
A few words on magnification: If you have a
T)iJC document that does not mention any 'true'
dimensions, then if you change just its w i f y
statement, the .DVI Ale produced by will
change in just one place--the word in the pot+
tamble that records the requested magnification.
The idea is that any spooler that reads the .DVI
file will multiply dl dimensions in the .DVI file by
the magnification, thus the default magnification in
the .DVI file may be easily overridden a t spooling
time. So, if the document specifies \msgnify{1200),
a \vskip 34cm will be recorded in the .DVI file
as .34 X lo7 rsu's of white space, but the spooler
will multipy this by 1.2, making 40.8 centimeters of
white space on output. If the user tells the spooler
to use a magnification of 1000 rather than the 1200
in the .DVI file, then the output will have 34cm
of white space. If a dimension in the document is
specified as being 'true', then 'l&X divides the dis-
tance specified by the prevailing magnification, so
that when a spooler looks at the . DVI file and mul-
tiplies by the magnification, it gets back the original
dietance. So, if we \vskip 24truecm while the
magnification is 1200, 'QX puts out . DVI commands
that specifies 20 centimeters of white space. An out-
put spooler that reads this .DVi file then puts 20 X

1.2 = 24cm of white space on its output. Of course,
'true' dimensions will come out 'false' if the spooler
is told to override the magnification.

Font magnification goes one step further. Assume
for a moment that the overall magnification is 1000.
Now, if a '&X job specifies \font A=ClIIRlO a t
lSpt, say, that font's magnification is recorded as
1500 in its font definition. When a spooler reads this
.DVI file, it will try to use the file CWlO. 150VNT (or
CYR10.150ANT, depending on the device), which is
just like CNR10. IOOVNT, but the dimensions of all its
characters were multiplied by 1.5 before they were
digitized. An uppercase 'W' in CMRlO is lOpt wide,
but CMR10 at 15pt has a 15pt wide 'W', so after
VERTCHAR87 is seen, horirontal coordinate is in-
creased by (15pt) X (254000rsu/72:27pt). Overall
xmgndication is taken into account after all other
calculations; for example, at magnification 1200 the
font CURIO. l2OVNT would be used. Note that if the
user had asked for c m r l O a t 15truept, the factors
would cancel out so that CWlO. 150VNT would be
the font chosen regardless of magnification. The
magnification factor is given times 100 in the font
file name so that roundoff e m due to several mul-
tiplications will not d e e f the search for a font with
characters of the right si~e. This convention about
font file names is merely a suggestion, of course, it
is not part of the . DVI format per se.

TUGboat, Volume 2, No. 2

Appendix: Cornpariaon between m i o n 0
and version 1.

Note that . DVI files have an ID byte at the end
of the postamble, which tells what version they are.
The changes since version 0 are:

DVl files now use the upper bits in a word
on maehines whose word size isn't evenly divisible
by 8. The BOP command has ten \counter
parameters. The size of rsu's has changed to be
10-7meter. The postamble has changed to include
overall magnification as well as a fraction that al-
lows use of non-rsu dimensions. Font checksum and
magnification are new, as is the convention about
default directory name. Font descriptions in the
postamble give the length of font names rather than
delimiting them with a quoting character; The old
zero ID byte is now a one.

Some ideas for version 2.
Although 1990 is still a ways off, we are currently

expecting that version 2 of .DVI files wiU differ in
the following ways:

The ID byte will be 2. The q bytes of the poe-
tamble will be preceded by 's[2Iy where s is the
maximum stack depth (excess of pushes over pops)
needed to process this file.

SOME FEEDBACK FROM PTEX
rNSTAtLATION8

Ignacio Zabala

The Pascal version of 'QijX was designed and writ-
ten with the intent to generate a transportable pro-
gram. Nevertheless, given the characteristics of the

'&jX system, some special assumptions had to be
made about the Pascal environment in which P T M
was to be installed. Essentially, the requirements
are:

- The system should have enough addressable
memory to store the large arrays employed by
PTEX (about 128K words of 32 bits).

- The compiler should be able to really pack
fields of a PACKED RECORD and overlap multiple
variants of packed records. If this requisite is
not satisfied, PTEX will require at least four
times as much memory.

- The compiler should be able to handle large
case statements (say over 64 actual caees in a
range [-500..500]) and have a default case (this
is non-staddard in Pascal but available in moat

compilers).

