
The bashful Package∗

Yossi Gil†

Department of Computer Science

The Technion—Israel Institute of Technology

Technion City, Haifa 32000, Israel

2012/03/12‡

Abstract

It is sometimes useful to “escape-to-shell” from within LATEX. The most
obvious application is when the document explains something about the
working of a computer program. Your text would be more robust to changes,
and easier to write, if all the examples it gives, are run directly from within
LATEX.

To facilitate this and other applications, package bashful provides a con-
venient interface to TEX’s primitive \write18—the execution of shell com-
mands from within your input files, also known as shell escape. Text be-
tween \bash and \END is executed by bash, a popular Unix command line
interpreter. Various flags control whether the executed commands and their
output show up in the printed document, and whether they are saved to
files.

Although provisions are made for using shells other than bash, this package
may not operate without modifications on Microsoft’s operating systems.

Contents

1 Introduction

At the time I run this document through LATEX, the temperature in Jerusalem,
Israel, was 32�, while the weather condition was clear .

∗Copyright © 2011, 2012 by Yossi Gil mailto:yogi@cs.technion.ac.il. This work may be
distributed and/or modified under the conditions of the LATEX Project Public License (LPPL),
either version 1.3 of this license or (at your option) any later version. The latest version of
this license is in http://www.latex-project.org/lppl.txt and version 1.3 or later is part of all
distributions of LATEX version 2005/12/01 or later. This work has the LPPL maintenance status
‘maintained’. The Current Maintainer of this work is Yossi Gil. This work consists of the files
bashful.tex and bashful.sty and the derived file bashful.pdf
†mailto:yogi@cs.Technion.ac.IL
‡This document describes bashful V 0.94.

1

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
mailto:yogi@cs.technion.ac.il
http://www.latex-project.org/lppl.txt
mailto:yogi@cs.Technion.ac.IL

You may not care so much about these bits of truly ephemeral information, but
you may be surprised that they were produced by the very process of LATEXing
the input.

Before I tell you how I generated this information, let me demonstrate the use
of the bashful package for the purpose of incorporating the list of files in a folder
into your output.

This simple LATEX file generates a listing of all files in the /usr directory, using
the UNIX ls command:�
\documentclass{article}

\usepackage[a6paper]{ geometry}

\usepackage{bashful}

\pagestyle{empty}

\begin{document}

The directories in my \texttt {/usr} directory are:

\bash[stdout]

ls -F /usr

\END

That 's it!

\end{document}
� �
The printed output of this file is then

The directories in my /usr directory are:

bin/

games/

include/

lib/

lib32/

local/

NX/

sbin/

share/

src/

That’s it!

To generate the weather information, I wrote a series of shell commands that
retrieve the current temperature, and another such series to obtain the current
weather conditions. This task required connection to Google’s weather service
and minimal dexterity with Unix pipes and filters to process the output.

My command series to obtain the current temperature was:

% location=Jerusalem ,Israel

server ="http ://www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep temp_c |\

sed 's/[^0 -9]//g'

2

http://www.Google.com/support/forum/p/apps-apis/thread?tid=0c95e45bd80def1a&hl=en

while the weather condition was obtained by

% location=Jerusalem ,Israel

server ="http ://www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep "condition data" |\

head -n 1 |\

sed -e 's/^.*="// ' -e 's/"\/*// ' |\

tr 'A-Z' 'a-z'

The second step was coercing LATEX to run these commands while processing my
document. To do that, I used package bashful,

\usepackage{bashful}

And, then, I wrapped each of these two series within a \bash. . . \END pair.

The \bash command, offered by this package, takes all subsequent lines, stopping
at the closing \END, places these in a file, and then lets the bash shell interpreter
execute this file.

Allowing LATEX to run arbitrary shell commands can be dangerous—you never
know whether that nice looking .tex file you received by email was prepared by a
friend or a foe. This is the reason that you have to tell LATEX explicitly that shell
escapes are allowed. The -shell-esc flag does that. To process my document, I
typed, at the command line,

% latex -shell-escape bashful.tex

What I actually wrote in the input to produce the temperature in Jerusalem,
Israel was:

\bash[verbose,scriptFile=temperature.sh,stdoutFile=temperature.tex]
% location=Jerusalem ,Israel

server ="http ://www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep temp_c |\

sed 's/[^0 -9]//g'

\END

The flags passed to the bash control sequence above instructed it:

1. to be verbose, typing out a detailed log of everything it did;

2. to save the shell commands in a script file named temperature.sh; and,

3. to store the standard output of the script in a file named temperature.tex.

