
The PracTEX Journal, 2006, No. 3

Article revision 2006/08/15

Productivity with macros and packages
Will Robertson

Email comgmail.wspr81@
Address School of Mechanical Engineering, University of Adelaide, Australia

Abstract LATEX’s advantages in productivity, for me, are due to its ability to be cus-
tomised. The first half of this article discusses small macros written to ease
document production, with some examples of how I use macros to save
time and effort. Then, I briefly cover a selection of packages that provide a
whole heap of functionality that other people have kindly implemented.

1 Introduction

One of LATEX’s advantages lies in its separation of content and formatting. This
concept, called logical markup, enables authors to write without the distraction
of worrying about typesetting. Of course, authors aren’t forced to work this way,
but it’s highly recommended.

Implicit in the idea of logical markup is the ability to define your own logical
elements as the text requires. These are known in LATEX as macros or commands,
and can be as simple as \newcommand\strong[1]{\textbf{#1}} to define a com-
mand for strongly emphasising words, as so:

...for \strong{strongly} emphasising...

A whole world opens up when you can write your own macros; in my own docu-
ments, whenever there’s an issue of formatting that will re-occur, it gets a macro
in case I change my mind later. But when things start to get more complex, there
are better ways to do things — it’s much better to use other people’s solutions; i.e.,
other people’s packages.

This article is split into two halves. The first half, section 2, discusses small
macros written to ease document production, with some examples of how I (per-
sonally) use macros to save time and effort. In the second half, section 3 on page 9,
I briefly cover a bunch of packages that provide a whole heap of functionality that
other people have kindly implemented — no need to do it yourself!

Formatting in this article Verbatim in this document is represented by typewriter
text in bright blue. Packages & classes are typeset in a sans serif font, ‘hyper-
linked’ to their ctan documentation (where available; a couple won’t work at
time of publication but should in the future), and coloured dark red like the other
external links in the document. Internal links within the document are coloured
green.

2 Writing your own macros

Writing things like Figure~\ref{fig:myfigure} every single time a figure is re-
ferred to results in errors creeping in that are hard to detect; typical of such
errors might include misspelling ‘Figure’, the absence of the non-breaking space
(the tilde ~, something even experienced LATEX users often forget to use), and so
on. The command \newcommand becomes a new friend to relieve these problems.
Suddenly, it’s easy to define commands such as \figref that will expand out to
the figure string and the reference:

\newcommand\figref[1]{Figure~\ref{fig:#1}}

After adding this command to the preamble, I can now write \figref{myfigure}
to refer to my figures. Two advantages are gained with this method: error-checking
(the output will now always be consistent and correct or throw an error) and flexi-
bility. If we wish to change our string to look like ‘Fig. 7’, it’s a matter of changing
one line in the preamble:

\newcommand\figref[1]{Fig.\,\ref{fig:#1}}

(Note the thin space \, which is appropriate in this case after the period and
which is also often omitted — to the detriment of the output quality.)

While you can use the above macro in your documents, there is a macro
package refstyle (see page 12) that does the job a lot more completely. It includes
macros for all sorts of references (tables, sections, footnotes, etc.) and even allows
you to reference more than one figure at a time, such as

\figref{myfig1,myfig2,myfig3} Figures 1, 2 and 3

2

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=refstyle

2.1 How not to use macros

I have now briefly introduced macros as a way to be productive. In the section
after this one (page 5), I’ll continue along these lines. But it is said that a little bit
of knowledge can be dangerous. It’s worth considering how macros should not
be used. The following is a good template for inserting figures:

\begin{figure}[htbp]
\centering
\includegraphics{*}
\caption{*}
\label{fig:*}

\end{figure}

In fact, in my editor (TeXShop for Mac OS X), I’ve set it up so that dragging an
image into a source document inserts this snippet automatically with the filename
and label filled in with the path and name of the graphic respectively. All I have
to write is the caption itself.