TUGboat, Volume 2, No. 2

Additionally, PTEX requires an mERNAL (or
separate) compilation facility, If no such thing is
available, the SYSDEP module has to be inserted
both in '&jX and in TEXPRE by hand. Am, if
there is no compile time variable initialisation, the
INITPROCEDURE appearing in the program has to be
changed into an ordinary procedure.

Even though we tried to avoid it, the fact that
PTEX was developed and debugged on a PDP-10
with Hamburg Pascal influenced the way the pro-
gram was coded and documented. This compiler
was often permissive in the same way as other lan-
guages of common use in Stanford (SA.IL). Only
feedback from other installations can help us im-
prove the transportability of the program.

We have been lucky in receiving information from
people who really worked on (and reported) both
errors in the program and incompatibilities in the
compilers.

The following are some of the problems that other
compilers have had with the system. As said, it is
o h n the case that the difficulty is due to the per-
missiveness of our Pascal, and not to the installa-
tion's compiler:

- Source must be all uppercase. (CD Cyber)
- Tab characters not allowed in the source.

(P8000)
- Identifiers should be different in the first 8

characters. (VS, UW, P8000)
- Identifiers longer than 15 characters will not be

accepted. 0
- No octal ("20bn) notation. (VS, P8000)
- AII declared labels must be used. (VAX, VS,

UW)
- Can't take large procedures. (VS, UW, P8000)
- Can't take large arrays. (MULTICS)
- No standard MAX &d YIN functions. (P8000)
- Cannot take fields of packed records as actual

parameters. (VM, VS)
- Argument to PACK must be of type array (it's

not enough that it evaluates to array). (VS)
- Loop counters must be local variables. (VS)
- Labeis and gotos must be local to same block:

cannot go to a label inside the else part of an
i f statement from inside the body of the true
branch. (VS)

- No nestzd WITH statements allowed. (UW)
- Requires ENVIRONMENT modules for external

linkage. (UW)
- Variables must be initialized before their use.
They are not cleared by default. (VS)

- No GOT0 labels in enclosing procedures. (UW)
- NO I N 1 'PROCEDURE. (VAX, UW, MULTICS)

- Can't take large CASE statements. (W)

- NO EXlERN procedures. (P8000)
- Instead of OTHERS: the default case of CAGE

statements is:
ELSE: (P8000)
OTHERWISE: (VAX, CD Cyber)
OTHERWISE (UW)
None (MULTICS, SUNY)

- Can't pack memoryword properly. (CD Cyber)

- In packed records, elements defined of type
0..255 or 0..65535 are stored in whole 32 bit
words. Records are assigned to length of the
longest freevariant possible. (P8000)

All reports have received due attention. Currently,
the code is all uppercase in lines that are never
longer than 72 characters. All identifiers are shorter
than 16 characters and differ in the first 8 charac-
ters. Octal variables appear only in the module that
contains the system dependencies.

Two more particularly interesting problems are
worth mentioning here.

Eagle Berns, while running PTEX with PASCAL-
VS, detected a case statement for which no default
had been provided, and whose switch variable was
out of range. Intendedly, execution should have
resumed after the case statement and that is what
Hamburg Pascal did. PASCAL-VS signalled an er-
ror. Unfortunately, this situation is left undefined
in the Pascal report.

Bill Kelly, using UW Pascal, detected trouble
in the statement pagemem Ecurcharl: =scanlength;
The function scanlength has the side-efl't of
changing curchar. UW Pascal (as opposed to

Hamburg Pascal) does not evaluate subscripts on the
left side of the assignment until the right side has
been evaluated.

The original SAIL program assumed that vari- .
ables would be implicitly initialized to 0, and the as-

sumption was still valid for our Pascal. Much work
had to be put into initializing everything before its
Use.

Below, we present a synthesis of some of the
reports that have been most helpful in our project.

MOORE SCHOOL: UNIVAC SEMES 90 - PASCAL
8000 (GEORGE OTTO)

Pascal 8000/1.2 does not accept numbers like
lOOB or 400000B. These numbers must be changed
to the appropriate integer or real form.

Pascal 8000/1.2 does not support EXTERN prom
dures and functions because of the internal loader.

Pascal 8000/1.2 uses &E: for the default case
of CASE statements. (Not OTHERS: like Hamburg
Pmcal).

Tab characters not allowed in source.

