JAVA and TEX

Timothy Murphy
School of Mathematics
Trinity College Dublin
Ireland
tim@maths.tcd.ie

Abstract

TEX and METAFONT, translated into JAVA and compiled with TYA, a public-
domain JIT compiler, run about 10 times more slowly than the same programs in
C (without TYA, they are 20 times slower). A year ago, they ran 50 times more
slowly. In a year’s time, perhaps using Sun’s new JIT compiler, it is reasonable
to assume that the factor will be down to 2 or 3.

At that point — bearing in mind the speed with which the speed of computers
is increasing — TEX-in-JAVA will be a perfectly plausible alternative to TEX-in-C;
and then we shall have to weigh its lack of pace against the several advantages
that JAVA has to offer, such as, portability, “netability”, modularity, threads,

and graphics.

Has TEX found its natural niche?

TEX has attained a complete monopoly of the math-
ematical market. (Are there still primitive people
somewhere in the world speaking eqn?) And as
mathematics continues its remorseless march to col-
onize new areas of knowledge, it carries TEX (like a
disease) with it.

At the same time, it must be admitted that TEX
has been less successful outside these areas than was
hoped for, say 10 years ago. Of course that is not
a disaster. According to Ken Thompson (creator of
UNIX), “a program should do one thing, and do it
well”, and it may be that mathematical typesetting
is the one thing that TEX does well, indeed superbly
well. It would be foolish to risk this in pursuit of
some universal role.

However, the cause is not necessarily lost. In
the author’s view, the solution does not lie in the
addition of yet more features to TEX/IWTEX — fea-
tures which all too often satisfy the needs of the
cognoscenti at the cost of complication for the new-
comer — but rather in a more rigorous analysis of
the TEX engine, and of the function and relation
of its parts. It is the author’s thesis that JAVA can
provide the stimulus to set such an analysis in train.

It should be emphasised that the author is
not suggesting—indeed, would be bitterly opposed
to—the creation of yet another “near-TEX”. The
only threat that TEX faces in the medium term is
fragmentation. All religions agree on one thing: that
the greatest danger comes from within. Today, none

of the schismatic versions of TEX (with the possible
exception of PDFTEX, which denies the accusation
of heresy) has a measurable share of the market; but
if NTS, let us say, were to gain the allegiance of 25%
of TEX users then the future of TEX —and NTS—
would be in doubt. (For a more sympathetic view of
NTS and other TEX extensions, see Knappen, 1995.)

The danger of such fragmentation can be seen
clearly in the failure of literate programming’ to ful-
fil the promise vested in it by Knuth (1992). The
proliferation of innumerable *WEB programs (and
one should include with these the KTEX doc sys-
tem) —each of them doubtless superior in some
aspect to Knuth’s original —far from leading to
widespread adoption of the literate programming
paradigm, has stifled it almost to death.

The JAVATEX project

Although the principal aim of this talk is to demon-
strate DviPdf, a TEX output driver written in JAVA,
it may be more useful in this written version to say
a little about the JAVATEX project of which DviPdf
is part. This project has two main thrusts:

1. To translate the classic .web files (tex.web,
mf.web, tangle.web, etc) into JAVA, using
web2java, a straightforward modification of the
standard web2c translator.

2. To develop output drivers—and other TEX
support programs—in JAVA, using the stan-
dard Knuth/Levy cweb, modified (slightly) to
output JAVA rather than C.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 307

Why Java? JAVA has several advantages over C
as a medium for TEX software.

Portability: In principle, a JAVA application — ex-
pressed as a number of communicating JAVA
classes—should work unchanged on all plat-
forms supporting JAVA, which means, in effect,
under every OS.

Netability: JAVA was designed with the Internet
in mind, and its adoption should allow TEX to
be integrated more easily into the Web.

Modularity: JAVA is object-oriented, allowing
classes to be shared by different programs, so
that, for example, all drivers can share the same
font manager and file server, and use the same
DVI reader, And one can define an abstract
generic driver, minimizing the size of actual
drivers.

More speculatively, although TEX and META-
FONT are large monolithic programs, they are
actually written in a modular style—almost
as though Knuth had JAVA in mind!—and it
should be relatively simple to “hive off” font
routines, for example, as a separate TeXFont
class, without modifying the essential code in
any way. Breaking up TEX (or METAFONT) in
this way into a number of co-operating classes
might mean that variations such as PDFTEX
and METAPOST could be implemented as rela-
tively small extensions of one or more of these
classes.

