
Prep
rin

t

MathML Formatting with TEX Rules and TEX Fonts∗

Luca Padovani

University of Bologna, Department of Computer Science
Mura Anteo Zamboni, 7
40127 Bologna,
ITALY
email: lpadovan@cs.unibo.it

http://www.cs.unibo.it/~lpadovan/

Abstract

In this paper we investigate the architecture of a MathML formatting engine
based on an abstraction of the TEX box primitives. This engine is carefully
designed so that the TEX-dependent formatting rules are isolated from the inde-
pendent ones and is capable of achieving a TEX-comparable formatting quality
when used in conjunction with TEX fonts. We show how the formatting rules
presented in Appendix G of the TEXbook can be easily adapted for MathML
formatting, and how the semantically-rich MathML markup simplifies the rules
themselves.

Introduction

The Mathematical Markup Language (MathML [4]) is an XML application for encoding mathematical
formulae. It has two distinct sets of tags: the presentation tags which are used to encode what a formula
looks like, and the content tags which are used to encode the “meaning” of a formula. The TEX macros for
math typesetting either represent operators or identifiers that cannot be typed directly on the keyboard,
or they implement the most common layout schemata for the mathematics. In the context of MathML
presentation, the TEX macros of the first kind correspond to Unicode [1, 2] characters, hence they do not
have dedicated markup. Macros of the second kind correspond very closely to MathML presentation tags,
as Table 1 shows. We can thus say that TEX and MathML presentation encode mathematical formulae at
the same level.

Indeed, the issue of formatting MathML documents using TEX can be addressed simply by providing
a transformation from the MathML markup to the TEX/LATEX markup,2 and using a TEX implementation
for the actual rendering. This approach, however, is far from being all-satisfactory. For example, the whole
rendering process is only feasible if no interactivity is required, that is, if the rendering can be performed off-
line as a batch procedure on a static medium (the paper, an image). Also, the need for the large complex TEX
system whose overall purpose goes far beyond math formatting is probably unreasonable. Furthermore, not
every MathML document can be faithfully converted into the corresponding TEX markup—the conversion
is more a good approximation than is an accurate rendering.

An alternative approach is to implement a self-contained MathML formatter that is also capable of using
TEX fonts. However, the use of TEX fonts at this level requires a good understanding of the conventions
adopted for the metrics of the glyphs they provide and the extra parameters they have. The TEX system
relies on this knowledge in order to achieve a very high formatting quality. On the other side, MathML is a
language for publishing and communicating mathematics on the Web, hence its rather high-level formatting
semantics do not make any special assumptions on the graphic capabilities of the environment in which it
is rendered, no matter whether it is a system for quality typesetting on the paper, a regular computer, or a
hand-held device. In this paper we investigate how to carefully design a MathML formatter so to separate
what is TEX-specific from what is common in every environment. We also show how the semantically rich
MathML relieves the author from explicitly tweaking the markup, which is a potentially dangerous operation

∗ This work has been supported by the European Project IST-2001-33562 MoWGLI.
2 Examples of such translation tools are the one developed at the Ontario Research Centre for Computer Algebra [8], and

the XSLT stylesheets by Vasil I. Yaroshevich http://www.raleigh.ru/MathML/mmltex/.

Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i 1001

http://www.raleigh.ru/MathML/mmltex/


Prep
rin

t

Luca Padovani

Layout Schemata TEX MathML
Identifiers a,x,\sin,. . . mi

Numbers 0,1,2,. . . mn

Operators +,(,\oint,. . . mo

Grouping { } mrow

Fractions \over, \atop mfrac

Radicals \sqrt, \root \of msqrt, mroot
Scripts _, ^ msub, msup, msubsup, mmultiscripts
Stacked expressions, lines and
braces above and below formulae

