Grant Application for minted Development

Geoffrey Poore

12 July 2023

Abstract

I am applying for a grant to rewrite the minted package for syntax highlighting to add two
features: (1) eliminate existing \Shel1lEscape security issues, which will allow minted to be
used safely with restricted \write18, and (2) using the revised architecture required to address
\ShellEscape, allow minted to be extended using Python in addition to BIEX macros, which
will make it simple to implement many new features.

minted overview and security vulnerabilities

The minted package for syntax highlighting of computer code was originally created by Konrad
Rudolph in 2009. It saves the computer code in a \mintinline command or minted environment
to a temporary file, invokes the pygmentize utility via \ShellEscape to create a syntax-highlighted
version in BTEX format, and then inserts the result via \input.

I took over maintenance and development of minted in 2013. I was developing the pythontex
package at the time, and as part of this was already using the Pygments library and working on
improving computer code typesetting. I have focused on enhancing the code typesetting aspect
of minted. In 2016, I moved several improvements in minted typesetting into the new package
fvextra, which extends fancyvrb by adding features such as line breaking and more robust verbatim
commands. I have also made some improvements to the \ShellEscape and pygmentize side of
minted, primarily by adding caching of highlighted code.

Like many packages using \ShellEscape, minted has always had security vulnerabilities.
It requires running BIEX with the -shell-escape command-line option, which enables unre-
stricted \write18 (\ShellEscape). A document using minted can contain completely unrelated
\ShellEscape commands, such as \ShellEscape{\detokenize{rm -rf *}}.

In its current form, minted is incompatible with restricted shell escape, which allows shell escape
only for a specific list of trusted executables and limits the form of commands. The pygmentize
commands are not of the correct form (though this could be modified), and minted currently relies
on rmor del to clean up its temporary files. (See minted issue #271 for additional details.) Even if
this was modified to work with restricted shell escape, security issues would remain. pygmentize
allows custom lexers (language definitions) to be specified for languages that are not supported
with built-in lexers. Lexers are implemented in Python, which means that using a custom lexer is
equivalent to executing arbitrary code. So even if minted used pygmentize in a manner compatible
with restricted shell escape, a document could simply include a file 1exer . py and specify it as a
custom lexer to execute arbitrary code.


https://github.com/gpoore/minted/
https://pygments.org/
https://github.com/gpoore/pythontex
https://github.com/gpoore/fvextra
https://ctan.org/pkg/fancyvrb
https://github.com/gpoore/minted/issues/271

Making minted safe for restricted \write18

I propose to create a new Python executable, perhaps minted. py, that works with the Pygments

library directly, bypassing the pygmentize executable bundled with Pygments. A new minted

executable can be designed in a manner that is compatible with restricted shell escape. A custom

executable will also enable minted to be extended using Python rather than only BTEX macros.
The minted executable will have the following properties:

* Simple commands: Commands of the form pygmentize <options> <code_file> are cur-
rently used by minted. These are difficult to work with from a BIgX perspective, because
KIEX text must be properly escaped/expanded/detokenized to assemble <options>, and
then <options> must be escaped yet again in a platform-dependent manner to make it
compatible with the shell. From a security perspective, <options> involves mixing code
execution with data, and any errors in validating <options> in a cross-platform, cross-shell
manner may result in arbitrary code execution. I propose using something simpler like
minted <file>.

* Separation of code execution and data: Instead of the minted executable receiving options
from the command line, it will receive both options and the computer code to be highlighted
from a file, like minted <file>. KIEX will write options and the computer code to <file>
using a key-value data serialization format. The minted executable will then read this data,
process the computer code with the Pygments library, and save the highlighted code in BIEX
format for \input.

* Safe handling of custom lexers: Custom lexers can be used in two ways. A custom lexer that is
written as a Python package can be installed, and then is available to Pygments automatically.
This presents no security issues, because the user chooses to install the lexer. A custom lexer
can also be used by specifying a path to a Python file. This is the problematic case, because
a document could simply include a Python file with arbitrary code, and then specify it as a
custom lexer. I plan to disable loading custom lexers from a path and encouraging custom
lexers to be bundled as Python packages.

