
The PracTEX Journal, 2012, No. 1
Article revision 2012/10/18

Bashful Writing and Active Documents
Joseph (Yossi) Gil∗

Abstract In many ways, computerized typesetting still relies on metaphors drawn
from the letterpress printing domain and is concerned largely with the
production of documents printed on paper. Active documents is an
emerging technology by which the product of computerized typesetting
is more than an aesthetically pleasing composition of letters, words and
punctuation characters broken into lines and pages. An active document
offers modes of interaction with its reader, while the document itself may
change its content in response to events taking place in the external world.

Bashful documents, the concept proposed by the LATEX bashful pack-
age (implemented as a wrapper around the \write18 internal macroa ex-
tend this interaction to the time of the document creation. The author of
a textbook on computer programming, may use bashful to automatically
include in the text a transcript of a demonstration program, as it was ex-
ecuted in the time the document was authored. When writing a report
on an experiment, a scientist may employ bashful to automatically execute
the experiment, whenever the report text is run through LATEX, and even
include the results in the output document. In fact, using bashful a docu-
ment may include anything that can be computed, at the time of creation,
by bash, and the numerous Unix commandsb it may invoke.

aIn this document, I refer to TEX commands or macros, also called control
sequences, solely as “macros”.

bThe term “commands” shall refer both to Unix programs which can be in-
voked from the command line prompt, and to Bash internal commands.

1 Introduction

At the time I run this document through LATEX, the temperature in Jerusalem,
Israel, was 18°C, while the weather condition was clear.

You may not care so much about these bits of truly ephemeral value, but you
may be surprised that this information was produced automatically by the very

∗yogi@CS.Technion.AC.IL

http://en.wikipedia.org/wiki/Letterpress_printing
http://ctan.org/tex-archive/macros/latex/contrib/bashful
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Unix
http://www.latex-project.org/
http://en.wikipedia.org/wiki/Jerusalem

process of LATEXing. The LATEX source of this document included two sequences
of commands, the first responsible for producing the temperature and the second
for producing the weather condition. Each of these sequences was executed as
the source was run through LATEX; the output of this execution then replaced the
sequence and then laid out as part of the text.

1.1 Dynamic Web Pages

It should be mentioned that the entire bashful process is similar to the method of
generating dynamic web pages by “server-side scripting”, including processors
such as PHP, ASP, and Java server pages.

An author of a web site which employs PHP technology may start the cre-
ation of a page in his site by writing a simple text file named good.php, with the
following content�
<html >

<body bgcolor =" black" text =" yellow ">
<?php

$hour = date ("G");
if ($hour < 12)

echo "Good morning , dear surfer !";
else

echo "Good evening , dear surfer !";
?>

</body >
</html >
� �

Just before this web page is delivered to the surfing user, the web server
runs the page through a PHP processor, which executes all text enclosed be-
tween “<?php” and “?>” as a PHP program, replacing this text with the output of
this program. The PHP program in this case is

$hour = date ("G");
if ($hour < 12)

echo "Good morning , dear surfer !";
else

echo "Good evening , dear surfer !";

while the output of this program is either
Good morning , dear surfer !

or

2

http://en.wikipedia.org/wiki/Dynamic_web_page
http://en.wikipedia.org/wiki/Server-side_scripting
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/JavaServer_Pages

Good evening , dear surfer !

Thus, depending on the time of day in which the request was made to the
web server, file good.php will be sent to the user’s browser as either�
<html >

<body bgcolor =" black" text =" yellow ">
Good morning , dear surfer ! </body >

</html >
� �
or�
<html >

<body bgcolor =" black" text =" yellow ">
Good evening , dear surfer ! </body >

</html >
� �
And, the display on the user’s web browser will be as in Figure 1.

(a) (b)

Figure 1: Two views of the same dynamic web page

1.2 Dynamic vs. Active vs. Bashful Documents

As we have seen a dynamic document is a document whose content may change
just before it is delivered to the end user. Active documents go a step further,
allowing the user to interact with document, by e.g., filling in forms included
in the document, to click on buttons, navigate within and outside the document
etc. This is made possible by technologies such as “client-side scripting”, HTML
forms and PDF interactive elements.

3

http://en.wikipedia.org/wiki/Client_side_scripting
http://en.wikipedia.org/wiki/HTML_forms
http://en.wikipedia.org/wiki/HTML_forms
http://en.wikipedia.org/wiki/Portable_Document_Format#Interactive_elements

In contrast, bashful documents are characterized by the fact that their generation
may yield different results, based on the time and the environment of the creation.
For example, the weather report at the beginning of this document was produced
by employing the bashful package to automatically make an HTTP connection to
Google’s weather service and then incorporate the result into the document.

We can also distinguish a class of introspective documents, whose content de-
pends on meta-information of the contents. The sentence

“The document you are reading now was prepared from a single input file
named 00.tex, containing 737 lines and 3790 words of text.”

is an example of an introspective content in this article.
The main application of the bashful package is in the preparation of computer

programming articles and textbooks. Ideally, such a textbook would not use a
single programming example without testing it. My inspiration in writing the
bashful package dates to back to first edition of the seminal “The C Programming
Language” book by Kernighan and Ritchie, widely known as K&R. The preface
of this first edition tells its reader:

All examples have been tested directly from the text, which is in machine-
readable form.

And the second edition of K&R reiterates:

As before, all examples have been tested directly from the text, which is in
machine-readable form.

Bashful documents extend this idea a step further by executing and testing the
programs directly by the processing of the text by LATEX.

The article you are reading now is in itself a bashful document. The little
PHP program you have just seen was generated and executed directly by the text
processor, which was even employed to generate the screen captures in Figure 1.

This article also makes an example of an introspective document: It not only
uses the bashful package a number of times to show programming examples; it
also shows the reader what exactly I wrote in the input to produce this examples.
And, as you may expect, the macros that I used are not shown to you by me man-
ually copying the LATEX input and then pasting it into a verbatim environment.
Instead, the text processor is employed to introspectively fetch these macros from
the input text. Clearly, one of the main applications of introspection is for writing
documents that teach their readers how to use LATEX.

4

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.Google.com/support/forum/p/ apps-apis/thread?tid=0c95e45bd80def1a&hl=en
http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/The_C_Programming_Language
http://en.wikipedia.org/wiki/Brian_Kernighan
http://en.wikipedia.org/wiki/Dennis_Ritchie

Outline The remainder of this article is organized as follows. Section 2 explains
the bashful basics and demonstrates how it can be used for writing computer
programming textbooks. If you are interested in using bashful for writing docu-
ments discussing computer programming, this section, together with the bashful
package documentation should suffice.

The process by which the weather report at the time of authoring was included
in the beginning of this article is revealed in Section 3. Section 4 sheds some light
on bashful internals, providing hints on dealing with errors.