\buildrel, \underline, \overline,
\underbrace, \overbrace

munder, mover, munderover

Matrices, tables \matrix, \cases mtable

Table 1: Correspondence of TEX and MathML layout schemata

Name Default Description
size inherited font size
scriptLevel 0 number of nested scripts
minSize 8 pt minimum font size that a script can be reduced to
displayStyle inherited true if formulae must be formatted in display mode
sizeMult 0.71 amount by which the font size is multiplied when the script level is

increased by 1
stretchWidth undefined horizontal extent the operator is asked to stretch
stretchHeight undefined vertical extent (above the baseline) the operator is asked to stretch
stretchDepth undefined vertical extent (below the baseline) the operator is asked to stretch

Table 2: Properties of the MathML formatting context.

in the context of MathML and, more generally, of documents to be published on the Web, as there is no
guarantee that the tweak will work successfully on a different formatter from the one the author is using.

We have chosen to proceed with our investigation by giving illustrations instead of exhaustive explana-
tions, leaving to the reader the generalization of the cases considered here. Consequently, some knowledge
of MathML and its basic concepts is highly recommended. We have assumed that the reader is also familiar
with the TEX formatting rules for mathematics and other TEX concepts described in Appendix G of The
TEXbook [5].

MathML formatting

By “formatting a formula” we mean the process that transforms the formula encoded in some markup
language into a lower-level representation that conveys information about the needed glyphs, their size and
their relative position.

Math formatting is always done with respect to a formatting context which defines, at least, (a) the
(relative) font size at which formatting is occurring; (b) the scripting level—that is the number of nested
scripts at which formatting is occurring; (c) whether the formula is formatted at display level (in a paragraph
of its own) or inline. We define the MathML formatting context as a structure with a number of named
fields. We use the “dot notation” to select a particular field in a formatting context, thus we will write C.size
to denote the value of the field size in the context C. Table 2 shows the main fields of a MathML formatting
context.3 A TEXnician will recognize that the MathML formatting context is just a generalization of the
TEX notion of “style.” In fact, the development of MathML has been influenced by TEX in many ways.

Because of the structured nature of MathML documents, MathML formatting can be expressed as a
recursive function. Say we have a formula encoded in MathML like <t> X1 · · ·Xn <t/> where t is the type of
the root MathML element (ranging over mrow, mfrac, and so on) and the Xi its children, then the formatting
of the formula in a given formatting context C, notation [[<t> X1 · · ·Xn </t>]]C , can be expressed as a proper
combination, or re-arrangement, of the formatted children Xi each in its own formatting context Ci:

[[<t> X1 · · ·Xn </t>]]C = ft(C ′, [[X1]]C1 , . . . , [[Xn]]Cn
)

3 There can be many different definitions of a MathML formatting context. The one given here is not complete, but it
suffices for the purposes of the paper.

1002 Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i



Prep
rin

t

MathML Formatting with TEX Rules and TEX Fonts

Similarly, formatting of MathML token elements can also be expressed as a function of the current formatting
context and of the Unicode characters c1, . . . , cn that the token is made of:

[[<t> c1 · · · cn </t>]]C = ft(C ′, c1 · · · cn)
In both these cases, the type t of the element being formatted and the value of attributes may affect the

formatting context C and change it into a different context C ′. For instance, formatting of a token element
that explicitly sets the current font size (mathsize attribute) will format its characters in a context C ′ in
which the field C ′.size has been updated accordingly. The complete set of rules for updating the formatting
context C are described in detail within the MathML specification, and they basically follow the rules for
style update of TEX (a concrete example will be given later).

As is described in Appendix G of The TEXbook, TEX scans and processes a logical representation of
a formula (a math list) consisting of items, converting it into a physical representation (a horizontal list)
made up of regular boxes. Items in the math list can be of different types, and in many cases they directly
correspond to basic math layout schemata (like Rad atoms for radicals, Acc atoms for accents, or generalized
fractions). For every item type, Appendix G defines one or more rules describing in detail how the item is
converted in one or more boxes, ultimately defining how TEX formats mathematical formulae. Given the
strict correspondence between TEX commands for math typesetting (hence math list items) and MathML
presentation elements, the same set of rules can be easily adapted for the definition of the ft functions.