This isn’t an ideal situation, however. Using such a template ‘freezes’ the
formatting decisions at the instant it’s inserted; if changes are desired on a large
scale, repetitive search-and-replace is required. It is better to start to use macros
that define the formatting from a single place. Here is an example of one of
my first efforts. Coincidentally, it’s quite similar to an example given by Dave
Walden [3]:

\newcommand\insertfig[2]{%
\begin{figure}[htbp]

\centering
\includegraphics{#1}
\caption{#2}
\label{fig:#1}

\end{figure}}

At first, the attraction is clear. Isn’t the following much easier to write?

\insertfig{figname}{This is an example figure caption.}

3

This version has much to offer, in that the formatting may now be adjusted from
a single place in the document — a feature always to be aspired to. But we quickly
run into trouble.

Firstly, semantics have been lost. The arguments to the command are un-
named and arbitrary. Consider a smart editor which parses the document for
\label commands and builds a list from which to prompt for \ref instances.
How will it know that fig:figname is a label to use?

Secondly, we begin to want to add more functionality. Say we want a short
caption (for headers/footers and the Table of Contents) and a long caption (for the
actual text). Well, easy. Just change the macro to accept an optional argument, just
like the \caption command does. Okay, now let’s say we want to stick in some
graphics options, such as scaling. More work, more arguments. And don’t forget
the option to change the figure placement from [htbp], which should always be
considered in the fine-tuning of the typesetting of the completed document.

Now our previous calls with this command, throughout the entire document,
need to be amended to take the other argument into account. This might not be
that much work with a fancy search ’n’ replace, but this is supposed to be ‘LATEX
for productivity’, right?

That was a long winded way of saying that the approach taken above is too
coarse-grained for our application. As a rule of thumb, restrict new commands
to performing a single action, to avoid such problems. In the above example, the
only formatting is to centre the figure on the page. The following redefinition of
the figure environment provides this:

\renewenvironment{figure}[1][\fps@figure]
{\@float{figure}[#1]\centering}
{\end@float}

Because we’re overwriting the existing definition of the figure environment, it’s
necessary to use \renewenvironment instead of \newenvironment. \fps@figure is
the default float placement (usually tbp), and the \@float . . .\end@float pseudo-
environment is the internal LATEX generalised method for creating floats.1

.1. I should warn some of you that if this code is pasted into a regular document (not your own
package), it must be preceded by \makeatlatter and ended with \makeatother. More details can
be found in Robin Fairbairns’ TEX FAQ answer ‘\@ and @ in macro names’.

4

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=atsigns

2.2 Examples of my macros

Two sections ago, I discussed how macros should be defined for error-checking,
flexibility, and consistency. In the previous section, I showed that macros should
be as specific as possible; in general they shouldn’t be used as a method for
simplifying the input as an end to itself. Below, I’ll give some examples of macros
(and the types of macros) I often use.

2.2.1 Foot or margin (or end) notes

The first is a macro for adding notes to text. Generally, this refers to footnotes2

but sometimes one might wish to annotate their texts in a slightly more inter-
esting manner (→). Or even using end notes, as discussed by Dave Walden [4]. As a

more in-
teresting
example.

Semantically, these could be exactly the same thing, so the markup for denoting
this should be the same. Therefore,

\newcommand\note[1]{\unskip\footnote{#1}}

Note the \unskip. This is included so that the note needn’t be placed with no
whitespace preceding it in the source. For example, some text \note{A note.}
will appear as ‘some text3’. Note the omission of the space before the superscript.
Now, to adjust this definition to send the note out to the margin instead, it’s
simply a matter of a new definition:

\newcommand\note[1]{%
\unskip~\marginpar{\hspace{0pt}\raggedright\small\itshape #1}%
(\rightarrow)}

. . . or however. The \unskip~ is a nice trick to ensure that there’s never a line
break before the note call-out in the text;4 and the \hspace{0pt} is to ensure
hyphenation in case of a long first word in the margin note.

In this case, the \note command adds flexibility to the document (it’s easy to
later change the definition to adjust the typesetting of the notes), and to enforce
consistency in the output by controlling how the space around the note callout
(be it superscript or other) behaves.