Graphics: The standard graphical interface built
into JAVA—but interpreted in the style of
the platform in use—should mean that the
same TEX viewer can function under UNIX,
MS-DOS and Mac. And this interface would
also offer a graphical alternative to the perhaps
old-fashioned text-based interface traditional to
TEX.

Threads: There are some advantages in running
the different parts of a program as separate
threads. For example, a font server can “sleep”
until a font is requested; in an integrated sys-
tem it may serve more than one program or
even more than one user. By running TgX
and friends as “threads”, last-minute changes
(as, for example, changing the sizes of arrays)
can be implemented before the thread starts,
and a program can pause while some interme-
diate task is performed, before resuming where
it left off.

But JAVA is so slo ...
its charm!

ow? But that is part of

DVI interface

DVIin DVIreader PDF out

DVIdevice

Figure 1: Anatomy of a driver

What is this world if, full of care
We have no time to stand and stare.

William Henry Davies (1870-1940)

At least things are getting better — three years
ago, JAVA was 50 times as slow as C. Today, it is
only five times as slow (with JIT compiler). Hope-
fully, this ratio will slowly approach a limiting value
between two and three.

Sadly, Sun’s long-awaited HotSpot compiler —
now available (free of charge) on several platforms
(Sun Microsystems, 1999) — failed signally to fulfil
its promise that it would make JAVA applications
run as fast as those in C++. It turns out to be
little better than other JIT compilers.

A TEX output driver

Although we have chosen to illustrate our talk

with DVIPDF — translating DVI input into PDF out-

put—most of the code is common to all our TEX
output drivers. The program is divided into seven

parts (Figure 1):

The DviReader: This reads the DVI document,
and translates the DVI commands into ‘mes-
sages’, as specified by

The DVI interface: This provides a “cordon san-
itaire” between the DviReader and the driver
proper.

The DviDevice: All output drivers share a great
deal of functionality. For example, all treat
fonts in much the same way. JAVA allows
us to define a generic, or abstract, driver —
DviDevice — containing this shared code. This
abstract driver implements DVI; that is to say,
it provides methods responding to the messages

308 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

sent by the DviReader, as specified by the DVI
interface.

The DviPdf driver: Several of the methods pro-
vided by the generic driver DviDevice are
empty; it is left to each concrete driver —such
as DviPdf —which “extends DviDevice” to
provide proper methods in these cases.

TeXFont: From TEX’s point of view, all fonts look
much the same. We express this by defining
an abstract TeXFont class. Each font type—
.pk fonts, Type 1 or Type 3 PostScript fonts,
.tfm font descriptors, virtual fonts, etc— ex-
tends this class by adding its own particulari-
ties.

TeXFile: This is our “file manager”, a highly sim-
plified analogue of kpathsea. In effect, it uses
JAVA’s Hashtable class to construct a database
of the TEXMF tree (or trees).!

The PDF classes: PDF— Adobe’s anointed succes-
sor to PostScript —is object oriented, and thus
particularly well-suited to JAVA.

Fortunately, there is an excellent library of
JAVA classes—the pj library from Etymon
Systems (1999), freely available with source—
for reading and writing PDF files. Each kind of
PDF object—font, page, etc—is represented
by a pj class, with methods appropriate to that
object.

In effect, the job of DVIPDF is simply to build
up a PDF object; it can then be left to the pj
classes to present that object to the world.

The DVI interface. The JAVA interface provides
an exemplary tool for dissecting an application (i.e.
a program) into independent parts which commu-
nicate according to the strict protocol laid down in
the interface definition.

The DVI interface specifies 15 kinds of “mes-
sages”. Any driver that implements DVI must pro-
vide 15 methods for responding to these messages.
Since the definition of the interface is short and
sweet, we give it in its entirety:

public interface DVI {

void moveRight(int dh);
void moveDown(int dv);

void moveTo(int h, int v);

void defineFont(int f, int checkSum,

L Am I alone in finding kpathsea excessively complex?
The bureaucracy of TDS (the TEX Directory Structure) seems
to me entirely misplaced. Surely the computer was designed
precisely to relieve us of such tedious (pun intended) tasks?
Does it really matter if .tfms and .pks and .stys find them-
selves in the same bed?