In the following sections we consider in some more detail the formatting rules for the main categories
of MathML elements and show how they map on TEX rules.

Groups. Math lists result from typesetting in math mode. The content of a math list is typically
formatted on a single horizontal line, with all the items aligned on their baseline. In this respect math list
are close to the mrow element. However, mrow is also fundamental for the following purposes:

• all stretchable operators within the same mrow element should vertically stretch so as to have the same
height plus depth, unless they are constrained in some way either by the markup or by some limitations
of the environment;

• mrow is the main MathML element enabling automatic line-breaking of long formulae, when they exceed
the available horizontal space for formatting. Conversely, TEX grouping operators { } freeze a sub-
formula preventing any line-break in it.
Stretching of operators is done by looking at the bounding box of the child elements, once they have

been formatted, and then passing adequate information through the formatting context, the idea being
that operators have to take care of stretching themselves. This generalized treatment of stretchy operators
relieves all the other MathML elements from taking into account vertical stretching rules. In particular,
rule 13 (large operators) only applies when formatting stretchable operators (see the discussion on tokens
that follows), and rule 15e (fractions with delimiters) is never necessary because if a fraction must have
delimiters, they must be explicitly encoded inside an mrow element along with the delimited fraction.

Automatic line-breaking is only affected by the bounding box of the formatted child elements, possibly
requiring re-formatting of all or some of them. This can be considered a higher-level formatting issue which
does not involve low-level TEX rules.

Tokens. Tokens are the basic building blocks of every mathematical formula. In MathML, tokens
are the only elements allowed to have actual text as content. The most important token types are mi for
identifiers, mn for numbers, mo for operators. The first two correspond roughly to Ord atoms in a math list,
whereas the last one is refined in TEX into different atoms, Op, Bin, Rel, Open, Close, or Punct. The most
remarkable difference is that in TEX those atoms can be made of exactly one character, whereas MathML
tokens are made of arbitrary Unicode strings. From the point of view of formatting, the more general scheme
adopted by MathML does not pose any additional problem, though, and it actually simplifies the encoding
of non-strictly mathematical documents in which identifiers and operators whose name is longer than one
character are frequent.

Note also that the fine-grained classification of operators is needed in TEX for mainly two reasons: (1)
computing the right amount of space around operators; (2) helping the automatic line-breaking algorithm
with hints on where the formula can be broken. In particular there is a distinction between unary operators
(Op) and binary operators (Bin) as they typically have different spacing rules. In properly grouped MathML
markup there is no need for distinguishing unary (prefix and postfix) from binary (infix) operators, as their
form can be inferred from their position in the enclosing mrow element.

Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i 1003



Prep
rin

t

Luca Padovani

Rule 14 does not apply anymore in general for if two characters are marked up in different tokens they
should never be kerned or merged into a ligature. This behavior is rather part of the formatting semantics
of the token itself.

Operators are by far the most complicated tokens to format, for they may have to stretch vertically or
horizontally and are affected by a large number of MathML attributes. Assuming that information about
stretching is propagated in the formatting context (C.stretchWidth, C.stretchHeight , and C.stretchDepth),
operators can use rule 19 for determining the exact extent they should span, and rule 13 when they must
be formatted in the large form.

Accents. MathML provides multiple ways for encoding an “accent,” depending on whether the accent
is meant to be syntactical or semantical. A syntactical accent is simply part of a name, it has no mathematical
meaning. Although it is very rare in mathematics to have identifiers with accents, the use of explicit markup
allows MathML to disambiguate the two cases. Syntactical accents are used following the Unicode rules for
combining characters. Hence, a MathML identifier like

<mi> a&#x0307; </mi>

is typeset as ȧ (the Unicode character U+0307 represents the “combining dot above” ◦̇).
A semantical accent usually denotes an operation, like first-order derivative in case of the “combining

dot above.” As such it is marked up as

<mover accent="true">
<mi> a </mi>
<mo> &#x0307; </mo>

</mover>

even though the formatted result is likely to be the same as in the previous case. Note how the accent
is explicitly marked up as an operator inside an mo element. Rule 12 (accents) can handle both accents
combined with a single character and wide accents combined with arbitrary subexpressions.