.2. Such as this one. 3. A note.
4. I also use this in a redefinition of natbib’s \cite command when using numerical references.

5

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=natbib

2.2.2 Abbreviations

The use of Latin abbreviations (e.g., i.e., cf., etc.) in formal text isn’t always encour-
aged. Nonetheless, they can be handy, and it’s important to remember how they
should be punctuated. Macros can address both of these issues by easily being
able to switch out the abbreviations if necessary or ensure that the punctuation
is always correct. Let’s begin with a simple macro to mark up words in another
language; e.g., \foreign{a priori}.

\newcommand\foreign[1]{\emph{#1}}

Since ‘e.g.’ and ‘i.e.’ will generally always be followed by a comma, it’s possible
to define a macro to ensure this comma isn’t omitted:5

\newcommand\ensurecomma{%
\@ifnextchar,{}{\@latex@error{Don’t forget the comma!}{}}}

Now, it’s simply a matter of defining our abbreviations:

\newcommand\eg{\foreign{e.g.}\ensurecomma}
\newcommand\ie{\foreign{i.e.}\ensurecomma}
\newcommand\cf{\foreign{cf.\@}}

The \@ ensures that no extra space is added after the period as it would if the
period ended a sentence. These macros in use:

I concur; \ie, I agree I concur; i.e., I agree
Add lots of sour; \eg, five lemons Add lots of sour; e.g., five lemons
Use white sugar; \cf\ brown sugar Use white sugar; cf. brown sugar

I usually also define the uppercase variants \Eg, etc.
Now here’s some more definitions along these lines. Abbreviations such as

‘etc.’ and ‘et al.’ may occur at the end of sentences, so it would be unfortunate to
insert the period incorrectly in these cases. Here we go:

\newcommand\ensuresingleperiod{\@ifnextchar.{}{.\@}}
\newcommand\etc{\foreign{etc}\ensuresingleperiod}
\newcommand\etal{\foreign{et al}\ensuresingleperiod}

.5. Inside a package, \PackageError would be better to use than \@latex@error.

6

These are used similarly:

Sentence ending, \etc. Sentence ending, etc.
riverrun, \etc, livvy. riverrun, etc., livvy.
As discussed by Robertson \etal. As discussed by Robertson et al.

Of course, many people will argue against emphasising these abbreviations with
italics, while others will disagree with using the abbreviations at all. The poet
E. E. Cummings might have recommended omitting all of the punctuation. The
definitions above can be adjusted appropriately to suit such requirements and
make the appropriate changes throughout the entire document.

In this application, using macros for the abbreviations ensures both consis-
tency and flexibility with the formatting, not to mention that using the macros pre-
cludes spelling errors in the output without an error in the compilation — provided
they are used exclusively!

2.2.3 Punctuation

Many people, now, have written macros for inserting smart dashes into their doc-
uments. I copied the TUGboat macro [1] in this regard when writing the template
for this very journal.6 But I’m going to add a twist at the end, so keep reading.

There is more than meets the eye when using dashes in text — like this one.
According to the tradition followed, differing amounts of space are used around
dashes. From no space—like this—to a full-width space — such as here. In all
cases, it’s desirable to avoid line breaks before them, although a break after —
like here — is fine. Others will like to use an en-dash instead – depending on the
taste of the typographer and the font being used.

These points aren’t what you want to think about while writing, and it’s easy
to get things wrong. An ideal case for a macro, then:

\DeclareRobustCommand\dash{%
\unskip\nobreak\thinspace\textemdash\thinspace\ignorespaces}

This is the definition straight from the pracjourn class, and incorporates all of the
details described above. The amount of surrounding space is customisable, and

.6. The pracjourn class can be found at: http://tug.org/pracjourn/styles/latex/

7

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=pracjourn
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=pracjourn
http://tug.org/pracjourn/styles/latex/

the \unskip/\ignorespaces arrangement ensures consistency no matter how the
macro is used in the text.

