
GUST’s e-foundry font projects
Closing report for 2019–2020

Jerzy B. Ludwichowski
Jerzy.Ludwichowski@gust.org.pl

DANTE e.V., Frühjahrstagung 2021

About this presentation

The report proper1 (mere facts) will be published in one
of the forthcoming issues of the DANTE TEXnische
Komödie and, most probably, also in other LUG’s
journals.

This presentation, although reporting on what was
achieved, is totally different. It aims to bring forth those
elements of the e-foundry’s projects which were
difficult to place in a mere facts report.

I’ll try to show the achievements and hope that it
transpires how much effort went into the project(s) . . .

1For the previous report see B. Jackowski et al. in DTK, Heft 3,
2018

Project goals

The goals of the “new” e-foundry’s projects (those
emphasized are not yet done):
I defining math symbols subset(s) for various uses,
I a sans-serif Math Open Type Format font,
I a heavy Math Open Type Format font,
I a monospace font with math symbols for text

editors,
I enhancing the TEX Gyre text fonts (all except for

Chorus),
I maintenance,
I enhancements to existing math fonts.

A tiny bit of history

Conceived and presented to LUG’s in 2015, the project
officially started in 2017, though work began already in
2016.
Externally visible progress was being made until 2018,
when it finally transpired that the long overdue
revamping of MetaType 1, the e-foundry’s toolset, could
not wait.
Work on the successor, Algotype started in 2018. In the
midst of that effort Piotr Strzelczyk left the team.
Luckily, Marek Ryćko agreed to step in. However, quite
some time was lost.
Further loss of time was caused by the pandemic and,
on top of if, Bogusław Jackowski’s hospitalisation for
both COVID-19 and a heart surgery.

Math symbol subsets for TG text fonts

The following four slides show samples of the extended
repertoire. Over 850 mathematical, geometrical and
technical symbols were selected and added.
Please note:
I shown fonts were made with Algotype, the new

engine,
I samples compiled with LuaTEX and OTF fonts,
I shown are examples only for regular (top) and bold

(bottom) variants,
I TG Adventor and TG Pagella were previously (before

Alogotype) extended and now “revised”,
I TG Schola and TG Termes are newly extended.

TG Adventor (revised)

TG Adventor
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌ ∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌ ∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁

TG Pagella (revised)

TG Pagella
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁

TG Schola (newly extended)

TG Schola
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌ ∮∰∲∳∡≼≽⋀⋁⋂⋃
▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌ ∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁

TG Termes (newly extended)

TG Termes
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜

∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌ ∮∰∲∳∡≼≽⋀⋁⋂⋃

▒ ░ ▓⬚▭ ▬ ▪ ▫ ● □△▶▷▽◀◁

Backward compatible math style
The following four slides show samples of the ss10
feature—“backward compatible math style”— in
action.
Please note:
I shown fonts were made with Algotype, the new

engine,
I samples (formulas) compiled with LuaTEX and OTF

fonts,
I TG Adventor and TG Pagella—revised (remade)

from v. 2.501,
I TG Schola and TG Termes—newly made,
I lines marked ss10-, the default(!) are, hopefully,

the better ones, but
I this is not to say that going ss10+ will not produce

good results in text mode . . .

TG Adventor (revised)

TG Adventor
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0

TG Pagella (revised)

TG Pagella
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0

TG Schola (new in the pack)

TG Schola
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0

TG Termes (new in the pack)

TG Termes
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0
ss10- f(x)=1/x (x+1)(x−3) > 0
ss10+ f(x)=1/x (x+1)(x−3) > 0

The anchor mechanism

The following five slides deal with and show samples of
placing of accents using the “anchor” mechanism, i.e.,
the ccmp+mark+mkmk features2.
Please note:
I all shown fonts now made with Algotype,
I samples were compiled with LuaTEX and OTF fonts,
I feature tables had to be prepared for all fonts and

all shapes

2see B. Jackowski et al. in DTK, Heft 3, 2018

Anchor mechanism scheme – an example

Sample code for placing accents

Source:

 L or L\char"030C % U+030C (caroncmb, caroncomb)

 g or g\char"0326 % U+0326 (uni0326, commaaccentcomb)

 y or y\char"0323 % U+0323 (uni0323, dotbelowcomb)

TG Adventor (revised)

TG Adventor
L
̌
L
̌
L
̌
L
̌

g
̦
g
̦
g
̦
g
̦

y ̣y ̣y ̣y ̣

TG Pagella (revised)

TG Pagella
L
̌
L
̌
L
̌
L
̌

g
̦
g
̦
g
̦
g
̦

ỵ y ̣ỵy ̣

TG Schola (new in the pack)

TG Schola
L
̌
L
̌
L
̌
L

̌

g
̦
g
̦
g
̦
g
̦

y ̣y ̣y ̣y ̣

TG Termes (new in the pack)

TG Termes
L
̌
L
̌
L
̌
L
̌

g
̦
g
̦
g
̦
g
̦

y ̣y ̣y ̣y ̣

Why Algotype?