To obtain the current weather condition in the capital I wrote:

3

\bash[verbose,scriptFile=condition.sh,stdoutFile=condition.tex]
% location=Jerusalem ,Israel

server ="http ://www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep "condition data" |\

head -n 1 |\

sed -e 's/^.*="// ' -e 's/"\/*// ' |\

tr 'A-Z' 'a-z'

\END

I wrote these two just after my \begin{document}. When LATEX encountered
these, it executed the bash commands and created two files temperature.tex and
condition.tex.

Subsequently, I could use the content of these files by writing:

At the time I run this document through \LaTeX{},

the temperature in Jerusalem , Israel ,

was~\emph{\input{temperature }\ unskip\celsius},

while the weather condition was

\emph{\input{condition }}\ unskip.

You may not care so much about these bits of truly

. . .

2 Application for Teaching Programming

bashful primary application is for writing documents which describe computer
programming. You can include the programs in your text, and have them compiled
and executed as part of the LATEX processing. To demonstrated I will first tell a
simple story of writing, compiling and executing and a short program. Then, I
will explain how I used the \bash command to not only tell the story, but also to
play it live: that is, authoring a simple C program, compiling it and executing it,
all from within LATEX.

2.1 A “Hello, World” Program

2.1.1 Authoring

Let’s first write a simple Hello, World! program in the C programming language:

% rm -f hello.c; cat << EOF > hello.c

/*

** hello.c: My first C program; it prints

** "Hello , World!", and dies.

*/

#include <stdio.h>

4

http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/C_(programming_language)

int main()

{

printf ("Hello , World!\n");

return 0;

}

EOF

2.1.2 Compiling

Now, let’s compile this program:

% cc hello.c

2.1.3 Executing

Finally, we can execute this program, and see that indeed, it prints the “Hello,
World!” string.

% ./a.out

Hello , World!

2.2 Behind the Scenes

2.2.1 Authoring

What I wrote in the input to produce the hello.c program was:

\bash[script]

rm -f hello.c; cat << EOF > hello.c

/*

** hello.c: My first C program; it prints

** "Hello, World!", and dies.

*/

#include <stdio.h>

int main()

{

printf("Hello, World!\n");

return 0;

}

EOF

\END

In doing so, all the text between the \bash and \END was sent to a temporary
file, which was then sent for execution. The script flag instructed \bash to list
this file in the main document. This listing was prefixed with % to make it clear
that it was input to bash.

5

2.2.2 Compiling

Next, I wrote

\bash[script,stdout]

cc hello.c

\END

As before, in doing that, I achieved two objectives: first, when LATEX processed
the input, it also invokes the C compiler to compile file hello.c, the file which I
just created.

Second, thanks to the script flag, the command for compiling this program was
included in the printed version of this document. The stdout option instructed
\bash to include plain messages, i.e., not error messages, produced by the compiler
in the printed version of this document. In this case, no such messages were
produced.

2.2.3 Executing

Finally, I wrote

\bash[script,stdout]

./a.out

\END

to run the program I just wrote. The stdout adds to my listing the output
that this execution produces, i.e., the string Hello, World! that this execution
produces to the standard output.

3 Dealing With Errors

Using bashful to demonstrate my Hello, World! program, made sure that the
story I told is accurate: I really did everything I said I did. More accurately, the
\bash command acted as my proxy, and did it for me.

Luckily, my hello.c program was correct. But, if it was not, the \bash com-
mand would have detected the error, and would have stopped the LATEX process,
indicating that the compilation did not succeed. More specifically, the \bash

command

1. collects all commands up to \END;

2. places these commands in a script file;

3. change directory to a designated directory if the hide option is set (the dir

option sets the directory name);

6

4. executes this script file, redirecting its standard output and its standard
error streams to distinct files;

5. checks whether the exit code of the execution indicates an error (i.e., exit
code which is different from 0), and if so, place this exit code in a distinct
file;

6. checks whether the file containing the standard error is empty, and if not,
pauses execution after displaying an error message;