Although they cannot be considered proper accents, horizontal lines extending above or under a for-
mula are treated in MathML uniformly with all the other operators. In particular, the MathML markup
corresponding to \underline{a} is

<munder>
<mi> a </mi>
<mo> &#x0332; </mo>

</munder>

where U+0332 is Unicode combining horizontal line below. The horizontal stretching rules of MathML
operators require the U+0332 character to stretch to the width of the base subformula. The symmetric
situation (\overline) is handled similarly, except that the Unicode character to be used is U+0305. These
two cases are handled by rules 9 and 10.

Radicals. Formatting of root symbols deriving from msqrt and mroot elements is handled by rule 11
concerning Rad atoms.

Fractions. The mfrac element governs encoding of fractions. In TEX, alignment of the numerator and
the denominator can be determined by the use of \hfill. In MathML, it is affected by the value of the
attributes numalign and denomalign. TEX rules for formatting fractions are those from 15 through 15d.
TEX provides different commands for typesetting vertical material in a fraction-like manner, depending on
whether one wants a fraction bar (\over, \above) or not (\atop). MathML handles all such cases by setting
the linethickness attribute.

Scripts. Scripts are handled in MathML by the msub, msup, msubsup, mmultiscripts and sometimes
munder, mover, and munderover. The reason why munder, mover, and munderover elements have to do
with scripting is that they implement a mechanism similar to that determined by the \limits, \nolimits,
\displaylimits commands in TEX.

TEX rules governing the placement of scripts are those from 18 through 18f. Note that scripts in TEX
are represented as possibly empty fields on any atom, whereas they are uniformly marked up with elements
in MathML.

Tables. MathML markup for tables does not involve any specific font dependency as it basically is a
higher-level formatting problem, if compared to formatting of the other elements.

1004 Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i



Prep
rin

t

MathML Formatting with TEX Rules and TEX Fonts

Dealing with TEX dependencies

If we define an environment as the combination of available fonts, graphic capabilities of the output medium
and user requirements, TEX rules for formatting make strong assumptions that are hard to generalize to
environments other than typesetting math on the paper using a family of TEX fonts [7]. We can summarize
TEX dependencies as follows:

• non-standard font metrics (like the thickness of the horizontal line in a radical which is computed
from the height of the radical symbol, or the use of width and italic correction for the placement of
scripts);

• non-standard kerning information (like using \skewchar for determining the horizontal displacement
of accents);

• font-related quantities (the parameters σi and ξj in Appendix G) whose value cannot be otherwise
inferred or computed in general;

• use of boxes of “black ink” (rules) for drawing fraction lines, root lines, joining segments in horizontal
braces, formatting of Unicode characters U+0305 and U+0332;

• builtin TEX constants (see \delimiterfactor and \delimitershortfall for stretchy operators,
\nulldelimiterspace).

It is not feasible for any environment in which we might be interested to format MathML markup
to provide the same set of parameters, or to address specific formatting issues the same way TEX does.
Neither is it feasible to assume that the set of parameters we have considered is a superset of all the possible
parameters that may ever affect formatting of mathematical formulae. Nonetheless the list of operations
involving dependencies (formatting of tokens, radicals, scripts, fractions, accents) will be exactly the same
in systems other than TEX. This amounts to saying that the definition of each ft can be split up into two
components: a gt component that does not depend on anything that is TEX specific, and a ht component
that is strictly dependent on TEX. By doing so we automatically identify two main parts of the MathML
formatter: the set of functions gt which defines the formatting engine—that part which takes care of
all TEX-independent aspects of the formatting; the set of functions ht which defines the TEX device for
mathematics—that part which deals with anything which is (or may be) dependent on TEX fonts or TEX
formatting rules.

