
The PracTEX Journal, 2010, No. 2
Article revision 2010/10/18

Square, multiline cells using tabular(x)
Bastiaan Jacques

Abstract I describe a method for creating square cells, containing multiple lines
typeset in paragraph mode using the array package. Both plain LATEX
tabular and the tabularx packages are facilitated.

1 Introduction

Lorem
ipsum

dolor sit

amet,
consecte-

tur
. . .

elit, sed
do

eiusmod
. . .

ut labore
et dolore

magna
aliqua.

Ut enim

ad
minim
veniam

quis

nostrud
exercita-

tion

ullamco
laboris

Figure 1: The target

Will Robertson describes how to create
square cells in LATEX. Robertson’s approach
has one limitation: it does not handle vari-
able cell contents, particularly multiple lines
typeset in paragraph mode, especially well.1

In this article I describe a solution that
permits creation of square cells that (can)
contain several lines of text, varying in num-
ber.2 This article only concerns itself with
the question of how to create such tables, not
whether doing so would be a good idea.3 4

2 Struts

Let’s start with a little background. The ap-
proach most frequently taken to increase cell height is to use struts. Here is a

1. It seems likely that this use was never intended by Robertson; this comment should not be
taken as a criticism.
2. Like Robertson’s, this article can be considered an array cooking lesson. Familiarity with basic
array functionality is, therefore, assumed.
3. I found myself needing square tables only to faithfully reproduce work from another author.
4. For a detailed discussion of what constitutes a ‘good’ table, please refer to the booktab package
documentation.

cba Creative Commons Attribution-ShareAlike 3.0 Unported License

http://tug.org/pracjourn/2005-2/robertson/robertson.pdf
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=array
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=array
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=booktab
http://creativecommons.org/licenses/by-sa/3.0/

quick example that struts the first row:

X Y Z
Z X Y

\begin { tabular }{l|l|l}
{\ large \strut } X & Y & Z \\

Z & X & Y
\end{ tabular }

Aside from struts, commands such as \arraystretch and \extrarowheight
are available. They are not suitable for columns set in paragraph mode, because
the row height is scaled with respect to individual row contents when using either
of these methods. When uniformity is desired, the scaling must not vary in that
manner.

Given struts, all we would have to do is figure out exactly how high our rows
should be and adjust the struts’ height accordingly. Unfortunately, this approach
does not work as expected because the strut influences the other contents of a
cell and vice versa. This is because struts are designed to work on a single line.
This would be fine if we had single-line cells since any adjustments would be the
same for each cell. For multiline cells, adjustments would vary depending on the
number of lines present.

3 Minipages?

One solution that comes to mind for multi-line cells is to add another column
containing only struts.5 However, I try to avoid mixing typesetting logic with my
tabular data. A better approach is to subdivide the contents of the cell into two
minipages. Using the array package, we can keep this logic well away from our
tabular data.

Flawed
solution

\ newcolumntype {s}[1]{ %
>{\ begin { minipage }{0 pt}%

\rule {0pt }{#1 + 2\ tabcolsep }%
\end{ minipage }%
\begin { minipage }[c]{#1} %
\ centering \ arraybackslash }

m{#1}
<{\ end{ minipage }}

5. This interferes with automatic width calculation by e.g. tabularx.

2

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=array
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx

\begin { tabular }{*{3}{| s{4em }}|}
... table data goes here ...

\end{ tabular }

You’ll note that instead of a \strut I’m using a zero-width \rule, which takes
the desired height as its second argument.

The approach using minipages produces output that’s exactly what we were
looking for. But it has the downside of being a bit clumsy; it makes the m{...}
specifier all but useless, and let’s face it: wrapping the cell contents isn’t playing
nicely.

Regular users of array will remember that the @{...} column specifier re-
places the inter-column spacing. We can use this to our advantage to produce
output exactly like the minipage example. We use a \parbox to replace the spac-
ing we normally get.