JAVA and TEX

int scaledSize, int designSize,
String area, String name);
boolean setFont(int f);
int setChar(int c);
void putChar(int c);
void setRule(int wd, int ht);
void putRule(int wd, int ht);

void special(String message) ;

void bop(int count[]);
void eop();

void preamble(int numerator,
int denominator, int mag,
String comment) ;
void postamble(int tallestPage,
int widestPage, int maxStackDepth,
int noOfPages);

DataIlnputStream dviStream(int c);

}

All these methods (except the last) will be more or
less self-explanatory to those familiar with the DVI
format.

The first two “motion methods”, moveRight ()
and moveDown (), describe relative motion, while the
third, moveTo (), is absolute.

We note that while communication is primar-
ily from the DviReader towards the “front end” of
the driver, information can be passed back through
the return value of the function or method. Thus
setChar () returns the width of the character (which
is all the DviReader needs to know about it), while
setFont () returns true or false according as the
font is wirtual or real.

The last method, dviStream(), is the only one
which is not immediately suggested by the DVI for-
mat. It is required to implement virtual fonts. A
virtual character —that is, a character in a virtual
font — consists of a fragment of DVI code, which
must be integrated into the DVI document proper.
In effect the input stream must be temporarily di-
verted to the sequence of DVI commands constitut-
ing that character.

The DviReader knows if the current font is vir-
tual, from the return value of the last setFont ().
If that is so then every character encountered until
the next setFont () is virtual. After reading such a
character, say character number ¢, the DviReader
sends the dviStream(c) message to the device,
which consults the appropriate font and points the
reader to the new stream. (We use here the nice
property of JAVA, that it can treat information in a
file, and in a string, on the same footing.)

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 309

Virtual fonts and superfonts. A virtual font
contains a number of local fonts. These are normally
real fonts, but in principle they could themselves be
virtual fonts.

This recursive potential of virtual fonts does not
seem to have been exploited. It means in effect that
the fonts in a TEX document form a tree, the leaves
of which are real fonts, while the internal nodes are
virtual fonts.

It is a natural step to connect the set of
fonts by introducing a superFont, of which the top-
level fonts— those actually named in the DVI docu-
ment —are local fonts.

Recall that a virtual character is a fragment
of DVI code. This suggests that we might regard
the DVI document itself as a character —let us say
character 0—in the superFont.

It is amusing to take this conceit a little further.
Different DVI documents could be characters 1, 2, 3,

., in the same superfont. Moreover, the super-
font could itself be a local font in a super-superfont,
which could itself A whole library of TEX doc-
uments might be organised in this way.

Tools

It is an essential feature of the JAVATEX project that
all code in the package is written in Knuth/Levy
cweb format, slightly modified (as described below)
to output JAVA rather than C.

Thus the DviPdf driver is encoded in the files
DVI.w, DviDevice.w, TeXFile.w, TeXFont.w, etc.
(By convention, cweb source files carry the extension
.w, to distinguish them from the classic PASCAL-
based WEB files, which carry the extension .web.)

As mentioned earlier, the JAVATEX project also
encompasses the translation of Knuth’s classic WEB
programs into JAVA, using web2java, a develop-
ment —in some ways, a simplification — of web2c,
the core program in the UNIXTEX implementation
of TEX and its relations.

As an exercise, we base our DviReader on
dvitype.web, which Knuth provided as a model for
drivers. Thus DviReader is defined by a change
file DviReader.ch to dvitype.web. The resulting
PAscAL file DviReader.p is then translated into
DviReader. java by web2java.

We end this note with a necessarily brief de-
scription of these basic JAVATEX tools.

Cweb for JAVA. Knuth’s original web format was
tied to PAscAL. Later Knuth and Levy devel-
oped cweb to provide output in C. Since JAVA is
a dialect of C, cweb only requires minor modifica-
tions to output JAVA. These are contained in the

change files ctang-java.ch, cweav-java.ch and
comm-java.ch. If ctangle and cweave are com-
piled with these change files (as, for example, by
modifying the cweb Makefile by changing the line
TCHANGES= to TCHANGES=ctang-java.ch, and sim-
ilarly for WCHANGES and CCHANGES). then the +j
switch? can be used to output JAVA:

% ctangle +j DVI.w

produces the file DVI. java, which can then be com-
piled in the usual way

% javac DVI.java

On the other hand, the documentation is produced
by
% cweave +j DVI.w

creating the IATEX file DVI.tex, which can then be
processed in the usual way

% latex DVI
% xdvi DVI
% dvips DVI

Ctangle. In passing from web to cweb, Knuth and
Levy dispensed with the macro feature @d, on the
grounds that its functionality was more than ade-
quately provided by C’s #define.