Here’s a couple of small details to make things even better. First, we don’t
want to use the \dash definition above when writing things like pdf bookmarks,
where plain text is the order of the day. So if the hyperref package is being used,
the following line substitutes an ascii dash in such cases:

\pdfstringdefDisableCommands{\renewcommand{\dash}{ - }}

Secondly, it can be a little distracting having to literally write ‘\dash’ all the
time in the source. Those of us lucky enough to be using unicode-aware editors
might prefer to use a literal em-dash in our source to denote a text dash, naturally
enough. After \usepackage[utf8]{inputenc} in the preamble, it is then possible
to bind the meaning of \dash above to a utf-8 em-dash in the source with the
following incantation:

\DeclareUnicodeCharacter{2014}{\dash}

A snippet of the source document could then look like ‘this is a dash — in the
source’, but it would be typeset according to all the rules given above. I consider
this a great advantage for readable source!

2.3 Where to keep your macros

I generally use macros on a per-document basis. Others may prefer to keep their
macros all together in one place. Both have their advantages and disadvantages.
Since each document requires different logical markup, I write and adapt my
macros as I go, copy and pasting from previous documents.

Alternatively, it can be very convenient to write a private package incor-
porating all of your own macros. This can be as simple as starting a new file
mymacros.sty with the line

\ProvidesPackage{mymacros}[2006/08/15 v0.1 My custom macros]

Placing this file in the ‘local’ texmf tree of your distribution7 then provides a com-

.7. E.g., ~/Library/texmf/tex/latex on Mac OS X, C:\localtexmf\tex\latex on Windows, or
/usr/local/texmf/tex/latex on Linux.

8

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hyperref

mon location to maintain your macros, accessible with \usepackage{mymacros}
in your documents.

I don’t use this method personally because I’m scared of backwards compat-
ibility problems, although with enough foresight this shouldn’t be a problem in
general. Furthermore, this method assumes you want the same output from your
macros in each and every document, and I don’t always find this to be the case.

Further information on LATEX class and package writing can be found in the
documentation file clsguide, which can be found in $TEXMF/doc/latex/base/ or
by using the command line: texdoc clsguide.

2.4 Mini summary on macros

Bear in mind I’ve only touched the surface of how macros can be used to help you
write documents more efficiently. I haven’t even mentioned the xspace package,
which simplifies how LATEX commands deal with following space; \TeX the Book
and \TeX\ the Book would produce identical output — no need to worry about
how spaces are gobbled:

\let\oldTeX\TeX
\renewcommand\TeX{\oldTeX\xspace}

\TeX the Book; the \TeX{}book TEX the Book; the TEXbook

When writing your own macros, be as fine-grained as possible; a macro should
only do a single thing, ideally, and if more is required then write two macros.
This was exemplified when I discussed wrapping up a figure environment into a
single macro — in my opinion, more trouble than it’s worth!

The macros shown in this section are supposed to simply be indicative of how
I use macros. The sky’s the limit when writing your own documents. Be creative!
Just remember, when writing your own documents, if you find yourself writing
repetitive formatting commands, a macro would make it more convenient.

3 Using others’ macros in packages

At some stage in the development of learning LATEX, we’ve learned how to write
our own shortcuts and definitions well enough that we’re no longer intimidated
by delving into other people’s packages and classes to see what’s going on. I don’t

9

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=xspace

know about you, but I was pretty pretty happy with myself that to customise
captions, say, I understood that all I had to do was edit the following from the
article class:8

\long\def\@makecaption#1#2{%
\vskip\abovecaptionskip
\sbox\@tempboxa{#1: #2}%
\ifdim \wd\@tempboxa >\hsize

#1: #2\par
\else

\global \@minipagefalse
\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%

\fi
\vskip\belowcaptionskip}

So if I needed, say, an en-dash instead of a colon after ‘Figure’ or ‘Table’ in my cap-
tions, it was simply a matter of copying the above and changing the appropriate
parts to #1~--~#2.

I used to do things this way, until I came to the realisation that I was wast-
ing my time. Why? Other people had already solved to problems I was having.
What happens if we want to start using the hyperref package? Our macro redefi-
nition spoils everything, because now we can’t link to the figure caption. Similar
problems arise adding hyperlink support to the \figref command from the in-
troduction. The point is that many packages are designed to fit in around each
other, and doing this is not always a straightforward task when you’re trying to
hack your own support.