7. checks whether the file containing the exit code is empty, and if not, pauses
execution after displaying an error message;

8. lists, if requested to, the script file;

9. lists, if requested to, the file containing the standard output; and,

10. lists, if requested to, the file containing the standard error;

Let me demonstrate a situation in which the execution of the script generates an
error. To do that, I will write a short LATEX file, named minimal.tex which tries
to use \bash to compile an incorrect C program. Since minimal.tex contains
\END, I will have to author this file in three steps:

1. Creating the header of minimal.tex:
% cat << EOF > minimal.tex

\documentclass{article}

\usepackage[a6paper]{ geometry}

\usepackage{bashful}

\pagestyle{empty}

\begin{document}

This document creates a simple erroneous C program

and then compiles it:

\bash[script ,stdout]

echo "main (){ return int;}" > error.c

cc error.c

EOF

2. Adding \END to minimal.tex
% echo "\\END" >> minimal.tex

3. Finalizing minimal.tex
% echo "\\end{document }" >> minimal.tex

Let me now make sure minimal.tex was what I expect it to be:

7

% cat minimal.tex

\documentclass{article}

\usepackage[a6paper]{ geometry}

\usepackage{bashful}

\pagestyle{empty}

\begin{document}

This document creates a simple erroneous C program

and then compiles it:

\bash[script ,stdout]

echo "main (){ return int;}" > error.c

cc error.c

\END

\end{document}

I am now ready to run minimal.tex through LATEX, but since I will not run the
latex command myself, I will send a “q” character to it to abort execution when
the anticipated error occurs.
% yes q | xelatex -shell -esc minimal.tex | sed /texmf -dist/d
This is XeTeX , Version 3.1415926 -2.4 -0.9998 (TeX Live 2012/ Debian)
\write18 enabled.

entering extended mode
(./ minimal.tex
LaTeX2e <2011/06/27 >
Babel <v3.8m> and hyphenation patterns for english , dumylang , nohyphenation , lo
aded.
Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
(/usr/share/texmf/tex/latex/xcolor/xcolor.sty
No file minimal.aux.
geometry driver: auto -detecting
geometry detected driver: xetex

Standard error not empty , and I was not instructed to ignore it.
>>>>>Your script file (minimal.sh) as I saw it was:
===
echo "main (){ return int;}" > error.c
cc error.c
===
While the standard error stream file (minimal.stderr) begins with
>>>>
>>>>error.c: In function main:
>>>>
but , you really ought to examine both files yourself!
! Your shell script failed
\checkScriptErrors@BL ...r shell script failed ...}

\BL@verbosetrue \logBL {Sw...
l.11 \END

? OK, entering \batchmode

You can see that when LATEX tried to process minimal.tex, it stopped execution
while indicating that file minimal.stderr was not empty after the compilation.
The first line of minimal.stderr was displayed, and I was advised to examine this
file myself. Inspecting minimal.stderr, we see the C compiler error messages:

% cat minimal.stderr

error.c: In function main:

error.c:1:15: error: expected expression before int

Note that the failure to compile hello.c, did not stop \bash from including this
file in the source.

Here is what minimal.pdf looks like:

8

This document creates a simple erroneous C
program and then compiles it:

% echo "main (){ return int ;}" > error.c

cc error.c

4 Other Commands

\bashStdout After each execution of \bash, the macro \bashStdout is defined
to entire contents of the standard output of the executed script.

For example, I can write

To obtain the following sentence:

\bash

uname -o

\END

\begin{quote}

‘‘This document was prepared on \emph{\bashStdout}’’

\end{quote}

To obtain the following sentence:

“This document was prepared on GNU/Linux”

\bashStderr Similar to \bashStderr, except that it is defined to the standard
error of the executed script. (Be ware that you must apply error tolerance
flags to use this command, since normally, if the script generates anything
to the standard error stream, LATEX processing will halt, asking for your
attention.)

\bashScript Similar to \bashStdout and \bashStderr, except that it is defined
to the content of the most recent script.

\splice Shell commands passed to the \splice macro are executed in a similar
fashion to commands enclosed between \bash and \END, but, in addition to
this execution, bashful incorporates the standard output into the main file.
For example, I can write

Here is a nice quote for you to remember.

\begin{quote}

\emph{\splice{fortune}}

\end{quote}

To obtain

Here is a nice quote for you to remember.

9

