
The PracTEX Journal, 2010, No. 2

Article revision 2011/01/27

Variation and sign tables with tableau

Cristina Blaga and Paul Blaga
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Abstract We describe here a package, tableau.sty, created by N. Kisselhoff, very
useful especially for the courses of Calculus, designed for the construc-
tion of variation and sign tables for the study of function. The package
provides a new environment, based on PSTricks.

1 The commands

The main addition of the package tableau is a new environment, called MonTableau,

allowing the construction of the variation/sign table, which is analogous to the

classical LATEX environments, but has more flexibility.

First of all, the new environment is not based on tabular and its relatives,

but on some PSTricks environments. Second, unlike tabular, MonTableau is

constructed one column at a time, rather than one row at a time.

A minimal table is produced by something like this:

\begin{MonTableau}{2}{7}{1}

\end{MonTableau}

which produces

Here there are three mandatory arguments:



– the first is the number of rows (beside the first one);

– the second is the width (in cm) of the right part of the table;

– the third is the height of the rows (in centimeters, as well).

By default, the width of the left column (the “left title” of the table) is 1.5cm. It

can be modified by a \setlength command:

\setlength{\TabTitreL}{2cm}

as in the following example:

produced with

\setlength{\TabTitreL}{2cm}

\begin{MonTableau}{2}{7}{1}

\end{MonTableau}

Not everybody likes a table in which the top and left part are open as in the

previous examples. Fortunately, the package provides two commands for fixing

the situation. These commands have to be put inside the environment. The first

command is

\TabTitreFerme

and makes the horizontal lines extend to the left columns of the table:

The second command is

\TabFerme
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and the effect is

They can be used together, of course, and then we get:

We can double the height of a row by deleting a horizontal line, with the

command

\TabEfface{1}

Thus, in the previous example we can add this command (still inside the environ-

ment) and we get

The mandatory argument is, here, the number of the horizontal line. The first

line is the one below the head of the table. Note that the thick lines cannot be

deleted. Thus, if in the table above we try to delete the second line, what we get

is:
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i.e. only the left extension of the line is deleted.

Now it’s time to learn how to fill the table. First of all, we have to know that,

in order to put something in the table, we have to know the coordinates of the

point where the object is going to be placed. We shall use two kind of coordinates,

one for the left part of the table and one for the right part. For the right part, the

coordinates are dimensionless. A usual table is filled row-wise. But remember,

this is an unusual table, so we shall enter the information column by column.

Two commands will play a crucial role in what follows.

The first simply declares that a new column is started and specifies its posi-

tion:

\NewTableCol{position}

Here position specifies the position of the column in fractions of the total width of

the right side of the column. This is the position of the central line of the column.

The advantage of this way of specifying the position of the column, using percent

rather that absolute units, is that if, for any reason, we have to change the total

width of the right side of the table, we don’t have to modify, also, the position of

the columns.

The second command is what we need to actually put an entry in the column.

The general form of the command is

\rTabPut[line]{position}{horizontal shift}{vertical shift}{entry}

In the tables of variation, we sometimes need to put a vertical line when a certain

function is not defined for a given value of the independent variable. The optional

argument of the command specifies what kind of line we should use. If the

argument is 0, we use no line. This argument value is equivalent to the absence

of the optional argument. If the value is 1, we use a dashed line, if the value is

2 the line is continuous and simple, while if the value is 3, the line is doubled.

Usually (but not always!) we put no entry in a column containing a vertical line.

We will return to this later.

The first mandatory argument is the reference point. More about this below,

but for now, we mention that the possible reference points are those used by the

PSTricks command \rput. Note that, unlike \rput, the argument is mandato-

ryand not optional.
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Implicitly, the column entries (or “labels”) are put on the central line of the

column. They can be shifted, both horizontally and vertically. The second manda-

tory argument indicates the horizontal shift, and the third argument specifies the

vertical shift. The horizontal shift is expressed in PSTricks units (implicitly, cen-

timeters), although the unit doesn’t have to be specified. The vertical shift is

expressed in fractions of the height of the row. Finally, the last mandatory argu-

ment is the entry itself. In some cases, we don’t want to put anything, but the

argument has to be there, even if it is empty.

The last features we would like to add to a table of variation are the arrows.

To describe the command for an arrow, we have to mention, first, that to each

entry of the table, we associate a node, which is described by a pair Xx. The

first symbol is a capital letter indicating the column of the entry (A, B, . . . ), while

the second symbol is a number indicating the row of the entry. The title row

corresponds to 0. Thus, a node is specified by something like A0, B2, etc.

The command for producing an arrow is very simple. You specify the origin

and the extremity of the arrow, and nothing else:

\TabFleche{origin}{extremity}

where the two nodes have to be defined already. Here is a very simple example,

α

α

α

α

α

α

produced by

\begin{MonTableau}{2}{7}{1}

\TabTitreFerme

\TabFerme

\TabNewCol{-.10}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\TabNewCol{.15}
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\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\TabFleche{A0}{B1}

\TabFleche{A1}{B1}

\TabFleche{A2}{B2}

\end{MonTableau}

If you are not sure which are the nodes on your table, you can see them by using

the command

\TabShowLabelOn

that has to be placed inside the MonTableau environment, otherwise it will cause

errors. The effect of this command is that in the table the entries are not shown,

only the arrows and the nodes. For instance, in the previous example, if we want

to see the nodes, the result will be:

A0•

A1•

A2•

B0•

B1•

B2•

Beware of the fact that a command \TabShowLabelOn will affect all the subse-

quent tables, not only the current one. To prevent this, you may use the command

\TabShowLabelOff

after the \end{MonTableau} command.