Things work fine doing simple things, and for one-off solutions sometimes
it can be quicker to hack your way to output that looks right. This is an oft-
repeated criticism of LATEX in general: it’s so much easier in Plain TEX to do
this-or-that with a quick macro (re)definition. What is wrong with these sorts of
ideas it that LATEX isn’t complicated because its authors wanted to obfuscate their
work; rather, various functionality has worked its way into its facets that cover
edge cases you’re not even considering when trying to hack your own way.

.8. To make such changes, you’d look through the class and copy/paste the snippets you were in-
terested in modifying to the preamble of your document (see footnote (1) on page 4) or your own
class file. The article class can be found at $TEXMF/tex/latex/base/article.cls, with documen-
tation at CTAN:macros/latex/base/classes.dtx.

10

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hyperref
http://www.ctan.org/get?fn=/macros/latex/base/classes.dtx

3.1 Choosing classes and packages

In the previous sections, I’ve shown two tiny sets of macros that make my writing
more productive. Perhaps they’ve inspired you along similar lines. But in many
cases, it’s not the best thing to do, to build up your own macro packages from
scratch, because other people will have done it before. Don’t waste time replicat-
ing the work of smarter and/or more experienced people!

There are a huge number of packages on ctan which are conveniently or-
ganised by category in the TEX catalogue: http://texcatalogue.sarovar.org/
bytopic.html. There’s a very high chance that something you wish to do is con-
tained somewhere within. But where to start looking?

First off: choose your class. For beginners, I highly recommend an ‘all-in-one’
class such as memoir (well summarised in this issue of The PracTEX Journal [5])
or one of the KOMA classes (also featuring in this issue [2]). These have the huge
advantage of a single reference. If the formatting requires adjustment, simply
search through the manual. There’s not much of an easier way to get started on
your own with LATEX.

These integrated classes are more resistant, however, to being amended with
packages. And in some cases, single-purpose packages provide more features.
These days, I use memoir for large documents and article with packages for smaller
things.

To follow is an incomplete, subjective list of packages that shouldn’t be over-
looked. I’ve left out the ones that everyone knows, such as geometry and hyperref.
In the spirit of the article, you shouldn’t take my word for it, but look into any
other options available and see if there are alternatives that are better (for ex-
ample, I’ve frequently heard the typearea package is easier in many cases than
geometry, but I must admit to have failed to investigate it).

Note that there are a few packages for formatting section titles and contents
tables (titlesec, sectsty, titletoc, tocloft) and I’m not qualified in all of them enough
to give a firm recommendation on their use. Personally, I’ve enjoyed the simplicity
of the sectsty packages, but it is very limited.

booktabs For great tables. The manual is worth reading for its advice alone.

caption Customise the formatting of captions used for figures, tables, and
anything else.

csquotes Error-checking and flexible quotation markup. E.g., "quoted text"

11

http://texcatalogue.sarovar.org/bytopic.html
http://texcatalogue.sarovar.org/bytopic.html
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=memoir
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=memoir
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=geometry
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hyperref
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=typearea
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=geometry
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=titlesec
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=sectsty
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=titletoc
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=tocloft
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=sectsty
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=booktabs
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=caption
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=csquotes

can be typeset with quotation symbols chosen in the preamble, such
as ‘ ’ or “ ” or « ». This is useful not just for multilingual docu-
ments — it also helps with ensuring quotation consistency.

bigfoot Does absolutely everything related to footnotes.

enumitem Provides almost everything one could want for formatting lists (such
as the one you’re reading).

fixltx2e Fixes and adds many little details. Better to be safe than sorry!

mathpazo Don’t miss out on the [sc,osf] options to activate better kerning
& real small caps, and old-style (lowercase) numbers. Also see the
FPL Neu font, which provides further improvements with maths
support soon to come.

microtype Enables pdfTEX’s microtypographical features: margin kerning (ac-
tive for this document) and font expansion (gives better output but
slower processing and greater file sizes — best for print work).

natbib Formatting citations in either author/year or numerical format. The
hypernat package is essential when using numerical citations to al-
low the sort&compress feature to work in conjunction with hyperref.

pdfcolmk Fixes colour in pdfTEX, which can sometimes break (half a page of
coloured text for no reason, for example).

refstyle The most convenient and flexible method for cross referencing, as
discussed in section 2. Also uses the varioref package for smart ‘on
the following page’–type functionality.