However, JAVA in turn has dispensed with
#define, so it seemed useful to transplant back this
lost feature from tangle to ctangle. Fortunately,
this turned out to be relatively simple since the am-
putation had been crude and the stumps remained.
This allows us, for example, to say in DVI.w (and
elsewhere)

@d DviUnit == int
and then
void moveRight(DviUnit dh);

This clarifies the code and also makes it simpler to
change the type of DviUnit if that should prove de-
sirable.

Cweave. The changes to cweave, although more
trivial, proved surprisingly tricky. The problem is
that cweave (like weave) is based on a table of “pro-
ductions” —a kind of pseudo-syntax which allows
scraps of code to be “reduced”. It turned out that
JAVA required some five new production rules to add
to the 100 or so rules for C ...

‘Web2java. Web2java— like web2c —is a post-pro-
cessor to tangle. To create foo. java from foo.web
and foo.ch one first runs tangle:

tangle foo.web foo.ch

2 The use of + rather than - as a prefix for switches is a
feature of cweb.

310 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

This creates the PASCAL (or pseudo-Pascar) file
tangle.p (or tangle.pas on some systems).> Class
files are machine-independent — provided “native
methods” are eschewed, and care taken to avoid
such OS-specific idioms as ‘\n’ for end-of-line, rather
than JAVA’s ‘line.separator’—so tangle.class
from the JAVATEX distribution should run on any
system. Note that this file, like all JAVATEX pro-
grams, is defined to be in the javaTeX package,
and so must be placed in a subdirectory called
javaTeX relative to the CLASSPATH. Note too that
JAVA refers to this class as javaTeX.tangle, rather
than javaTeX/tangle, as one might expect.

This file is then passed through web2java to
create foo. java:

tangle
foo.web + foo.ch ———— foo.p

web2java .
—— > foo. java.
Actually, this is a slight oversimplification. The file
common .defines is prepended to foo.p before pass-
ing through web2java:

web2java
_—

common.defines + foo.p foo. java.

All this is completely analagous to web2c, except
that we are able to dispense with the post-processor
fixwrites, for JAVA I/O contains nothing as exotic
as C’s printf.

The filter web2java is created by the programs
flex and bison (or lex and yacc) from the files
web2java.l and web2java.y. This is completely
analagous to web2c. The lex/flex file web2java.l
is the same as web2c .1, with the addition of a small
number of new tokens: new, try, catch, throw,
throws, etc. The syntax description in web2java.y
has rather more changes, compared with web2c.y.

On the plus side, since JAVA has no pointers all
the pointer-related material has been deleted. There
is no attempt to determine if a function argument
is “formal var” or not; and no need, therefore, to
re-name functions with such arguments.

On the other hand, the introduction of class
and object tokens necessarily adds to the number
of rules in web2java.y. Thus variables and func-
tions can be preceded by a CLASSIFIER, consisting
of a (possibly empty) sequence of class_id_toks
and object_id_toks followed by periods (‘.’s). For
those familiar with web2c, a short excerpt from
web2java.y should give the idea:

CLASSIFIER:
/* empty */

3 If you like driving in the slow lane, you could run
the JAVA tangle instead: java javaTeX.tangle foo.web
foo.ch.

JAVA and TEX

| CLASSIFIER class_id_tok ’.°
{
my_output (last_id) ;
my_output(".");

}
| CLASSIFIER SIMPLE_QOBJECT °.°
{
my_output(".");
}

SIMPLE_OBJECT:
object_id_tok
{
my_output (last_id);
}
VAR_DESIG_LIST
| object_id_tok
{
my_output (last_id);
}

But for the most part translating WEB to JAVA
is, if anything, simpler than WEB to C. One apparent
difficulty is the lack of a pre-processor in JAVA, since
web2c leaves a good deal of work to cpp. This means
that more must be done in the change file, which
is probably A Good Thing. The three main issues
which arise are:

e the absence of gotos in JAVA

e the lack of typedefs in JAVA

e input/output
These are discussed briefly in the following three
subsections.
Removing gotos. Java has no goto; in compen-
sation, it allows break and continue statements to
carry a label, as in break 1lab21 or continue lab3,
for example. The corresponding labels must appear
at the beginning of the loop in question. (A break
label can also be attached to a switch statement,
but we make no use of that.) If a break or continue
statement has no label, it is understood to refer to
the smallest loop (or switch) enclosing the state-
ment. Thus, labelling is only required in the case
of nested loops or switches.