From the above it should be obvious that proper tools
were required for the work.
In the following slides I’ll try to illustrate the reasons3
for going from MetaType1, the old tool chain, to
Algotype, the new and shiny workshop.

3For more see: http://www.gust.org.pl/bachotex/2019-pl/
presentations/bjackowski-mrycko-1-2019.pdf

Old MT1

The scheme of the old font engine
METAPOST

font base

METAPOST

source(s)

font template

(text file)

PFB file

TFM file

ENC and MAP

files (for dvips)

AFM file

PFM file

OTF file

feature data

EPS file 1

EPS file 2

EPS file n

“raw” PFB file

auxiliary

files

...

t1asm

perl

METAPOST

AFDKO
(G)AWK

Old MT1 with reverse workflow

The scheme of the old font engine

“raw” PFB file

PFB fileAFM file

MP (main) file

MPE (encoding) file

MPH (header) file

MPG (glyph) file

MPL (lig-kern) file

LOG file

t1disasm

(G)AWK

METAPOST

font base

METAPOST

source(s)

font template

(text file)

PFB file

TFM file

ENC and MAP

files (for dvips)

AFM file

PFM file

OTF file

feature data

EPS file 1

EPS file 2

EPS file n

“raw” PFB file

auxiliary

files

...

t1asm

perl

METAPOST

AFDKO
(G)AWK

http://www.gust.org.pl/bachotex/2019-pl/presentations/bjackowski-mrycko-1-2019.pdf
http://www.gust.org.pl/bachotex/2019-pl/presentations/bjackowski-mrycko-1-2019.pdf

Interim MT1(?), no reverse workflow

The scheme of the interim font engine
METAPOST

font base

METAPOST

source(s)

configuration

files

PFB file

TFM file

ENC and MAP

files (for dvips)

AFM file

fixed AFM file

PFM file

fixed PFM file

OpenType

font file (OTF)

FFDKO, i.e., Python scripts

employing FontForge library

EPS file 1

EPS file 2

EPS file n

auxiliary(OTI)file

...

Python

Python

METAPOST

Algotype: simpler but no reverse workflow4

The scheme of the current font engine

i
n
p
u
t
d
a
t
a

(
f
l
e
x
i
b
l
e
f
o
n
t
)

i
n
t
e
r
i
m
d
a
t
a

(
“
f
r
o
z
e
n
”
f
o
n
t
)

o
u
t
p
u
t
d
a
t
a

(
t
r
e
n
d
y
f
o
n
t
s
)

c
o
n
f
i
g
u
r
a
t
i
o
n
a
n
d
i
n
s
t
a
l
l
a
t
i
o
n
f
i
l
e
s

(
u
n
i
f
o
r
m
a
n
d
p
r
e
t
t
y
u
n
i
v
e
r
s
a
l
)

METAPOST sources files (splines, kerns, ligatures,

font parameters etc.) plus additionally sample feature

file and glyph order and alias data base (GOADB) file

OpenType font

PostScript Type 1 font

TrueType font

FontForge’s spline font database (SFD)

XML, e.g., TTX’s output,

unified font object (UFO) format, etc.

general data structure

containing lists and dictionaries

equivalent to a “frozen” instance

of the resulting font

4Please note “trendy fonts”: it is now far easier to produce fonts
in new/trendy formats.

Ten years after

An e-mail dated early March this year by a desperate
user:
Missing character in LM Math

I’m having problems with the LM-Math font that I
downloaded from your website. It seems that the
small italic h is missing, see screenshot:

Could you please fix this?

Information out, feedback in

Information out
The above problem is known since at least 10 years
and not fixable by us. How do we5 disseminate such
knowledge? How do we tell users, e.g., of the
“backward compatible math style” ss10?

Feedback in
How do we learn about user needs or problems? Do
they really need what we are doing? Is, e.g.,
a monospace font with math symbols for text editors
really needed?

Education(?) is needed!

Feedback is needed!

5By “we” the GUST e-foundry team is meant.

Supporters

Support was received from (in no particular order):
I NTG,
I CSTUG,
I CG (Context Group),
I DANTE e.V.,
I TUG,
I GUST (non-material),
I last but not least— individuals.

Thank you very, very much!

“Closing”?
Declared financial support came to end, but of course

closing 6= final

To be continued . . .