As you read this article, note that document introspection is used extensively
to show the actual input text in which the bashful package was used. I explain
how this was done in Section 5.

For the sake of completeness, the full LATEX source of this article is offered in
Appendix A. Interested readers may examine this source to learn more, e.g., how
Figure 1 was generated.

2 Bashful in Action

To demonstrate the bashful process, I now present a simple story of writing, com-
piling and executing and a simple program: Hello, World! in the C programming
language: Then, I shall explain how the bashful package was employed to play the
story live, that is, authoring the program, compiling it and executing it, all from
within LATEX.

2.1 “Hello, World!”, Said Again

My story begins with the creation of a text file named hello.c, in which the
program is stored.

% cat << EOF > hello.c
/*
** hello.c: My first C program ; it prints
** "Hello , World !", and dies.
*/
include <stdio.h>
int main ()
{

printf (" Hello , World !\n");

5

http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)

return 0;
}
EOF

(In the above, I used the cat Unix command to create a file in a manner known
as here document, where my delimiting identifier was the string EOF.)

Once I have written my program, it is only natural to invoke the C compiler
to translate it into an executable.

% cc hello.c

My little story reaches its climax when the program I created and compiled is
executed, making sure that it prints the desired “Hello, World!” greeting.

% ./a.out
Hello , World!

2.2 Retrospection

The document you are reading was generated from a LATEX input file whose name
is 00.tex. Examining file 00.tex, you can see what I wrote in it to tell my story
of the creation of file hello.c at the beginning of Section 2.1 above.

325 \ subsection {``Hello , World !'', Said Again }\ label{ Section :story}
326 My story begins with the creation of a text file named
327 \ texttt {hello.c}, in which the program is stored .
328 \bash[environment =quote , script]
329 cat << EOF > hello.c
330 /*
331 ** hello.c: My first C program ; it prints
332 ** "Hello , World !", and dies.
333 */
334 # include <stdio.h>
335 int main ()
336 {
337 printf (" Hello , World !\n");
338 return 0;
339 }
340 EOF
341 \END

In doing so, all the text between the \bash (line 328) and \END (line 341) was
copied by LATEX to a temporary script file; this script is then sent for execu-
tion by Bash. The script option instructed the \bash macro to list this file in

6

http://en.wikipedia.org/wiki/Cat_(Unix)
http://en.wikipedia.org/wiki/Here_document

the main document, while the environment=quote option instructed the \bash
macro enclose the listing in a quote environment, i.e., between \begin{quote}
and \end{quote}.

Note that two characters, “%␣”, were automatically prepended to the script
by the \bash macro. This is not an incident: %␣ is the default Bash prompt.
Prepending it makes it clear to the reader that the script file is input to bash.
(The prefix option to the \bash macro can be used to change this prefix string.)

To compile file hello.c that I just created, my 00.tex included another \bash
. . . \END pair.

347 Once I have written my program , it is only natural to invoke
348 the~C compiler to translate it into an executable .
349 \bash[environment =quote ,script , stderr]
350 cc hello.c
351 \END

As before, in writing these I achieved two objectives: first, when LATEX pro-
cessed 00.tex, it also invoked the C compiler to compile file hello.c, the file
which I just created. Second, thanks to the script option, the command for com-
piling this program was included in the typeset version of this document. The
stderr flag instructed the \bash macro to record the standard error stream of the
script’s execution, and layout this record further to the script. As can be seen
above, the program I wrote was correct, the compilation process did not generate
any error messages, and the standard error stream was left empty.

Finally, I executed the program I wrote. Here is another excerpt of 00.tex
showing how this was done.

352 My little story reaches its climax when the program I created
353 and compiled is executed , making sure that it prints the
354 desired ``Hello , World!'' greeting .
355 \bash[environment =quote ,script , stdout]
356 ./a.out
357 \END

The stdout flag passed to the \bash macro above, instructs it to append to the
script’s listing the standard output stream that this execution produces, i.e., the
string Hello, World!, as printed by program a.out to its standard output stream.

7

http://en.wikipedia.org/wiki/Command-line_interface#Command_prompt

2.3 Input Processing

The \bash command is defined in package bashful. To make use of this package,
I wrote in the preamble of 00.tex:

4 \ usepackage [verbose , unique]{ bashful }

The verbose boolean package option instructed the bashful package to be
chatty, typing out for me a lot of information on what it does as the document
is processed by LATEX. The unique option instructs the package to use unique
names, generated from the TEX’s job name (\jobname) and the current line num-
ber. This option is essential for documents, such as the present document, in
which the \bash command is used many times.

Allowing LATEX to run arbitrary shell commands can be dangerous—you never
know whether that nice looking .tex file you received by email was prepared by
a friend or a foe. This is the reason that you have to tell LATEX explicitly that shell
escapes are allowed. The -shell-escape command line flag does that. To process
my document, I typed, at the command line,

% xelatex -shell-escape 00.tex

3 Producing The Weather Information

A similar application of \bash to escape to shell was also used to produce the
above Jerusalem weather report. However, since I wanted this information inlined
in the text, I could not rely on the stdout flag to list the standard output of
commands.

Instead, I wrote a series of shell commands that retrieve the current temper-
ature, and another such series to obtain the current weather conditions. The
command series to obtain the current temperature, was placed in a file named
temperature.sh:�
location =Jerusalem , Israel
server =" http :// www. Google .com/ig/api"
request =" $server ? weather = $location "
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep temp_c |\
sed 's/[^0 -9]//g'
� �

8

while the weather condition was placed in a file named condition.sh�
location =Jerusalem , Israel
server =" http :// www. Google .com/ig/api"
request =" $server ? weather = $location "
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep " condition data" |\
head -n 1 |\
sed -e 's/^.*="// ' -e 's/"\/*// ' |\
tr 'A-Z' 'a-z'
� �

I then executed the scripts temperature.sh, and temperature.sh, redirecting
their output to files temperature.tex and condition.tex. All that remained was
\input these two files in my 00.tex.

90 At the time I run this document through
91 \href{http :// www.latex - project .org /}{\ LaTeX},
92 the \ hypertarget { report }{ temperature } in
93 \href{http :// en. wikipedia .org/wiki/ Jerusalem }{ Jerusalem },
94 Israel , was ~\ emph {\ input { temperature }\ unskip \ celsius },
95 while the weather condition was \emph {\ input{ condition }}\ unskip .