A last trick that may be used in this new environment is the command \TabZ.

Actually, the complete form is \TabZ[entry]. If there is no optional argument,

the command just puts a 0 on a line or on an arrow. The optional entry is what

we want to put instead of 0.

Here is the first example:
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α

α

α

α

α

0

produced with

\begin{MonTableau}{2}{7}{1}

\TabTitreFerme

\TabFerme

\TabNewCol{-.10}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut{B}{0}{.25}{$\alpha$}

\TabNewCol{.15}

\rTabPut{B}{0}{.25}{$\alpha$}

\rTabPut[2]{B}{0}{.25}{\TabZ[$\alpha$]}

\rTabPut[2]{B}{0}{.25}{\TabZ}

\TabFleche{A0}{B1}

\TabFleche{A1}{B1}

\TabFleche{A2}{B2}

\end{MonTableau}

With \TabZ we can write labels in other places as well. The next example

shows how to put a label on an arrow:

α

β

γ

δ
0

This example was produced by

\begin{MonTableau}{1}{5}{1}

\TabTitreFerme

\TabFerme

\TabNewCol{.10}

\rTabPut{B}{0}{.25}{$\alpha$}
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\rTabPut{B}{0}{.25}{$\beta$}

%

\TabNewCol{.60}

\rTabPut{B}{0}{.25}{$\gamma$}

\rTabPut{B}{0}{.65}{$\delta$}

\TabFleche{A1}{B1}

\rput(.30,0.48){\TabZ}

\end{MonTableau}

Notice that, in this case, the command \TabZ is the argument of a PSTricks \rput

command and we have to provide the coordinate of the point where the symbol

is to be placed.

2 Examples

To further illustrate the use of the MonTableau environment we provide three

examples of functions. For each we construct the table of sign and variation,

and then the graph of the function. To see the LATEX source for these examples,

download the source file for this article click on the Article source files link.

In the examples below the function graphs are constructed with PSTricks com-

mands, which are not explained here. For more on this and other graphics tools

see this survey article. The graphs may also be drawn with other tools and then

included with \includegraphics, for example.

We start with a very simple function: f (x) =
ln x

x
. Now we shall follow the

usual steps to study the variation of a function.

(i) We identify the domain of definition of the function. This is, obviously,

D = (0, ∞).

(ii) The function has no discontinuities in the domain.

(iii) We are looking for asymptotes.

(a) Clearly, the ordinate axis, x = 0, is a vertical asymptote, because

lim
x→0

ln x

x
= −∞.
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(b) We can’t have a left horizontal asymptote, since −∞ is not in the domain

on definition, but, since

lim
x→+∞

ln x

x
= 0,

the x-axis is a right horizontal asymptote.

(iv) We find the first derivative and the stationary points. We have

f ′(x) =
1 − ln x

x2
.

The first derivative is defined on the entire domain of definition. We have a

single stationary point, corresponding to x = e.

(v) The second derivative is

f ′(x) =
2 ln x − 3

x3
.

The inflexion point corresponds, of course, to x = e3/2.

(vi) Finally, we look for the points for where the graphics cuts the coordinate

axis. It is easy to see that the graphics does not intersect the y-axis, but it

intersects the x-axis for x = 1.

Now we have all we need to construct the variation and sign table, as well as the

graphics.

We start, of course, with the table.

x

f ′(x)

f ′′(x)

f (x)

0

−∞

1

+

−

0

e

0

−
1
e

e3/2

−

0

3
2e−3/2

+∞

−

+

0
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−1

−2

1 2 3 4 5 6 7−1−2

The second example is a function which has singularities inside the domain.

The function we chose is

f (x) =
1

1 + tan x
.

We apply the same strategy as before:

(i) Before establishing the domain of definition, we notice that our function is

periodic, with a period equal to π. Let’s take, for instance, the interval [0, π].
Clearly, on this period, the function is defined on

D = [0, π] \
{

π

2
,

3π

4

}

.

It is enough to draw the graphics of the function on this interval.

(ii) The first derivative of the function is

f ′(x) = − 1

1 + sin 2x
.
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It is strictly negative on the entire domain.

(iii) The second derivative is

f ′′(x) =
2 cos 2x

(1 + sin 2x)2
.

It vanishes for x = π
4 .

(iv) x = 3π
4 is vertical asymptote from both sides.

Now we construct the sign and variation table.

x

f ′(x)

f ′′(x)

f (x)

0

−

+

1

π
4

−

0

1
2

π
2

-1

0

0

−

−

−∞

3π
4

−

−
+∞

π

−

−

1
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1

2

3

4

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4−5

The last example is a function with a more complicated domain of definition.

Namely,

f (x) =
1

2

√

x2 − 1.

We repeat, of course, the algorithm.

(i) The domain of definition is

D = (−∞,−1] ∪ [1,+∞).

(ii) The first derivative is

f ′(x) =
x

2
√

x2 − 1
.

The derivative does not vanish, is strictly negative for x < −1 and strictly

positive for x > 1. Moreover, we have

f ′(−1) = lim
x↗−1

f ′(x) = −∞ and f ′(1) = lim
x↘1

f ′(x) = +∞.
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The function has two points of minimum, for x = ±1.

(iii) The second derivative is

f ′′(x) = − 1

2
√

x2 − 1
.

It doesn’t vanish and it is strictly negative on the entire domain.

(iv) The graph has two oblique asymptotes:

y = ±1

2
x.

x

f ′(x)

f ′′(x)

f (x)

−∞

+∞

−

−

−1

0

1

0

+

−

+∞

+∞
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1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4−1−2−3−4−5
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