Murphy's Law for Presentations

Marius Hofert, Markus Kohm

2010-08-01

Outline

1 Murphy's Law

2 Implications for presentations

- 2.1 Tables
- 2.2 Figures

3 Address the audience

4 Conclusion

Marius Hofert, Markus Kohm | MM Uni

1 Murphy's Law

The most common definition of Murphy's Law is as follows.

Theorem (Murphy (1949)) Anything that can go wrong, will go wrong.

Proof

A special case of Theorem 1.1 is proven in Matthews (1995).

Historical background

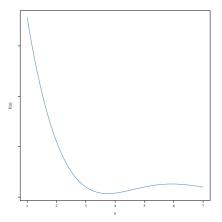
Edward Aloysius Murphy, Jr. (an American Air Force engineer) was part of the team of Colonel John Paul Stapp who was looking for the maximum speed at which pilots could safely eject. Stapp used a rocket-sled to accelerate his own body. At one of their potentially lethal experiments, someone installed the sensors in a wrong way so that they were useless. This led Murphy to formulate his law, which was stated some days later by Stapp at a press conference.

Remark

Do not confuse Murphy's Law with Muphry's Law by John Bangsund which says that "if you write anything criticizing editing or proofreading, there will be a fault of some kind in what you have written."

2 Implications for presentations

- The conference beamer says "no signal".
- The presentation notebook does not accept your USB stick.
- The PDF reader does not open your presentation.
- After 30 seconds, the notebook's display goes to sleep.
- Your audience gets tired and finally falls asleep.
- After the talk, there are only weird questions asked.
- ⇒ By the way, you should not use that many bullet points, see, e.g., Tufte (2007), Reynolds (2008), and Duarte (2008)!


2.1 Tables

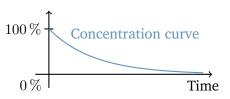
How long does it take your eye to find the largest number? How often does this number appear? Seems impossible to decide during a talk ...

#	А	В	С	D	E	F	G
1	0.7234	0.6243	0.7134	0.6143	0.7124	0.7142	0.7123
2	0.7123	0.6599	0.7289	0.6904	0.7344	0.7879	0.7888
3	0.7498	0.7659	0.7028	0.7728	0.7483	0.7980	0.7643
4	0.7919	0.7981	0.7976	0.7433	0.7728	0.7891	0.7141
5	0.7928	0.7452	0.7381	0.7948	0.7783	0.7981	0.7715

 \Rightarrow Reduce the information, group numbers, use colors, etc.

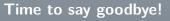
2.2 Figures

- Do you see at which *x* value the minimum is?
- Which value *f*(*x*) does it take there?
- \Rightarrow Always label your axes, and use the correct label size!


Marius Hofert, Markus Kohm | MM Uni

3 Address the audience

- Note: Make it as simple as somehow possible.
 - Get the main idea across!
 - Give references to more detailed explanations.


4 Conclusion

- Give a conclusion, where you recall the main points!
- This also gives the snoring persons time to wake up!

References

- Duarte, N. (2008). *Slide:ology: The Art and Science of Presentation Design*. O'Reilly Media.
- Matthews, R. A. J. (1995). "Tumbling toast, Murphy's Law and the fundamental constants." In: *European Journal of Physics* 16.4, pp. 172–176.
- Reynolds, G. (2008). Presentation Zen: Simple Ideas on Presentation Design and Delivery. Addison-Wesley Longman, Amsterdam.Tufte, E. R. (2007). The Visual Display of Quantitative Information.
- Graphics Press.