I could have created files temperature.sh and condition.sh manually, but it
made much more sense to both create and execute these using the \bash macro.
For temperature.sh, I wrote in 00.tex

67 \bash[scriptFile = temperature .sh , prefix ={}, stdoutFile = temperature .tex]
68 location =Jerusalem , Israel
69 server =" http :// www. Google .com/ig/api"
70 request =" $server ? weather = $location "
71 wget -q -O - $request |\
72 tr "<>" "\012\012" |\
73 grep temp_c |\
74 sed 's/[^0 -9]//g'
75 \END

Passing the option scriptFile=temperature.sh instructed \bash to use the name
temperature.sh to the script file it generated. The prefix={} option eliminated
the Bash prompt that is normally prepended to the script. The third option,
stdoutFile=temperature.tex saved the redirected output in a file named temperature.tex.
Since none of the script, stdout and stderr flags was used, the execution of the
script did not generate any text for typesetting by LATEX.
What I wrote for generating condition.sh, executing it, and saving the output in

9

condition.tex was very similar.
78 \bash[scriptFile = condition .sh , prefix ={}, stdoutFile = condition .tex]
79 location =Jerusalem , Israel
80 server =" http :// www. Google .com/ig/api"
81 request =" $server ? weather = $location "
82 wget -q -O - $request |\
83 tr "<>" "\012\012" |\
84 grep " condition data" |\
85 head -n 1 |\
86 sed -e 's/^.*="// ' -e 's/"\/*// ' |\
87 tr 'A-Z' 'a-z'
88 \END

4 Dealing with Errors

Using bashful to demonstrate my Hello, World! program, made sure that the story
I told is accurate: I really did everything I told the reader I did. More accurately,
the \bash command, acting as my proxy, did it for me.

Luckily, the program I wrote was correct. But, if it was not, the \bash macro
would have detected the error, and would have stopped the LATEX process, in-
dicating that the compilation did not succeed. To manage errors you should
understand that the execution of the \bash macro involves the following steps:

1. collecting all text up to \END;

2. placing this text in a script file;

3. executing this script file, redirecting its standard output and its standard
error streams to distinct files;

4. checking whether the exit code of the execution indicates an error (i.e., exit
code which is different from 0), and if so, place this exit code in a distinct
file;

5. checking whether the file containing the standard error is empty, and if not,
pausing execution after displaying an error message; and,

6. checking whether the file containing the exit code is empty, and if not, paus-
ing execution after displaying an error message;

10

After the completion of these steps, the \bash macro may incorporate for typeset-
ting three files in order: the script file (if the script flag is present), the standard
output file (if the stdout flag is present), and then the standard error file (if the
stderr flag is present).

Let me demonstrate a situation in which the execution of the script generates
an error. To do that, I will write a short LATEX file, named error.tex which tries
to use \bash to compile an incorrect C program. Since error.tex contains \END,
I will have to author this file in three steps:

1. Creating the header of error.tex:
% cat << EOF > error.tex
\ documentclass { article }
\ usepackage [a6paper]{ geometry }
\ usepackage { bashful }
\ pagestyle {empty}
\begin { document }
This document creates a simple erroneous C program

and then compiles it.
\bash[script , stdout]
echo "main (){ return int ;}" > error.c
cc error.c
EOF

2. Adding \END to error.tex
% echo "\\ END" >> error .tex

3. Finalizing error.tex
% cat << EOF >> error.tex
(I do not really expect the one -line
program generated above to compile .)
\end{ document }
EOF

Let me verify that error.tex is what I expect it to be:
% cat error .tex
\ documentclass { article }
\ usepackage [a6paper]{ geometry }
\ usepackage { bashful }
\ pagestyle { empty }
\begin{ document }
This document creates a simple erroneous C program

and then compiles it.

11

\bash[script , stdout]
echo "main (){ return int ;}" > error.c
cc error.c
\END
(I do not really expect the one -line
program generated above to compile .)
\end{ document }

I am now ready to run error.tex through LATEX, but since I will not run the
latex command myself, I will send a “q” character to it to abort execution when
the anticipated error occurs.
% yes q | xelatex -shell -esc error .tex | sed /texmf -dist/d
This is XeTeX , Version 3.1415926 -2.3 -0.9997.5 (TeX Live 2011)

\ write18 enabled .
entering extended mode
(./ error .tex
LaTeX2e <2011/06/27 >
Babel <v3 .8m> and hyphenation patterns for english , dumylang , nohyphenation , ge
rman -x -2011 -07 -01 , ngerman -x -2011 -07 -01 , afrikaans , ancientgreek , ibycus , arabi
c, armenian , basque , bulgarian , catalan , pinyin , coptic , croatian , czech , danis
h, dutch , ukenglish , usenglishmax , esperanto , estonian , ethiopic , farsi , finnis
h, french , galician , german , ngerman , swissgerman , monogreek , greek , hungarian ,

icelandic , assamese , bengali , gujarati , hindi , kannada , malayalam , marathi , or
iya , panjabi , tamil , telugu , indonesian , interlingua , irish , italian , kurmanji ,

lao , latin , latvian , lithuanian , mongolian , mongolianlmc , bokmal , nynorsk , pol
ish , portuguese , romanian , russian , sanskrit , serbian , serbianc , slovak , sloven
ian , spanish , swedish , turkish , turkmen , ukrainian , uppersorbian , welsh , loaded
.
Document Class : article 2007/10/19 v1 .4h Standard LaTeX document class
* geometry * driver : auto - detecting
* geometry * detected driver : xetex

Standard error not empty . Here is how
file error . stderr begins :
>>>>error .c: In function main:
>>>>
but , you really ought to examine this file yourself !
! Your shell script failed
\ checkScriptErrors@BL ...r shell script failed ...}

\ BL@verbosetrue \ logBL {Sw ...
l.11 \END

? OK , entering \ batchmode

(Observe that in the above I used the sed command to remove the mundane
and lengthy logging messages of my textmf distribution.1)

You can see that when LATEX tried to process error.tex, it stopped execution

1. I also switched to a smaller font size, to allow the output to fit within the boundaries of the
printed page.

12

http://www.gnu.org/software/sed/manual/sed.html

while indicating that file error.stderr was not empty after the compilation. The
first line of error.stderr was displayed, and I was advised to examine this file
myself. Inspecting error.stderr, we see the C compiler error messages:
% cat error . stderr
error.c: In function main:
error.c :1:15: error: expected expression before int

The compilation error did not prevent LATEX from typesetting my document.
This final layout is presented in Figure 2. Note that the failure to compile hello.c,
did not stop \bash from including this file in the source.

This document creates a simple erroneous C
program and then compiles it.

% echo "main (){ return int ;}" > error.c

cc error.c

(I do not really expect the one-line program
generated above to compile.)

Figure 2: File error.pdf

There are cases in which the author intends the executed script to generate
errors. The stderr option to the \bash macro instructs it to ignore the exit code
of the executed programww, and the fact that that output was generated to the
standard error stream. Instead, \bash will include in its listing the contents of the
standard error stream.

For example, to give you a taste of dealing with Bash script errors, I shall
write below a passage expressing the frustration over Bash insisting on syntax
trivialities.

638 A space must follow the opening square bracket ; if not
639 \ textsc {Bash} would not find the~``\ verb +[+'' command .
640 The following script may seem correct on first sight , yet , the
641 error message it produces may seem weird to beginners .

