On Having Arguments and Agreeing: Semantic EPP

Introduction:

'EPP-features are... nonsemantic... though the configuration they establish has effects for interpretation' (Chomsky 2000)

But if they have semantic effects, why are they nonsemantic?

... What if ..?

— EPP-features are semantic?
— like this:

 $[\mathsf{EPP}] = [\Lambda] = \lambda$

- And they bind argument variables?

— which are like this:

 $\theta = [ID] = x$

(cf. Adger & Ramchand 2003)

Which is to say:

EPP-features instantiate predication (Williams 1980; Rothstein 1983; Heycock 1991; Åfarli & Eide 2001)

— by means of predicate (λ) abstraction (Heim & Kratzer 1998; Nissenbaum 1998; Sauerland 1998)

— which is represented in the syntax by two features, $[\Lambda]$ and [ID] (Adger & Ramchand 2003).

Jonny Butler, University of York jrcb100@york.ac.uk www-users.york.ac.uk/~jrcb100

So:	
$[\Lambda] \dots [ID]$	V — introduces θ (= [ID])
	v — introduces [EPP] (= [Λ])
mans to	$[\Lambda]$ binds $[ID]$ (= predicate)
inaps to ↓	Predicate satisfied by DP (= argu- ment)
$\lambda \ldots \mathtt{x}$	= vP
\hookrightarrow	(derivation steps 1 & 2)

 $\begin{array}{l} \mathsf{T} & \longrightarrow \mathsf{introduces} \; [\mathsf{EPP}] \; (= \; [\Lambda]) \\ \mathsf{T}_{[\Lambda]} \; \mathsf{forms} \; \mathsf{a} \; \mathsf{dependency} \; \mathsf{with} \; \mathsf{v}_{[\Lambda]} \; \mathsf{via} \; \mathsf{AGREE} \; - \; \mathsf{so} \\ \mathsf{T}_{[\Lambda]} \; \mathsf{ends} \; \mathsf{up} \; \mathsf{abstracting} \; \mathsf{over} \; [\mathrm{ID}] \; \mathsf{too} \\ \mathsf{DP} \; \mathsf{is} \; \mathsf{Remerged} \quad (\longrightarrow \; \mathsf{INTERPRET} \; \mathsf{EVERYTHING} \; - \; \mathsf{well}, \; \mathsf{everything} \; \mathsf{interpretable} \\ (\mathsf{derivation} \; \mathsf{step} \; 4) \; - \; \mathsf{cf.} \; \mathsf{Sportiche} \; 2002) \\ &= \; \mathsf{TP} \end{array}$

A Derivation:

 $= \lambda$. laugh (x)

 $= \lambda$. [laugh (x)] (Arthur) = Arthur laughs

 $=\lambda$. Arthur laugh (x)

= λ . [Arthur laugh (x)] (Arthur) = Arthur is such that Arthur laughs

No [A]? Don't worry — we have many other binders to meet your needs: GEN ... [ID] = PRO_{ARB} \hookrightarrow CONTROL ... [ID] = $PRO_{Control}$ \hookrightarrow \exists ... [ID] = Passive subject

 $\dots [ID] = Passive subjections$

References Adger & Ramchand 2003. 'Merge and Move: wh-dependencies revisited' ms; Chomsky 2000. 'Minimalist Inquiries' in Step by Step; Heim & Kratzer 1998. Semantics in Generative Grammar; Heycock 1991. Layers of Predication; Nissenbaum 1998. 'Movement and derived predicates' MITWPL 25; Rothstein 1983. The Syntactic Forms of Predication; Sauerland 1998. The Meaning of Chains; Sportiche 2002. 'Movement types and triggers' TiLT; Williams 1980. 'Predication' Ll 11; Afarli & Eide 2001. 'Predication at the Interface' ZASPiL 26

ŴΡ

 $[augh_{[ID]}]$

 $v_{[\Lambda]}$