Our Pascal must uniquely distinguish between all
identifiers in the first 8 characters. Longer identifiers
can be used, but only the first 8 characters of them
are significant!

At the moment we are having trouble writing
a tape from our EBCDIC machine to be read by
Wharton's ASCII machine, to be sent to you over
the net.

No standard bUX and M I N functions.
Pmcd 8000/1.2 has a problem recognising

10000000000.0 as a real. The fix is to use 1.OEl0,
instead.
Pascal 8000/1.2 sfores elements defined 0..255

and 0..65535 in 32 bit woi-ds. Rewrds are as-

signed to length of the longest freevariant possible.
Therefore, the memory structures of will not
work as is.

U. OF MINNESOTA: CD CYBEH (MIKE FRISCH)
- Everything must be uppercase
- Can't pack memoryword properly (this is bad)
- Had to replace OTHERS: by OTHERWISE:

JET PROPULSION LAB: UNnfAC 1100/81 - U
WISCONSIN PASCAL (CHARLES LAWSON)

- This compiler employs environment modules
(CD made one containing outer block TYPE and
EXTERNAL procedure declarations)

- Found inconsistent definition and use of
ReadFontInf o arguments.

- Changed INITPROCEDURE to ordinary proce-
dure, and deIeted empty block at end of
SYSDEP.

- Changed OTHERS: to OTHERWISE.
- Changed type of brchar, from INTEGER to

AsciiCode.
- This compiler does not allow GOT0 labels in

enclosing procedhres: in qui t changed GOT0
100 by a comment.

- Deleted unused labels.
- Found nested WITH curinput in getnext.(twice)

MULTICS: BENSON MARGULIES
The compiler dislikes the construction

INITPROCEDURE. There is an array that is claimed
to be too big. (May be solvable.) Impossible to
deal with the need for an OTHERWISE statement,
which the compiler does not provide. The filename
interface of PTEX is still basically PDPlO oriented.
For a machine without a fixed number of "channels"
the l3e opening interface ia problematic, requiring
the establishment of an arbitrary limit.

U OF WISCONSIN: W A C 1100/82 - U OF
WISCONSIN PASCAL (BILL KELLY)

A major problem in converting QjK for the 1100
has been the differing methods of external cornpila-

TUGboat, Volume 2, No. 2

tion. In UW Pascal, all global declarations, includ-
ing procedure and function heads must be included
in an "environment modulen.

It would be helpful if the same names were used
for the same types in both 'I)$ and SYSDEP. When
we received w, a type might be caned packed-

hyphenbit in one and pckdhyphbits in the other.
Our compiler does not accept identically defined but
differently named types as identical in procedure
parameters.

I was a bit confused by the INITPROCEWRE busi-
ness at first. the documentation ought to say a bit
more about this: namely, that that syntax allows
compile-time initialisation on your compiler, that
it should be changed into a procedure in compilers
without this feature, and where it should be called
in l&X and TEXPRE.

We have a problem in the compiler with large
case statements. It does not handle statements with
a large number of cases, and the case statement in
maincontrol gave some problems with this. There
isn't a fixed limit in the compiler, but I broke the
case statement in two, and the compiler had no
problem.

The sheer size of 'Q?C has given us some prob-
lems. The UWAC's instruction set includes many
instructions with a 16-bit address field that can only
address 64K of data. The data area for QJC runs
to something like 71K for us, and we had to cut
mem down from 32K to 25K to get the compiler to
accept it. This would have been easier if a Pascal
version of UNDOC were available, or if UNDOC had
left memsize as a named Pascal constant instead
of reducing it to 32767, and memsize-1 to 32766,
etc. I had to go through with a text editor and
locate d l references to 32767 and 32766 and deter-
mine by comparing the Pascal listings against the
printed listings whether these were actually ref-
erences to memsize. I seem to have gotten them d l
because we haven't had subscript out of range errors,
but it did mean that all the memory reduction was
from the higher end of mem which is probably not
optimal. We occasionally run into SEX capacity
exceeded: memsize=25000". I didn't try to alter
the other memory parameters l i e varsize because
there were so many instances of varsize+l and such
that would have been dected.

We ran into another interesting problem: on a
UNNAC, a person typing at a terminal can type
"8eofn and his terminal input is considered to have
reached an end of file. This concept doesn't exist
on most systems, ao it wasn't considered in 'QJC
Basically, if a person types "Oeof", I artificially

return "\ends' to 'Q$, but this doesn't always work.