Since the set of ft is finite and agreed upon a priori (the set of math layout schemata is fixed and
relatively stable, being the result of centuries of slow evolution and convergence to modern notation), the
interface to the TEX dependent parts is also fixed. This way when the environment changes—say when we
move to a different family of fonts that does not adopt the TEX conventions, we need only to re-instantiate
the ht’s with those that are customized to this new environment but with the same agreed interface, while
sharing the same set of gt’s.

Figure 1 summarizes graphically the entities involved in formatting a fraction element, in particular the
separation of the gmfrac and hmfrac components.

Of course the proposed modular organization of the formatter makes sense only if the two sets of
functions are both performing non-empty and non-trivial tasks. But it is clear from Appendix G of The
TEXbook [5] and the intricacies of math formatting detailed therein that the TEX dependent part is non-
trivial. As for the formatting engine part, it has the following list of non-trivial responsibilities that we
cannot elaborate further here for the sake of brevity: the construction of a data structure (typically a tree)
which is suitable for formatting purposes; the implementation of the MathML mechanism for attribute
inheritance and evaluation; the computation of updated formatting contexts; the algorithm for automatic
line-breaking of long formulae; the algorithm for table layout.

An area model for MathML

The formatting functions ft take objects as arguments and produce a new object as a result. Such objects,
which we will call areas from now on, are a low-level representation of formatted formulae, and constitute
what we define as the area model of the TEX device for mathematics (or, in general, any other instance
of it). From the point of view of the formatting engine, we note that the only thing that matters is the
ability of computing an area’s bounding box, which is essential for updating the context with information
about stretchable operators, for the automatic table layout algorithm and for the line-breaking algorithm.

Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i 1005



Prep
rin

t

Luca Padovani

<mfrac>

N

D

</mfrac>

-[[·]]C
gmfrac

-

hmfrac

fmfrac

�
���

[[N ]]C′ , [[D]]C′

C
CCO

MathML Document Formatting Engine TEX Graphic Device

Figure 1: Modularization of the formatting function for the mfrac element.

Area TEX box Description
G[·] Glyph
Kn \kern Kern with value n. The kern is horizontal or vertical depending

on the container it is in
F \hfill \vfill Filler area
Rn \hrule \vrule Filler rule of thickness n
Sn[α] \raisebox \lowerbox Shift α’s baseline by n
H[α1, . . . , αn] \hbox Horizontal group of areas α1,. . . ,αn

Vk[α1, . . . , αn] \vbox Vertical group of areas α1,. . . ,αn, where αk is the reference area
that determines the baseline

Table 3: Area types and their rendering semantics.

We summarize this by saying that areas are opaque to the formatting engine. From the point of view of
the ht functions, however, areas must convey more information. Many of the formatting rules presented in
Appendix G have dependencies on the kind of areas being combined (for example, whether they are simple
glyphs or arbitrary formatted sub-formulae), and also on the actual shape of the glyphs the areas are made
of. We summarize this by saying that areas must be transparent to the TEX device for mathematics. The
neat separation of views (opaque and transparent) of the area model is crucial in the design of a modular
architecture in that it relegates areas to the TEX dependent part of the formatter, the only requirement
for them being that of exporting a very limited set of operations (in fact, the computation of the bounding
box).

In the specific case of formatting using TEX rules and TEX fonts, the area model can be naturally
synthesized as a subset of TEX boxes. Table 3 introduces an abstract notation for the most common area
types needed for math formatting, along with their corresponding TEX box or primitive command that
achieves the same (or a similar) formatting. The reason for not using TEX primitive boxes directly is that
the very same abstract model can be implemented in a sensitive way depending on the environment, whereas
the TEX box model is obviously tied to TEX. For example, when formatting a MathML document that is
meant to be interactive, the resulting areas may carry information about selections, or may have backward
pointers towards the MathML elements that generated them. Such information is clearly unnecessary when
formatting a static document for printing.

Example (mfrac formatting). We conclude this section by showing a complete example of formatting
function, along with the resulting area object.