13

642 \bash[prefix ={}, script ,stdout , stderr]
643 if [2+2==5] ; then
644 echo " Freedom is the freedom to say that two plus two"
645 echo "make four. If that is granted , all else follows ."
646 fi
647 \END

Indeed, newcomers to Bash may find conditionals confoudning. Annoying
as it may sound, you have to remember rules such as: A space must follow
the opening square bracket; if not Bash would not find the “[” command. The
following script may seem correct on first sight, yet, the error message it produces
may seem weird to beginners.
if [2+2==5] ; then

echo " Freedom is the freedom to say that two plus two"
echo "make four. If that is granted , all else follows ."

fi
00 @647.sh: line 1: [2+2==5]: command not found

The error message in the above was anticipated; it was included in the listing
thanks to the stderr option. As explained, listing stdout instructs \bash to ignore
the script’s error code. LATEX processing of 00.tex does not stop as a result of this
error.

5 Introspection

This article uses document introspection to show the actual input used to produce
the examples. To achieve this, I used Unix commands to retrieve portions of
00.tex, my input file, and \input these. As we shall see, the sed command
proved instrumental in doing this.

Recall that at the beginning of Section 2.1, I wrote

My story begins with the creation of a text file named hello.c, in which the
program is stored.

Recall also that later, at the beginning of Section 2.2, I wrote

Examining file 00.tex, you can see what I wrote in it to tell my story of the
creation of file hello.c at the beginning of Section 2.1 above.

And, immediately afterwards, I gave an excerpt of file 00.tex.

14

To produce this excerpt, I applied the sed command to search in 00.tex.
Specifically, what I wrote in 00.tex was the following

362 Examining file \me , you can see what I wrote in it to
363 tell my story of the creation of file \ texttt {hello.c}
364 at the beginning of \ autoref { Section :story} above.
365 \bash[stdout]
366 cat -n 00. tex | sed -n '/Said Again /,// { p
367 /END/q }'
368 \END

I used the cat command to number my input lines, and then the sed command
to printing these lines, starting at the first line that contains the string “Said
Again”, and ending with line that contains the string “END”.

My use of sed implies that file 00.tex includes the string “Said Again” at
least twice. The first such occurrence was in the title of Section 2.1; the second
occurrence was in the application of sed to introspectively search for the use of the
\bash that followed this title. Subsequently, this document included several other
occurrences of “Said Again” (including this sentence itself); but let us concentrate
on the first two.

The search succeeded in finding the correct occurrence, since the search in-
structions occurred after it. You would need to apply a more sophisticated search
in the case that you wish to present an input excerpt prior to its actual occurrence
in the text. This was, for example, the case in the “taste” of Bash script errors
offered in the previous section. I applied Gawk for this search. In case you are
interested, the actual Unix pipeline I wrote was:

633 cat -n 00. tex|gawk '/A space must /{c++}c >1{ print }/ END /{if(c >1) exit}'

Acknowledgments The manner by which \bash collects its arguments is based on
that of tobiShell. Martin Scharrer tips on TEX internals were invaluable in writing
bashful.

A Source of 00.tex
1 \ documentclass { pracjourn }\ TPJrevision {2012}{10}{18}

\ TPJissue {2012}{1} \ TPJcopyright { }

\ usepackage [verbose , unique]{ bashful }
\ usepackage {gensymb ,graphicx ,xspace , amsmath }

15

http://www.gnu.org/software/gawk/
http://en.wikipedia.org/wiki/Pipeline_(Unix)
http://www.tn-home.de/Tobias/Soft/TeX/tobiShell.pdf

\ newcommand \ bashful {\ textsf { bashful }\ xspace }
\ newcommand \Bash {\ texttt {\ textup {\ textbackslash bash }}\ xspace }
\ newcommand \me {\ texttt {\ textup {\ jobname .tex }}\ xspace }

10
\ lstdefinestyle { input }{ basicstyle =\ ttfamily \ footnotesize ,

keywords ={} , upquote =true , extendedchars =false ,
showstringspaces =false , aboveskip =0pt , belowskip =0 pt}

\ lstdefinestyle { scriptsize }{ style =input , basicstyle =\ ttfamily \ scriptsize }

% listings style for the script , standard output file , and standard error file.
\ lstdefinestyle { bashfulScript }{ style = input }
\ lstdefinestyle { bashfulStdout }{ style = input }
\ lstdefinestyle { bashfulStderr }{ style =input ,

20 basicstyle =\ ttfamily \ footnotesize \ color {red }}

\ newcommand \ listFile [1]{%
\ vspace {0.8 em plus 0.3 em minus 0.3 em }%
\ lstinputlisting [style =input , frameround =ftttt , frame =trBL]{#1}%
\ vspace {0.8 em plus 0.3 em minus 0.3 em }}

\ title { Bashful Writing and Active Documents }
\ author { Joseph (Yossi) Gil\ thanks { yogi@CS . Technion .AC.IL }}
\ abstract {%

30 In many ways , computerized typesetting still relies on metaphors drawn from the
\href{http :// en. wikipedia .org/wiki/ Letterpress_printing } { letterpress
printing } domain and is concerned largely with the production of documents
printed on paper .

Active documents is an emerging technology by which the product of computerized
typesetting is more than an aesthetically pleasing composition of letters ,
words and punctuation characters broken into lines and pages .

An active document offers modes of interaction with its reader , while the
document itself may change its content in response to events taking place in
the external world .

40 \par
\emph{ Bashful documents }, the concept proposed by the \ LaTeX {}

\href{http :// ctan.org/tex - archive / macros / latex / contrib / bashful }{\ bashful }
package (implemented as a wrapper around the \ texttt {\ textbackslash write18 }
internal macro \ footnote {%

In this document , I refer to \TeX {} commands or macros , also called control
sequences , solely as ``macros ' '.}\ mbox{ }

extend this interaction to the \emph{time of the document creation }.
The author of a textbook on computer programming , may use \ bashful to

automatically include in the text a transcript of a demonstration program , as
50 it was executed in the time the document was authored .

When writing a report on an experiment , a scientist may employ \ bashful to
automatically execute the experiment , whenever the report text is run through
\ LaTeX {}, and even include the results in the output document .

