newif\iffix@anw

\newif\iffix@qtn

\fix@qtnfalse

\let\read@line=\relax

\let\@read=\relax

\def\theanw{\hbox{\vrule

height10pt width\z@\relax

\anwprompt\ \box\canw@bx\hfill}}

\newcount\verno

\newwrite\anwfile

\newwrite\auxfile

\newdimen\labelw

\def\test#1{\key=#1

\setbox3=\hbox{\multiply\key by\df

\the\key}%

\labelw=\wd3\relax

\ifnum\verno<1\relax

\immediate

\openin\auxfile=\jobname.aux\relax

\read\auxfile to\@read \@read

\immediate\closein\auxfile\relax\fi

\gcd{\the\verno}{\the\key}

\@SRadvance

\global\@w=\verno

\header

\setbox\lqtn@bx=\vbox{}

\ifplain

\message{Plain version}\SRset{0}%

\global\@w=1

\else

\message{Version \the\verno}

\immediate

\openin\anwfile=\jobname.ans\relax

\fi\@next}

\def\endtest{%

\ifplain

\write\anwfile{\string

\Key\space\the\key\space

\the\df\space}%

\closeout\anwfile

\else

\closein\anwfile\fi

\unvbox\lqtn@bx\vfill\supereject\end}

\def\stepversion#1{\gcd{#1}{\the\key}%

\immediate

\openout\auxfile=\jobname.aux\relax

{\ifnum\@SR=0

\@SR=\@SRconst

\divide\@SR by3 \fi

\@SRadvance

\@A=\verno

\multiply\@A by#1\relax

\mod@A\key\relax

\immediate\write\auxfile{\string

\verno=\the\@A\space

\string\SRset{\the\@SR}}}%

\immediate\closeout\auxfile}

\def\plainversion{\plaintrue\verno=1

\let\newpage=\new@page

\def\wr@anw{\immediate

\write\anwfile{\string\opts

\space\the\@x\space\the\@y\space

\the\rightanw\space\the\@w\space}}

\immediate

\openout\anwfile=\jobname.ans\relax

\def\qtn@pr{\llap{\qtnprompt}}

\def\anwprompt{\hbox to\labelw{\hss

\ifnum\rightanw=\@y

\bullet\ \fi}}

\footline=\pfootline

\headline=\pheadline

\let\@next=\relax

\output={\botmark\plainoutput}

\def\add@qtn{\unvbox\cqtn@bx\penalty-50}}

\def\themark#1#2{\immediate

\write\anwfile{\string\pagebot

\space #1\space}%

\global\divide\@w by#2\relax}

\let\wr@anw=\relax

\let\qtn@pr=\relax

\def\@next{\read\anwfile to\@read

\@read}

\def\Key #1 #2 {\@next}

\def\opts #1 #2 #3 #4 {\@next}

\def\pagebot #1 {\def\botqtn{#1}}

\def\botqtn{1000}

\let\newpage=\relax

%% Style commands

\def\qtnprompt{\bf\qtnno.\ }

\pfootline={\hss

Plain version \dots\hss}

\pheadline={\ifnum\folio>1

TUGboat, Volume 17 (1996), No. 3 319

\thetitle\hss\folio\else\hss\fi}

\footline={Page \folio. Version

{\tt\the\verno}.

$\Sigma=$\hskip7em

$\Sigma/\the\df=$\hfill}

\def\date#1{\def\thedate{#1}}

\def\title#1{\def\thetitle{#1}}

\def\header{

\line{\bf\thetitle\hfill\thedate}%

\smallskip

\line{Name:\ \dotfill}%

\medskip

{\baselineskip=9pt

\noindent\small

Each question has

only one right answer.

For each page, add the numbers at

the left side of

your answers and write the total by

the Σ. Divide the total

by~\the\df. If your addition is right,

the quotient must be integer

(But this does not mean

that your choices were correct).

Do not forget to write down your name,

but do not write anything else in the

exam sheet.\par}

\medskip}

\df=7

\def\anwprompt{\hbox to\labelw{\it

\hss\labelno\ \diamond}}

\def\qtnskip{\vskip 20pt plus25pt }

\let\preanwskip=\smallskip

\font\small=cmr8