Let’s suppose we are to format a subformula of the form <mfrac> N D </mfrac> representing the
fraction

N

D
where we may assume, for the sake of generality, that N and D are metavariables standing for arbitrary
subexpressions rather than actual identifiers. Then we have

[[<mfrac> N D </mfrac>]]C = fmfrac(C,α, β)

where

α = [[N ]]C′ β = [[D]]C′

1006 Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i



Prep
rin

t

MathML Formatting with TEX Rules and TEX Fonts

and C ′ is such that if C.displayStyle = true then C ′.displayStyle = false and all the other fields are
the same as in C, whereas if C.displayStyle = false then C ′.scriptLevel = C.scriptLevel + 1, C ′.size =
max(C.minSize, C.size × C.sizeMult) and the other fields are the same as in C.

Depending on the value of the numalign and denomalign attributes the numerator and the denominator
may be aligned to the left, to the right, or may be centered (this is the default). Assuming they are centered,
fmfrac is defined as

fmfrac(C,α, β)
= hmfrac(C,H[F, α, F ],H[F, β, F ])
= Sa[V3[H[F, β, F ],Kd, Rh,Kn,H[F, α, F ]]]

which is to be read as follows: the fraction is made of (from bottom to top) the centered denominator
H[F, β, F ], a kern d, the horizontal bar of thickness h, a kern n, the centered numerator H[F, α, F ]. The
reference point of the whole vertical area V coincides with the reference point of its third child (the horizontal
bar). Then, the whole fraction is shifted up by a so that the horizontal bar is aligned with the axis of the
expression. The quantities a, d, h, and n are computed by hmfrac following rules 15-15d.

Note how the process is clearly split into a TEX independent part (computation of updated formatting
contexts, alignment of numerator and denominator) and a TEX dependent one (exact positioning of the
subparts).

How semantics helps formatting

When we speak of “semantics” in the context of MathML presentation markup, we refer not only to the
presentation tags but also to the following characteristics:

• The use of explicitly encoded, although invisible, operators such as “invisible multiplication” and “func-
tion application;”

• The use of a more rigid encoding of mathematical formulae, in particular the proper grouping rules.
In practice this amounts at allowing within the same mrow element at most one kind of operator, with
only a few exceptions (pluses and minuses within the same mrow are not considered a violation to the
proper grouping rule);

• The use of a dictionary that customizes the basic properties of known operators, such as their stretcha-
bility, whether they are delimiters, fences, or other kinds of operators, the amount of space that should
normally be put around them.
The presence of semantics in the MathML encoding of a mathematical expression has often been asso-

ciated with the ability of reconstructing a more semantically-oriented representation of the same expression.
However, such information can also be exploited for formatting purposes as it allows the formatter to apply
context-sensitive rules that are logically related to the semantics of the entity being formatted. This elimi-
nates the need for strange formatting rules, special cases, and other oddities that abound in the formatting
rules of TEX markup, and it also permits a more general and effective formatting than TEX allows. In the
sections that follows we consider three specific examples.

Invisible operators are explicit. The use of explicit markup for invisible operators has a noticeable
impact on the formatter and the way it operates. As a concrete example lets consider a typical trigonometric
function, say sine, for which an explicit TEX macro has been designed. Depending on the author’s taste or
needs, there are two different ways to typeset the sine of x:

sinx or sin(x)

both of which are encoded using the \sin macro. A close look at the formatted formulae will reveal that
in sinx there is a little space between the function name and the argument, whereas there is no space in
sin(x). Although this is indeed very natural, and yields a nicely formatted formula, the hidden mechanism
that makes this happen is anything but straightforward. The definition of the \sin macro is something like
the following:

\def\sin{\mathop{\rm sin}}

The key point is the definition of \sin as an operator. By TEX spacing rules, an operator (Op atom)
followed by a variable (Ord atom) gets some space after it, but the same operator, when followed by a
delimiter (Open atom), gets no space at all.

Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i 1007



Prep
rin

t

Luca Padovani

In MathML the same expressions would be encoded as:

<mrow>
<mi>sin</mi>
<mo>&ApplyFunction;</mo>
<mi>x</mi>

</mrow>

or as: <mrow>
<mi>sin</mi>
<mo>&ApplyFunction;</mo>
<mrow>
<mo>(</mo> <mi>x</mi> <mo>)</mo>

</mrow>
</mrow>

respectively. The fact that we have an explicit operator, function application, between the function and
its argument allows the formatter to do something context-sensitive along the following lines: whenever
formatting of ApplyFunction operator is requested, look at the next element. If it is an mrow whose first
child is a delimiter then render ApplyFunction as 0 width space. Otherwise render it as some suitable
constant space. The difference with TEX is that this behavior is explicitly associated with formatting of the
ApplyFunction character, and is not part of a more general (but also less clear) scheme for spacing math
atoms. Finally, note that TEX’s mechanism relies on the \sin function being defined as an “operator,”
whereas sin is correctly marked up as an identifier (for the sine function) in MathML markup.

Without entering the same level of detail, the reader can easily verify that a similar thing happens
with invisible multiplication, which is in fact invisible in TEX markup, whereas it is explicitly encoded as
the InvisibleTimes operator in MathML. In the case of adjacent fractions, just to mention one specific
case, null delimiters with non-null width are accurately placed so that the fraction bars do not join together.
Correct spacing between math Ord atoms is also ensured by an accurate use of font metric information, italic
correction in particular, which guarantees a very high quality of the formatted formula, but contributing in
making TEX fonts and TEX formatting rules mutually dependent.

Opening and closing delimiters. TEX distinguishes delimiters as opening and closing depending
on their name. (, [, { are examples of opening delimiters, c, e, 〉 are examples of closing delimiters. The
distinction is carried on at the level of atoms, where the delimiters are represented by either Open or Close
atoms. In a properly grouped MathML expression the distinction is made depending on the position of the
operator rather than its name. In fact, a properly grouped expression must be a mrow element whose first
and last children are the opening and closing delimiter, respectively, and the middle child is the body of
the expression. The operator dictionary that determines the default value of operator properties, spacing in
particular, is addressed by both the operator’s name and its form (one of prefix, infix, or postfix). Hence,
the use of properly grouped markup combined with an operator dictionary provides for greater generality
and flexibility in a formatter for MathML markup. As a noticeable side effect, it also disambiguates those
cases in which the opening and closing delimiters are equal (think of | or ‖), which must be carefully treated
in TEX markup in order to get the spacing right.4

The strange case of the solidus symbol. Inline division is typically represented by the / symbol
to be placed very close to its operands. In TEX there is this oddity that the / symbol is not treated as
an operator Op, but rather as an ordinary symbol Ord, so that it gets no space around during the second
phase of formula formatting (rule 20). The visual effect is that of rendering as 1/2 rather than 1 / 2. In
MathML formatting this trick is no longer necessary, and the / can be naturally encoded as <mo>/</mo>, for
the spacing around it can be controlled by the lspace and rspace attributes accepted by every mo element
(their default values can be specified in the MathML operator dictionary).

Conclusions

As MathML is relatively similar to TEX, at least at some abstract level, most of the TEX formatting rules
can be easily adapted and used for MathML formatting when TEX fonts are available. However, doing so
in a modular and adaptable way, without necessarily committing to TEX fonts, is a more delicate problem.

In this paper we have surveyed a number of issues and their possible solutions, ultimately depicting
the architecture of a formatter for MathML markup which is capable of exploiting all of TEX’s finest rules

4 TEX also provides for a \mid operator which should be used for | when it stands as the separator in comprehensive notation
for sets. This case is also simplified in MathML markup, as in properly grouped markup the | operator would be correctly
treated as an “infix” operator.