In fact , using \ bashful a document may include anything that can be computed ,
at the time of creation , by

\href{http :// en. wikipedia .org/wiki/Bash_(Unix\ _shell)}{\ textsc {bash }},
and the numerous Unix commands \ footnote {The term ``commands '' shall

refer both to \href{http :// en. wikipedia .org/wiki/Unix }{ Unix} programs which
can be invoked from the command line prompt , and to \ textsc {Bash} internal

16

60 commands .}\ mbox{ } it may invoke .
}

\ begin { document }

\ maketitle

\ section { Introduction }
\bash[scriptFile = temperature .sh , prefix ={} , stdoutFile = temperature .tex]
location =Jerusalem , Israel

70 server =" http :// www. Google .com/ig/api"
request =" $server ? weather = $location "
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep temp_c |\
sed 's/[^0 -9]//g'
\END

\bash[scriptFile = condition .sh , prefix ={} , stdoutFile = condition .tex]
location =Jerusalem , Israel

80 server =" http :// www. Google .com/ig/api"
request =" $server ? weather = $location "
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep " condition data" |\
head -n 1 |\
sed -e 's/^.*="// ' -e 's/"\/*// ' |\
tr 'A-Z' 'a-z'
\END

90 At the time I run this document through
\href{http :// www.latex - project .org /}{\ LaTeX },
the \ hypertarget { report }{ temperature } in
\href{http :// en. wikipedia .org/wiki/ Jerusalem }{ Jerusalem },
Israel , was ~\ emph {\ input { temperature }\ unskip \ celsius },
while the weather condition was \emph {\ input { condition }}\ unskip .

You may not care so much about these bits of truly ephemeral value ,
but you may be surprised that this information was produced automatically
by the very process of \ LaTeX {} ing.

100 The \ LaTeX {} source of this document included two sequences of commands , the
first responsible for producing the temperature and the second for producing
the weather condition .

Each of these sequences was executed as the source was run through \ LaTeX {};
the output of this execution then replaced the sequence and then laid out as
part of the text.

\ subsection { Dynamic Web Pages }
It should be mentioned that the entire bashful process is similar to the method

of generating \href{http :// en. wikipedia .org/wiki/ Dynamic_web_page }{ dynamic
110 web pages } by ``\href{http :// en. wikipedia .org/wiki/Server - side_scripting }

{server -side scripting }'', including processors such as
\href{http :// en. wikipedia .org/wiki/PHP }{ PHP},

17

\href{http :// en. wikipedia .org/wiki/ Active_Server_Pages }{ ASP}, and
\href{http :// en. wikipedia .org/wiki/ JavaServer_Pages }{ Java server pages }.

An author of a web site which employs PHP technology may start the creation of
a page in his site by writing a simple text file named \ texttt {good.php}, with

the following content
\bash[scriptFile =good.sh]

120 cat << EOF > good.php
<html >

<body bgcolor =" black " text =" yellow ">
<?php

\ $hour = date ("G");
if (\ $hour < 12)

echo "Good morning , dear surfer !";
else

echo "Good evening , dear surfer !";
?>

130 </body >
</html >
EOF
\END
\ listFile {good.php}

Just before this web page is delivered to the surfing user , the web server runs
the page through a \emph{PHP processor }, which executes all text enclosed
between ~``\ texttt {<? php}'' and ``\ texttt {?>}'' as a PHP program , replacing
this text with the output of this program .

140 The PHP program in this case is
\bash[stdout , stdoutFile =good.html , scriptFile =good.php.sh]
sed -n "/ hour /,/ evening / p" good.php
\END
while the output of this program is either
\bash[stdout , stdoutFile = morning .out , scriptFile = morning .sh]
grep morning good.php | sed -e s/echo // -e "s /;//" -e "s /\"// g"
\END
or
\bash[stdout , stdoutFile = evening .out , scriptFile = evening .sh]

150 grep evening good.php | sed -e s/echo // -e "s /;//" -e "s /\"// g"
\END

Thus , depending on the time of day in which the request was made to the web
server , file \ texttt {good.php} will be sent to the user 's browser as either

\bash[scriptFile = morning .html.sh]
php good.php | sed s/ evening / morning / > morning .html
\END
\ listFile { morning .html}
or

160 \bash[scriptFile = evening .html.sh]
php good.php | sed s/ morning / evening / > evening .html
\END
\ listFile { evening .html}

And , the display on the user 's web browser will be

18

as in \ autoref { Figure : firefox }.

\ begin { figure }[!h]
\bash[scriptFile = firefox .sh , ignoreStderr]

170 rm evening .png morning .png
firefox =` pgrep firefox `
if [-n " $firefox "]; then

wmctrl -c firefox
kill $firefox
killall firefox

fi
firefox -CreateProfile delme
firefox -P delme morning .html &
sleep 2

180 wmctrl -r " Mozilla Firefox " -b remove , maximized_vert , maximized_horz
wmctrl -r " Mozilla Firefox " -e 0 ,0 ,0 ,270 ,150
sleep 1
scrot -u morning .png
wmctrl -c firefox
killall firefox
firefox -P delme evening .html &
sleep 2
wmctrl -r " Mozilla Firefox " -b remove , maximized_vert , maximized_horz
wmctrl -r " Mozilla Firefox " -e 0 ,0 ,0 ,270 ,150

190 scrot -u evening .png
wmctrl -c firefox
killall firefox
if [-n " $firefox "]; then

echo $firefox
firefox -P default &

fi
\END
\ centering
\ begin { tabular }{ cc}

200 \ includegraphics [width =0.4\ textwidth]{ morning .png}
&
\ includegraphics [width =0.4\ textwidth]{ evening .png}
\\
\ bfseries (a) & \ bfseries (b)
\end{ tabular }
\ caption {Two views of the same dynamic web page}
\ label { Figure : firefox }
\ label { firefox }
\end{ figure }

210
\ subsection { Dynamic vs. Active vs. Bashful Documents }
As we have seen a \emph{ dynamic document } is a document whose content may

change just before it is delivered to the end user.
\emph{ Active documents } go a step further , allowing the user to interact with

document , by e.g., filling in forms included in the document , to click on
buttons , navigate within and outside the document etc.

This is made possible by technologies such as
\href{http :// en. wikipedia .org/wiki/ Client \ _side \ _scripting }{`` client -side

19

scripting ''}, \href{http :// en. wikipedia .org/wiki/HTML\ _forms }{ HTML forms }
220 and \href{http :// en. wikipedia .org/wiki /%

Portable \ _Document \ _Format \# Interactive \ _elements }
{PDF interactive elements }.

In contrast , \emph{ bashful documents } are characterized by the fact that their
\emph{ generation } may yield different results , based on the time and the

environment of the creation .
For example , the weather report at the \ hyperlink { report }{ beginning } of this

document was produced by employing the \ bashful package to automatically make
an \href{http :// en. wikipedia .org/wiki/ Hypertext_Transfer_Protocol }{ HTTP}

230 connection to \href{http :// www. Google .com/ support / forum /p/ apps -apis/ thread ?%
tid =0 c95e45bd80def1a &hl=en }{ Google 's weather service } and then incorporate
the result into the document .