Preferred
solution

\ newcolumntype {z}[1]{
@{{\ centering \ parbox [c]{\ tabcolsep }{\ rule {0pt }{#1 + 2\ tabcolsep }}}}
>{\ centering \ arraybackslash }
m{#1}}

\begin { tabular }{*{3}{| z{4em }}|}
... table data goes here ...

\end{ tabular }

4 Using tabularx

Some users may prefer to specify the width of the whole table rather than the
column widths. Users of tabularx can still create square, multi-line cells even
while individual column widths are calculated for them.

We are very fortunate that the user is exposed to the calculated width so it
can be used in LATEX code directly. In order to control vertical alignment, tabu-
larx allows the user to renew the \tabularxcolumn command, which takes as its
argument the width tabularx calculated. By default, it is defined as
\newcommand{\tabularxcolumn[1]{p{#1}}.

We can take advantage of this command to make our cells exactly tall enough.
Using the column type z defined above we would do something like:

3

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx

Partial
example

\ renewcommand {\ tabularxcolumn }[1]{z{#1}}

\begin { tabularx }{.5\ textwidth }{|X|X|X|}
... table contents go here ...

\end{ tabularx }

A complete listing of this code can be found in section 7.

5 Caveat emptor

Certainly, the solutions offered in this article are not perfect. Most importantly,
the user must make sure that enough space has been allocated to contain the
contents of the square cells. LATEX will still produce uneven cells if the contents
will not fit in a square area corresponding to the specified tabular column width
or tabularx table width.

Additionally, the approach taken is intended for columns typeset in paragraph
mode (i.e., using the p{...}, m{...}, or b{...} column specifiers) from the array
package.

Users requiring more advanced formatting options are well advised to con-
sider graphics packages such as PGF.

6 Summary

Multiline square cells typeset in paragraph mode require special handling. Mini-
pages can be utilised to subdivide cells so that cell contents won’t foil the strutting.
A cleaner approach is to use the @{...} array specifier to prepend the strut to
every cell. This solution works with both array-enabled tabular and the tabularx
package. A full example containing both uses is provided.

4

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=pgf
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=array
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tabularx

7 A minimal example

\ documentclass [a4paper , 12pt]{ article }
\ usepackage {array}
\ usepackage { tabularx }
\ usepackage {calc}

\ newcolumntype {z}[1] {
@{{\ centering \ parbox [c]{\ tabcolsep }{\ rule {0pt }{#1 + 2\ tabcolsep }}}}
>{\ centering \ arraybackslash }
m{#1} }

\ renewcommand {\ tabularxcolumn }[1]{z{#1}}

\ newcommand {\ tabledata }{
\hline Lorem ipsum dolor sit & amet , consectetur \ ldots %
& elit , sed do eiusmod \ ldots \\ \hline
ut labore et dolore & magna aliqua . & Ut enim \\ \hline
ad minim veniam quis & nostrud exercitation & ullamco laboris \\ \ hline
}

\begin { document }

\begin { tabularx }{.5\ textwidth }{|X|X|X|}
\ tabledata

\end{ tabularx }
\qquad
\begin { tabular }{*{3}{| z{4em }}|}

\ tabledata
\end{ tabular }

\end{ document }

which produces:

5

Lorem
ipsum

dolor sit

amet, con-
sectetur

. . .

elit, sed do
eiusmod

. . .

ut labore
et dolore

magna
aliqua.

Ut enim

ad minim
veniam

quis

nostrud ex-
ercitation

ullamco
laboris

Lorem
ipsum

dolor sit

amet,
consecte-

tur
. . .

elit, sed
do

eiusmod
. . .

ut labore
et dolore

magna
aliqua.

Ut enim

ad
minim
veniam

quis

nostrud
exercita-

tion

ullamco
laboris

6

	Introduction
	Struts
	Minipages?
	Using tabularx
	Caveat emptor
	Summary
	A minimal example