TUGboat, Volume 2, No. 2

I need to do more work on thie. If .this dec ts other
sites this is something you might want to look into.

W A : PDP-10 - HAMBURG PASCAL
(BILL SCHERLIS)

(1) Some changes in the code were required in or-
der for compilation to succeed here. In particular,
the local compiler uses different conventions for PACK
and UNPACK has different switches, and does not
want a PROGRAM statement. Also, a main program
body is not required in a file for separately compiled
procedures. These changes were all fairly minor.

(2) The compiler here is not friendly to inter-
procedural GOTOs, so these were eliminated by add-
ing a new WrapUp procedure. (See the labels
endOfTEX and FinalEnd in m.) Again, this was
straightforward.

(3) Some new features were added to the lo-
cal compiler (by Andy Hisgen) to support ASCII
files and False-starts. FILE OF ASCII does the
expected thing here, except the conventions for
RESETing the terminal are somewhat different.
FalseStart is like the MACLISP SUSPEND opera-
tion: If a Pascal program calls Falsestart , then
execution is suspended and the program may be
SAVEd. When this core image is STARTed up, ex-
ecution will resume at the FalseStart call. I added
such a call to our copy of TEXPAS just before the
call to InitSysDep.

(4) The installation documentation was reason-
able, though it could be a bit more detailed in
certain areas. Examples: expected problems, the
symptoms of various bugs (e.g., not reading the
STREM file), some remarks on the control structure
of W'...

(5) Testing here has been a bit skimpy, since I
can't easily get hardcopy output.

(6) Some hacking still remains: I haven't touched
AppendtoName yet, but I expect no problems here.

Andy Hisgen suggests changing the procedure er-
ror so that ordinary letters are used ins@ of CR
and LF. Thus, the help message becomes something
like:
Type c or C to continue,

f or F t o flash error messages,
1 or . . . or 9 to dismiss the next 1 to 9

tokens of input,
i or I to insert something, x or X to quit.

instead of
Type <cr> to continue,
<lf> to f lash error messages,
1 or . . . or 9 to dismiss the next 1 to 9

tokens of input.
i or I t o insert something, x or to quit.

because having a message like this implies that the

hoat operating system will let the user type in both
CR and LF and that it will distinguish between

them. Some systems do nbt do this, either because
they don't permit it at all, or because i t ie not the
normal way of doing things on that syatem. Unix,
for example, seems to turn both CR and LF into
LF. This problem cannot just be smoothed over
in SYSDEP.PAS, because the help mesaage above
occurs in TEXPAS and because the procedure enor
in TEX.PAS is the one which actually fondles the
character8 to see if we got a CR or LF.

PRINCETON PLASMA PHYSICS LAB:
PDP-10 - HAMBURG PASCAL &
VERSATEC OUTPUT (PHIL ANDREWS)

This is about the first thing I, or anyone else here,'
have done in Pascal and I had to guess at some of
the differences between our compiler and yours.

It seems that QiJC assumes that the loader will
preset all variables to zero, however our loader in-
serts junk some of the time.

Since our compiler doesn't have enough room to
load in debug with 'l&?C it's particularly painful try-
ing to find errors.

Once I figured out how to bring up the first
release I had little trouble with the others but I
think some help could be given. The major problem
with compiling was the sheer size of TM.PAS and
TEXPRE.PAS which forced changes in our com-
piler.

As of May 9 I have the latest version of
up and running and have no outstanding bugs.
Our interface to a 100pt/inch Versatec is working
satisfactorily and we are hoping to obtain the use
of 200pt/inch Versatec in the near future. I am
presently supporting 'QjX a t General Atomic at San
Diego also, our spooler only required a slight change
to run there.

'I@ AND HYPHENATION

m* M. LLng

Word hyphenation is a useful feature of any com-
puterized document formatting system. Sometimes
it is also one of the most embarrassing.*

The current hyphenation algorithm was de-
veloped by Prof. Knuth and myself in the summer
of 1977. Our goal was to come up with a reasonably
compact algorithm that would find a significant per-
centage of possible hyphenation points, but would
make very few errors. The algorithm is described
in Appendix H of the l$jX manual. Note that

*If you find any such embarranting hyphenations done by
m, you are encouraged to send them to the author.