1008 Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i



Prep
rin

t

MathML Formatting with TEX Rules and TEX Fonts

for math typesetting without being tied at the same time to the TEX fonts. Thanks to the structurally
and semantically rich MathML markup, the formatter also succeeds in cases that cannot be handled in a
general way by the TEX formatting rules without the help of the author. This aspect is particularly relevant
because, if the desired rendering is not achieved by the TEX rules, the author can tweak a TEX formula
and still be sure that the formula will be rendered the same way on every system running TEX. On the
other hand, since MathML formatters are not tied to a set of fixed formatting rules, tweaking the MathML
markup can potentially compromise an effective rendering of the formula.

The problem of being adaptable to the formatting environment is not just a matter of recognizing the
available fonts and achieving the finest formatting with those fonts. TEX formatting rules assume that the
formulae will be eventually printed on paper, or anyway displayed on a high resolution screen. There are
contexts in which it is more convenient to display symbols differently, as to improve editing, interaction, or
readability, especially in low-resolution display such as those used in hand-held devices.

The techniques that we have described in the paper have been successfully put into practice in two
prototypes, a MathML formatting engine for a recognizer of hand-written mathematics in hand-held devices
at the Ontario Research Centre for Computer Algebra [9], and the gtkmathview widget5 at the University
of Bologna. The latter tool, in particular, has been adopted by John Wiley & Sons, Inc., the publisher, for
rendering mathematical formulae encoded in MathML markup achieving a quality comparable to that of
TEX and using several families of TEX fonts.

In a broader perspective, the architecture we have designed and implemented allows applications to
exploit context dependencies, instead of avoiding them. As the development of the two prototypes has
shown, the efforts required for implementing the techniques are negligible when compared to the potential
benefits.

References

[1] “The Unicode Standard”, Version 3.0, Addison Wesley, 2000.
[2] “Unicode Standard Annex #28, Unicode 3.2”, 2002.

http://www.unicode.org/unicode/reports/tr28/

[3] “Extensible Markup Language (XML) Specification”, Version 1.0,
W3C Recommendation, 10 February 1998. http://www.w3.org/
TR/REC-xml

[4] “Mathematical Markup Language (MathML) Version 2.0”, W3C
Recommendation, 21 February 2001. http://www.w3.org/TR/
MathML2/

[5] D. E. Knuth, “The TEXbook”, Addison-Wesley, Reading, MA, 1998.
[6] D. E. Knuth, “The METAFONTbook”, Addison-Wesley, Reading,

MA, 1994.
[7] U. Vieth, “Math typesetting in TEX: The good, the bad, the ugly”,

Proceedings of the EuroTEX Conference, 2001, The Netherlands.
[8] E. Smirnova, S. M. Watt, “MathML to TEX Conversion: Con-

serving high-level semantics”, MathML International Conference
2002, http://www.mathmlconference.org/2002/presentations/
smirnova/index.html

[9] L. Padovani, “A Standalone Rendering Engine for MathML”,
MathML International Conference, Chicago, IL, 2002. http://www.
mathmlconference.org/2002/presentations/padovani/

[10] L. Padovani, “MathML Formatting”, Ph.D. Thesis, Technical Re-
port UBLCS-2003-03, Dept. Computer Science, Bologna, Italy,
2003.

5 See http://helm.cs.unibo.it/mml-widget/. [10]

Preprints for the 24th Annual Meeting, Waikoloa, Hawai′ i 1009

http://www.unicode.org/unicode/reports/tr28/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
http://www.mathmlconference.org/2002/presentations/smirnova/index.html
http://www.mathmlconference.org/2002/presentations/smirnova/index.html
http://www.mathmlconference.org/2002/presentations/padovani/
http://www.mathmlconference.org/2002/presentations/padovani/
http://helm.cs.unibo.it/mml-widget/

	Introduction
	MathML formatting
	Groups.
	Tokens.
	Accents.
	Radicals.
	Fractions.
	Scripts.
	Tables.


	Dealing with TeX dependencies
	An area model for MathML
	Example (mfrac formatting).

	How semantics helps formatting
	Invisible operators are explicit.
	Opening and closing delimiters.
	The strange case of the solidus symbol.


	Conclusions

