Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $a_{1}, a_{2}, \ldots, a_{m}$. If γ is a closed rectifiable curve in G which does not pass through any of the points a_{k} and if $\gamma \approx 0$ in G then

$$
\operatorname{Res}_{z=a} f(z)=\operatorname{Res}_{a} f=\frac{1}{2 \pi \mathrm{i}} \int_{C} f(z) \mathrm{d} z,
$$

where $C \subset D \backslash\{a\}$ is a closed line $n(C, a)=1$ (e.g. a counterclockwise circle loop).

A $\wedge \triangle \nabla$ BCD $\Sigma E F \Gamma G H I J K L M N O \Theta \Omega P Ф П \equiv Q R S T U V W X Y \Upsilon \Psi Z ~ A B C D a b c d 1234$ $a \alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \iota i, j k \kappa I \ell \lambda m n \eta \theta \vartheta \circ \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v v w \omega \varpi$ $x y z \propto \propto \emptyset y=f(x)$

$$
\Sigma \int \Pi \Pi \int \sum \sum_{a}^{b} \int_{a}^{b} \Pi_{a}^{b} \sum_{a}^{b} \int_{a}^{b} \prod_{a}^{b}
$$