We can also distinguish a class of \emph{ introspective documents }, whose
content depends on meta - information of the contents . The sentence

\ begin { quote }
\bash
wc -l 00. tex | sed s/00. tex // > lines .tex
wc -w 00. tex | sed s/00. tex // > words .tex

240 \END
``\ textsl {The document you are reading now was prepared from a single input file

named \me , containing \emph {\ input { lines }\ unskip } lines and
\emph {\ input { words }\ unskip } words of text .}''

\end{ quote }
is an example of an introspective content in this article .

The main application of the \ bashful package is in the preparation of computer
programming articles and textbooks .

Ideally , such a textbook would not use a single programming example without
250 testing it.

My inspiration in writing the \ bashful package
dates to back to first edition of the seminal
\href{http :// en. wikipedia .org/wiki/ The_C_Programming_Language }

{``The C Programming Language ''} book by
\href{http :// en. wikipedia .org/wiki/ Brian_Kernighan }

{ Kernighan } and
\href{http :// en. wikipedia .org/wiki/ Dennis \ _Ritchie }

{ Ritchie }, widely known as K\&R.
The preface of this first edition tells its reader :

260 \ begin { quote }
\ textit {All examples have been tested directly from the text ,
which is in machine - readable form .}

\end{ quote }
And the second edition of K\&R reiterates :
\ begin { quote }

\ textit {As before ,
all examples have been tested directly from the text ,

which is in machine - readable form .}
\end{ quote }

270 Bashful documents extend this idea a step further by executing and testing the
programs directly by the processing of the text by \ LaTeX .

20

The article you are reading now is in itself a bashful document .
The little PHP program you have just seen was generated and executed directly

by the text processor , which was even employed to generate the screen captures
in \ autoref { Figure : firefox }.

This article also makes an example of an introspective document :
It not only uses the \ bashful package a number of times to show programming

280 examples ; it also shows the reader what exactly I wrote in the input to
produce this examples .

And , as you may expect , the macros that I used are not shown to you by me
manually copying the \ LaTeX {} input and then pasting it into a
\ texttt { verbatim } environment .

Instead , the text processor is employed to introspectively fetch these macros
from the input text.

Clearly , one of the main applications of introspection is for writing documents
that teach their readers how to use \ LaTeX {}.

290 \ renewcommand \ sectionautorefname { Section }
\ renewcommand \ subsectionautorefname { Section }
\ paragraph { Outline }
The remainder of this article is organized as follows .
\ autoref { Section : action } explains the \ bashful basics and demonstrates how it

can be used for writing computer programming textbooks .
If you are interested in using \ bashful for writing documents discussing

computer programming , this section , together with the \ bashful package
documentation should suffice .

300 The process by which the weather report at the time of authoring was included
in the \ hyperlink { report }{ beginning } of this article is revealed in
\ autoref { Section : weather }.

\ autoref { Section : errors } sheds some light on \ bashful internals , providing hints
on dealing with errors .

As you read this article , note that document introspection is used extensively
to show the actual input text in which the \ bashful package was used. I
explain how this was done in \ autoref { Section : introspection }.

310 For the sake of completeness , the full \ LaTeX {} source of this article is
offered in \ autoref { Section : source }.

Interested readers may examine this source to learn more , e.g., how
\ autoref { Figure : firefox } was generated .

\ section { Bashful in Action }\ label { Section : action }
To demonstrate the bashful process , I now present a simple story of writing ,

compiling and executing and a simple program :
\href{http :// en. wikipedia .org/wiki/ Hello_world_program }{ Hello , World !} in the
\href{http :// en. wikipedia .org/wiki/C_(programming_language)}{C programming

320 language }:
Then , I shall explain how the \ bashful package was employed to play the story

live , that is , authoring the program , compiling it and executing it , all from
within \ LaTeX {}.

21

\ subsection {``Hello , World !'', Said Again }\ label { Section : story }
My story begins with the creation of a text file named

\ texttt { hello .c}, in which the program is stored .
\bash[environment =quote , script]
cat << EOF > hello .c

330 /*
** hello .c: My first C program ; it prints
** "Hello , World !", and dies.
*/
include <stdio .h>
int main ()
{

printf (" Hello , World !\n");
return 0;

}
340 EOF

\END
(In the above , I used the \href{http :// en. wikipedia .org/wiki/Cat_(Unix)}

{\ texttt {cat }} Unix command to create a file in a manner known as
\href{http :// en. wikipedia .org/wiki/ Here_document }{\ emph{here document }}, where

my delimiting identifier was the string \ texttt {EOF }.)

Once I have written my program , it is only natural to invoke
the~C compiler to translate it into an executable .

\bash[environment =quote ,script , stderr]
350 cc hello .c

\END
My little story reaches its climax when the program I created

and compiled is executed , making sure that it prints the
desired ``Hello , World !'' greeting .

\bash[environment =quote ,script , stdout]
./a.out
\END

\ subsection { Retrospection }\ label { Section : retrospection }
360 The document you are reading was generated from a \ LaTeX {} input file whose name

is \me.
Examining file \me , you can see what I wrote in it to

tell my story of the creation of file \ texttt { hello .c}
at the beginning of \ autoref { Section : story } above .

\bash[stdout]
cat -n 00. tex | sed -n '/Said Again / ,// { p

/END/q }'
\END
% Applies sed to introspectively search the input

370
\bash
cat -n 00. tex | sed -n '/Said Again / ,// {

/\\ bash/ { =
q

}
}'
\END\let\ firstBash \ bashStdout

22

\bash
cat -n 00. tex | sed -n '/Said Again / ,// {

380 /END/ {
=
q

}
}'
\END\let\ lastBash \ bashStdout

In doing so , all the text between the \Bash (line \ firstBash) and \verb +\ END+
(line \ bashStdout) was copied by \ LaTeX {} to a temporary script file; this
script is then sent for execution by \ textsc {Bash }.

390 The \ texttt { script } option instructed the \Bash macro to list this file in the
main document , while the \ texttt { environment = quote } option instructed the

\Bash macro enclose the listing in a \ texttt { quote } environment , i.e., between
\verb +\ begin { quote }+ and \verb +\ end{ quote }+.

Note that two characters , ``\verb *+% +'', were automatically prepended to the
script by the \Bash macro .

This is not an incident : \verb *+% + is the default \ textsc {Bash}
\href{http :// en. wikipedia .org/wiki/Command - line_interface \# Command_prompt }
{ prompt }.

400 Prepending it makes it clear to the reader that the script file is input to
\ textsc {bash }.

(The \ texttt { prefix } option to the \Bash macro can be used to change this
prefix string .)

To compile file \ texttt { hello .c} that I just created , my \ texttt {00. tex}
included another \Bash \ ldots \verb +\ END+ pair.

\bash[stdout]
cat -n 00. tex | sed -n '/Once I have written / ,// { p

/END/q }'
410 \END

As before , in writing these I achieved two objectives : first , when \ LaTeX {}
processed \me , it also invoked the~C compiler to compile file
\ texttt { hello .c}, the file which I just created .