I also anticipate supporting a configuration file, perhaps in the user’s home directory, that
enables loading custom lexers from a path. This could limit custom lexers to specified
cryptographic hashes. Any configuration file will be in a location not writeable by ITEX,
outside the document directory, so that documents cannot include minted configuration files
or otherwise set their own security levels.

The BTEX part of the minted package will need minimal modification to work with the output of
a new minted executable, since the executable will generate highlighted computer code in the same
format currently produced by pygmentize. I anticipate a few minor changes to improve BIgX error
messages.

The BTEX part of the minted package will need extensive modification to provide input to the
new minted executable via serialized data rather than command-line options. This will require
modifications to option handling and new KX macros to serialize data and then write it verbatim
to a temporary file.

Over the years, minted has had a series of issues related to package options that are not cor-
rectly detokenized or escaped for the shell. Some of these were only resolved in the most recent



release, version 2.7. (And then the fix broke several shell hacks that users had developed to add
unsupported functionality!) minted has also had issues related to including external code from file
paths containing spaces, or paths involving a leading tilde or shell variables. This entire category of
bugs should be permanently eliminated by the move to serialized data.

Extending minted with Python

Currently, minted only uses Python to perform syntax highlighting, via pygmentize. Adding a
minted executable will allow for more of minted to be implemented in Python rather than BIEX
macros, making possible many new capabilities. Several new capabilities will be implemented as
part of the new Python executable, including the following:

¢ Including part of an external file based on a regular expression, or starting/ending delim-
iters. This has been requested for years. A Python implementation will be trivial, whereas a
KIgX implementation (outside LuaTeX plus a full regex library) would be difficult and limited
by the capabilities of something like |3regex.

* Official support for custom lexers specified via path. Currently, custom lexers specified via
path (that is, not installed as a Python package) are not supported. Users have developed a
number of hacks over the years to add support, but these have often broken as I have grad-
ually improved \ShellEscape quoting and other parts of the package. Due to the security
considerations related to custom lexers (discussed earlier), they would not be supported by
default. They would be enabled via a configuration file outside the document directory, likely
with an option to restrict permitted lexers via cryptographic hash.

¢ Including external files when file paths include spaces, leading tildes, or shell variables.
Proper path quoting and expansion is a longstanding issue. Moving from command-line
options to serialized data should permanently eliminate this class of issues while providing
more flexibility.

The following list of capabilities are not planned as part of this proposal (so that the requested
grant amount is smaller), but are examples of the types of features that become possible with a
minted executable.

* Improving Pygments features like escapeinside. The escapeinside option allows com-
puter code between two designated characters to be treated as BIgX rather than computer
code. It is useful for inserting things like ISTEX symbols or math snippets. The current Pyg-
ments implementation is fragile and can fail to behave as expected depending on the details
of alexer’s tokenization. A minted executable would provide a location for experimenting with
alternative implementations of features like escapeinside outside the Pygments codebase.

 Other highlighting libraries. minted only uses Pygments to provide code highlighting. A
minted executable would allow other Python libraries and perhaps other programs to be used
instead. For example, Pandoc includes built-in support for exporting highlighted computer
code in BIEX format. A minted executable could run Pandoc in a subprocess to obtain the
highlighted code, then perform any desired postprocessing. Because Pandoc can read from
stdin and write to stdout, this should be possible without introducing any additional security
considerations.


https://ctan.org/pkg/l3regex?lang=en
https://pandoc.org/

* Separating highlighting from compiling. Currently, minted highlights code during a single
compile, using \ShellEscape to process each uncached snippet of computer code. An alter-
native would be to collect all code snippets in a data file during compiling, then process this
data, and finally \ input the highlighted code during a second compile. This could result in
much better performance for a long document that is only built once or has no existing cache,
since it removes the overhead of starting multiple shells and multiple pygmentize instances.
A minted executable should make implementing such capabilities a logical extension of the

new architecture.