Fortunately, Knuth has followed a strict pro-
tocol in the classic WEB files. Raw gotos (as in
goto 40) very rarely appear. In almost all cases
a label is used, as in goto found, where found has
earlier been defined as

@d found=40
In effect, the gotos are divided into a small number

of cases, according to their function. By far the most
frequent of these cases are: goto break to break out

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 311

of a loop, goto continue to continue around a loop,
and return to return from a routine.

This protocol allows most gotos to be pro-
cessed automatically. Thus goto break is trans-
lated as break and goto continue as continue,
while return is translated as return (with the ap-
propriate value in the case of a function).

However, in perhaps a third of the gotos, la-
bels must be inserted by hand, for example, as a
break out of an outer loop. Note that in such a
case the label in the WEB file is almost certainly in
the wrong place, for, by Knuth’s convention, break
means “break to the end of the loop” while JAVA
requires the label to appear at the start of the loop.
web2java takes advantage of this by deleting the la-
bel from a break or continue statement unless that
label has already appeared (in the current routine)
before the statement.

Of course a goto may not go to the beginning
or end of a loop; in that case a new “artificial” loop
must be inserted, with a break at the end to ensure
that it is only traversed once.

All this is rather messy and could probably be

automated to a much greater extent. At least some
checks have been introduced in web2java.y, to ver-
ify as far as possible that the new code has the same
effect as the old.
Type definitions. There are no typedefs in Java.
In theory one could replace typedefs by class defini-
tions but that would add considerable complication
to the code. Instead, we simply change them to
substitutions (as though in C changing typedefs to
#define’s). So, for example, we make the change

0x

O<Types...0>=
@!ASCII_code=0..255;
ey

@d ASCII_code==0..255
0z

Later web2java will replace this range 0..255 by
an appropriate type (currently int). This entails
some changes in web2java.y, to allow ranges for
procedure and function parameters such as:

procedure p(x:0..255);

Presently all ranges are replaced by int, since Java
is rather strict about type conversion, and requires
casting where C does not.

Input/Output. JAVA I/O is much closer to PAs-
CAL syntax than is C. Thus

write_ln(term_out, ’value is ’, v);
in PASCAL becomes

System.out.println("value is " + v);

in JAVA. This allows us to incorporate I/O into
web2java.y, dispensing with the fixwrites post-
processor required by web2c.

The only unusual feature of JAVA I/0 is that
most I/O statements must be contained in a try
statement, which in turn must be followed by a
catch statement to catch any I/O ‘errors’. How-
ever, this is perfectly straightforward, as may be il-
lustrated by an I/O function from DviReader. ch:

function signed_pair:integer;

{returns the next two bytes, signed}

var a,Q@'b:eight_bits;

begin a:=0; b:=0;

try begin a:=dvi_file.readByte;

b:=dvi_file.readUnsignedByte; end;

catch (ex: IOException) begin

EOF_dvi_file:=true; end;

if EOF_dvi_file then signed_pair:=0

else begin cur_loc:=cur_loc+2;

signed_pair:=a*256+b; end;

end;

Conclusion

Hopefully, this all-too-brief tour has given some
taste of the JAVATEX project. All comments, contri-
butions and suggestions will be gratefully received.

The project (and all its parts) is freely avail-
able (Murphy, 1999). For simplicity it is published
subject to the GNU GPL Licence, Essentially this
allows the work to be freely copied and used, pro-
vided the original files DVI.w, etc, are made avail-
able. Changes should preferably be made through
change files, e.g., DVI.ch.

References

Etymon Systems. “Java software for parsing, ma-
nipulating, and creating Adobe PDF file”. http:
//www.etymon.com/pj/, 1999.

Knappen, Borg. “NTS-FAQ”. CTAN/info/NTS-FAQ,
1995. (In these references, CTAN denotes any of
the CTAN sites, eg ftp://ftp.tex.ac.uk/pub/
tex or ftp://ftp.dante.de/pub/tex).

Knuth, Donald E. Literate Programming. CSLI,
Stanford, 1992.

Murphy, Timothy. “The JAVATEX project”.
http://wuw.maths.tcd.ie/ tim/javaTeX,
1999. Also available from CTAN/systems/java/

javatex.
Sun Microsystems. “Java HotSpot Performance
Engine”. http://java.sun.com/products/

hotspot/, 1999.

312 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