Second , thanks to the \ texttt { script } option , the command for compiling this
program was included in the typeset version of this document .

The \ texttt { stderr } flag instructed the \Bash macro to record the standard
error stream of the script 's execution , and layout this record further to the
script .

As can be seen above , the program I wrote was correct , the compilation process
420 did not generate any error messages , and the standard error stream was left

empty .

Finally , I executed the program I wrote .
Here is another excerpt of \me showing how this was done.
\bash[stdout]
cat -n 00. tex | sed -n '/ climax / ,// { p

/END/q }'
\END
The \ texttt { stdout } flag passed to the \Bash macro above , instructs it to

430 append to the script 's listing the standard output stream that this execution

23

produces , i.e., the string \ texttt {Hello , World !}, as printed by program
\ texttt {a.out} to its standard output stream .

\ subsection { Input Processing }
The \Bash command is defined in package \ bashful .
To make use of this package , I wrote in the preamble of \me:
\bash[stdout]
cat -n 00. tex | sed -n '/ bashful / ,// { p

/ bashful /q }'
440 \END

The \ texttt { verbose } boolean package option instructed the \ bashful package to
be chatty , typing out for me a lot of information on what it does as the
document is processed by \ LaTeX {}.

The \ texttt { unique } option instructs the package to use unique names ,
generated from the \TeX {}'s job name (\ verb +\ jobname +) and the
current line number .

This option is essential for documents , such as the present document ,
in which the \verb +\ bash+ command is used many times .

450 Allowing \ LaTeX {} to run arbitrary shell commands can be dangerous ---you never
know whether that nice looking \ texttt {. tex} file you received by email was
prepared by a friend or a foe.

This is the reason that you have to tell \ LaTeX {} explicitly that shell escapes
are allowed .

The \ texttt {-shell - escape } command line flag does that.
To process my document , I typed , at the command line ,
\ begin { quote }

\ texttt {\% xelatex -shell - escape \me}
\end{ quote }

460
\ section { Producing The Weather Information } \ label { Section : weather }
A similar application of \Bash to escape to shell was also used to

produce the above Jerusalem weather report .
However , since I wanted this information inlined in the text , I could not rely

on the \ texttt { stdout } flag to list the standard output of commands .

Instead , I wrote a series of shell commands that retrieve the current
temperature , and another such series to obtain the current weather conditions .

The command series to obtain the current temperature , was placed in a file
470 named \ texttt { temperature .sh }:

\ listFile { temperature .sh}
while the weather condition was placed in a file named \ texttt { condition .sh}
\ listFile { condition .sh}

I then executed the scripts \ texttt { temperature .sh}, and
\ texttt { temperature .sh}, redirecting their output to files
\ texttt { temperature .tex} and \ texttt { condition .tex }.

All that remained was \verb +\ input + these two files in my \ texttt {\ jobname .tex }.
\bash[stdout , stdoutFile = weather .tex]

480 cat -n 00. tex | sed -n '/At the time I run / ,// { p
/ while the weather condition /q }'

\END

24

I could have created files \ texttt { temperature .sh} and \ texttt { condition .sh}
manually , but it made much more sense to both create and execute these using
the \Bash macro .

For \ texttt { temperature .sh}, I wrote in \ texttt {\ jobname .tex}
\bash[stdout , stdoutFile = temperature .lst]
cat -n 00. tex | sed -n '/ temperature .sh / ,// { p

490 /END/q }'
\END
\ noindent
Passing the option \ texttt { scriptFile = temperature .sh} instructed \Bash to

use the name \ texttt { temperature .sh} to the script file it generated .
The \verb+ prefix ={}+ option eliminated the \ textsc {Bash} prompt that is normally

prepended to the script .
The third option , \verb+ stdoutFile = temperature .tex+ saved the

redirected output in a file named \ texttt { temperature .tex }.
Since none of the \ texttt { script }, \ texttt { stdout } and \ texttt { stderr } flags

500 was used , the execution of the script did not generate any text for
typesetting by \ LaTeX {}.

\ noindent What I wrote for generating \ texttt { condition .sh},
executing it , and saving the output in \ texttt { condition .tex}
was very similar .

\bash[stdout]
cat -n 00. tex | sed -n '/ condition .sh / ,// { p

/END/q }'
\END

510
\ section { Dealing with Errors }\ label { Section : errors }
Using \ bashful {} to demonstrate my \emph{Hello , World !} program , made sure that

the story I told is accurate :
I really did everything I told the reader I did.
More accurately , the \Bash command , acting as my proxy , did it for me.

Luckily , the program I wrote was correct .
But , if it was not , the \Bash macro would have detected the error , and

would have stopped the \ LaTeX {} process , indicating that the compilation did
520 not succeed .

To manage errors you should understand that the execution of the \Bash
macro involves the following steps :

\ begin { enumerate }
\item collecting all text up to \verb +\ END +;
\item placing this text in a script file;
\item executing this script file , redirecting its standard output

and its standard error streams to distinct files ;
\item checking whether the exit code of the execution indicates an error (i.e.,

exit code which is different from~0), and if so , place this exit code in a
530 distinct file;

\item checking whether the file containing the standard error is empty , and if
not , pausing execution after displaying an error message ; and ,

\item checking whether the file containing the exit code is empty , and if not ,
pausing execution after displaying an error message ;

\end{ enumerate }
After the completion of these steps , the \Bash macro may incorporate for

25

typesetting three files in order : the script file (if the \text{ script } flag
is present), the standard output file (if the \text{ stdout } flag is present),
and then the standard error file (if the \text{ stderr } flag is present).

540
Let me demonstrate a situation in which the execution of the script generates

an error .
To do that , I will write a short \ LaTeX {} file , named \ texttt { error .tex} which

tries to use \Bash to compile an incorrect ~C program .
Since \ texttt { error .tex} contains \verb +\ END+, I will have to author this file

in three steps :
\ begin { enumerate }
\item Creating the header of \ texttt { error .tex }:
\bash[script]

550 cat << EOF > error .tex
\ documentclass { article }
\ usepackage [a6paper]{ geometry }
\ usepackage { bashful }
\ pagestyle { empty }
\ begin { document }
This document creates a simple erroneous C program

and then compiles it.
\bash[script , stdout]
echo "main (){ return int ;}" > error .c

560 cc error .c
EOF
\END
\item Adding \verb +\ END+ to \ texttt { error .tex}
\bash[script]
echo "\\ END" >> error .tex
\END
\item Finalizing \ texttt { error .tex}
\bash[script]
cat << EOF >> error .tex

570 (I do not really expect the one -line
program generated above to compile .)
\end{ document }
EOF
\END
\end{ enumerate }
Let me verify that \ texttt { error .tex} is what I expect it to be:
\bash[script , stdout]
cat error .tex
\END

580
I am now ready to run \ texttt { error .tex} through \ LaTeX {}, but since I will not

run the \ texttt { latex } command myself , I will send a ``\ texttt {q}'' character
to it to abort execution when the anticipated error occurs .

