Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $a_{1}, a_{2}, \ldots, a_{m}$. If γ is a closed rectifiable curve in G which does not pass through any of the points a_{k} and if $\gamma \approx 0$ in G then

$$
\operatorname{Res}_{z=a} f(z)=\operatorname{Res}_{a} f=\frac{1}{2 \pi \mathrm{i}} \int_{C} f(z) \mathrm{d} z
$$

where $C \subset D \backslash\{a\}$ is a closed line $n(C, a)=1$ (e.g. a counterclockwise circle loop). A $\Lambda \Delta \nabla \mathrm{BCD} \Sigma \mathrm{EF} Г \mathrm{GHIJ} K L M N O \Theta \Omega$ РФПЕQRSTUVWXYYЧZ ABCDabcd1234 $a \alpha b \beta c \partial d \delta e \varepsilon \varepsilon f \zeta \xi g \gamma h \hbar \tau i \iota j k \kappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \rho q r s t \tau \pi u \mu \nu v v w \omega \varpi$
$x y z \infty \propto \emptyset y=f(x)$

$$
\Sigma ת \Pi \Pi / \sum \Sigma_{a}^{b} \int_{a}^{b} \Pi_{a}^{b} \sum_{a}^{b} \int_{a}^{b} \prod_{a}^{b}
$$