\ lstdefinestyle { bashfulScript }{ style = scriptsize }
\ lstdefinestyle { bashfulStdout }{ style = scriptsize }
\bash[script , stdout]
yes q | xelatex -shell -esc error .tex | sed /texmf -dist/d
\END

26

590 \ lstdefinestyle { bashfulScript }{ style = input }
\ lstdefinestyle { bashfulStdout }{ style = input }

(Observe that in the above I used the
\href{http :// www.gnu.org/ software /sed/ manual /sed.html }{\ texttt {sed }}
command to remove the mundane and lengthy logging messages of my
\ texttt { textmf } distribution .%

\ footnote {I also switched to a smaller font size , to allow
the output to fit within the boundaries of the printed page .})

600 You can see that when \ LaTeX {} tried to process \ texttt { error .tex}, it stopped
execution while indicating that file \ texttt { error . stderr } was not empty
after the compilation . The first line of \ texttt { error . stderr } was displayed ,
and I was advised to examine this file myself .

Inspecting \ texttt { error . stderr }, we see the C compiler error messages :
\bash[script , stdout]
cat error . stderr
\END

The compilation error did not prevent \ LaTeX {} from typesetting my document .
610 This final layout is presented in \ autoref { Figure : error }.

Note that the failure to compile \ texttt { hello .c}, did not stop \Bash
from including this file in the source .

\ begin { figure }[!h]
\ begin { center }

\fbox {\ includegraphics [scale =0.8 , trim =0 200 0 0]{ error .pdf }}
\end{ center }
\ caption {File \ texttt { error .pdf }}\ label { Figure : error }
\end{ figure }

620
There are cases in which the author intends the executed script to generate

errors .
The \ texttt { stderr } option to the \Bash macro instructs it to

\emph{ ignore } the exit code of the executed programww , and the fact that that
output was generated to the standard error stream .

Instead , \Bash will include in its listing the contents of the standard
error stream .

For example , to give you a taste of dealing with \ textsc {Bash} script errors , I
630 shall write below a passage expressing the frustration over \ textsc {Bash}

insisting on syntax trivialities .
\bash[stdout]
cat -n 00. tex|gawk '/A space must /{c++}c >1{ print }/ END /{ if(c >1) exit}'
\END

Indeed , newcomers to \ textsc {Bash} may find conditionals confoudning .
Annoying as it may sound , you have to remember rules such as:
A space must follow the opening square bracket ; if not

\ textsc {Bash} would not find the~``\ verb +[+'' command .
640 The following script may seem correct on first sight , yet , the

error message it produces may seem weird to beginners .
\bash[prefix ={} , script ,stdout , stderr]

27

if [2+2==5] ; then
echo " Freedom is the freedom to say that two plus two"
echo "make four. If that is granted , all else follows ."

fi
\END

The error message in the above was anticipated ; it was included
650 in the listing thanks to the \ texttt { stderr } option .

As explained , listing \ texttt { stdout } instructs \Bash to ignore
the script 's error code.

\ LaTeX {} processing of \ texttt {\ jobname .tex}
does not stop as a result of this error .

\ section { Introspection }
\ label { Section : introspection }
This article uses document introspection to show the actual input used to

produce the examples .
660 To achieve this , I used Unix commands to retrieve portions of

\ texttt {\ jobname .tex}, my input file , and \verb +\ input + these .
As we shall see , the \ texttt {sed} command proved instrumental in doing this.

Recall that at the beginning of \ autoref { Section : story }, I wrote
\bash[stdoutFile = begins .tex]
cat 00. tex | sed -n '/ begins / ,// { p

/ stored /q }'
\END
\ begin { quote }

670 \ textit {\ input { begins .tex }}
\end{ quote }
Recall also that later , at the beginning of

\ autoref { Section : retrospection }, I wrote
\bash[stdoutFile = examining .tex]
cat 00. tex | sed -n '/ Examining / ,// { p

/ above /q }'
\END
\ begin { quote }

\ textit {\ input { examining .tex }}
680 \end{ quote }

And , immediately afterwards , I gave an excerpt of file \ texttt {\ jobname .tex }.

To produce this excerpt , I applied the \ texttt {sed}
command to search in \ texttt {\ jobname .tex }.

Specifically , what I wrote in \ texttt {\ jobname .tex} was the following
\bash[stdout]
cat -n 00. tex | sed -n '/ Examining / ,// {

/ introspectively search the input /q
p }'

690 \END
I used the \ texttt {cat} command to number my input lines , and then the

\ texttt {sed} command to printing these lines , starting at the first line that
contains the string ``Said Again '', and ending with line that contains the
string ``END ''.

28

My use of \ texttt {sed} implies that file \ texttt {\ jobname .tex} includes
the string ``Said Again '' at least twice .

The first such occurrence was in the title of \ autoref { Section : story }; the
second occurrence was in the application of \ texttt {sed} to introspectively

700 search for the use of the \Bash that followed this title .
Subsequently , this document included several other occurrences of

``Said Again '' (including this sentence itself); but let us concentrate
on the first two.

The search succeeded in finding the correct occurrence , since the search
instructions occurred \emph{ after } it.

You would need to apply a more sophisticated search in the case that you
wish to present an input excerpt prior to its actual occurrence in the text.

This was , for example , the case in the ``taste '' of \ textsc {Bash} script errors
710 offered in the previous section .

I applied \href{http :// www.gnu.org/ software /gawk /}{ Gawk}
for this search .

In case you are interested , the actual \href{http :// en. wikipedia .org/wiki /%
Pipeline _(Unix)} {Unix pipeline } I wrote was:

\bash[stdout]
cat -n 00. tex | sed -n '/gawk / ,// { p

q }'
\END

720 \ paragraph { Acknowledgments }
The manner by which \Bash collects its arguments is based on that of

\href{http :// www.tn -home.de/ Tobias /Soft/TeX/ tobiShell .pdf }{\ textsf { tobiShell }}.
Martin Scharrer tips on \TeX {} internals were invaluable in writing \ bashful .
\ appendix
\ section { Source of \ texttt {\ jobname .tex }}
\ label { Section : source }

\ lstinputlisting
[style =input ,

basicstyle =\ scriptsize \ttfamily ,
730 numbers =left ,

stepnumber =10 ,
firstnumber =1,
numberfirstline =true ,
numberstyle =\ scriptsize \ rmfamily \ bfseries

]
{\ jobname .tex}

\end{ document }

29

	Introduction
	Dynamic Web Pages
	Dynamic vs. Active vs. Bashful Documents

	Bashful in Action
	``Hello, World!'', Said Again
	Retrospection
	Input Processing

	Producing The Weather Information
	Dealing with Errors
	Introspection
	Source of 00.tex