SIstyle The most convenient way to typeset numbers with units. E.g., in-
stead of 1.2\times 10^{-3}\,N{\cdot}m, just write \SI{1.2e-3}{N.m}.

subfig For creating sub-tables and figures.

textpos For putting things anywhere on the page, even using absolute posi-
tioning (e.g., 3 cm from the top of the page, 4 cm left of the margin).

xcolor Very flexible colour functionality.

zref When it’s released, looks to be amazingly comprehensive: reference
anything.

12

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=bigfoot
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=enumitem
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=fixltx2e
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=mathpazo
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=microtype
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=natbib
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hypernat
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=hyperref
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=pdfcolmk
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=refstyle
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=varioref
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=sistyle
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=subfig
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=textpos
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=xcolor
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=zref

3.2 Finding packages

There’s little advice I can offer on how to find out about packages that have the
functionality that you’re looking for. Every time I look, there’s more on ctan

9

and the TEX Catalogue10 that I’ve never seen before. Various esoteric things, such
as sorting index entries from within TEX itself (see Kees van der Laan’s BLUe
format), have been implemented ten years ago! (I hope to look into this format in
more detail in the future.)

Reading comp.text.tex, I am regularly surprised by the breadth of packages
that already exist. When looking specifically, I can only recommend exploration
of ctan, and asking questions of people who have done similar explorations
themselves.

4 Summary

Formatting shouldn’t be hard-coded into a document; macros to ensure flexibil-
ity and consistency are preferable. There are many packages available that pro-
vide such functionality, along with a plethora of other convenient customisations.
These should be experimented with!

References

[1] Robin Fairbairns. The new (LATEX 2ε)
TUGboat macros. TUGboat, 17(3):282–
288, September 1996. ISSN 0896-3207.
URL http://www.tug.org/TUGboat/
Articles/tb17-3/tb52guid.pdf.

[2] Yuri Robbers, Markus Kohm, and Ras-
mus Pank Roulund. Replacing LATEX 2ε
standard classes with koma-script. The
PracTEX Journal, 3, 2006. URL http://
tug.org/pracjourn/2006-3/robbers.

[3] David Walden. Travels in TEX land:
LATEX for productivity in book writing.
The PracTEX Journal, 2, 2006. URL
http://tug.org/pracjourn/2006-2/
walden.

[4] David Walden. Travels in TEX land:
Final layout of a book. The PracTEX
Journal, 3, 2006. URL http://tug.org/
pracjourn/2006-3/walden.

[5] Peter Wilson. The memoir class. The
PracTEX Journal, 3, 2006. URL http://
tug.org/pracjourn/2006-3/wilson.

.9. http://tug.ctan.org/ 10. http://texcatalogue.sarovar.org/

13

http://www.ctan.org/tex-archive/info/pwt/
http://www.ctan.org/tex-archive/info/pwt/
http://groups.google.com/group/comp.text.tex
comp.text.tex
http://groups.google.com/group/comp.text.tex
http://www.tug.org/TUGboat/Articles/tb17-3/tb52guid.pdf
http://www.tug.org/TUGboat/Articles/tb17-3/tb52guid.pdf
http://tug.org/pracjourn/2006-3/robbers
http://tug.org/pracjourn/2006-3/robbers
http://tug.org/pracjourn/2006-2/walden
http://tug.org/pracjourn/2006-2/walden
http://tug.org/pracjourn/2006-3/walden
http://tug.org/pracjourn/2006-3/walden
http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=memoir
http://tug.org/pracjourn/2006-3/wilson
http://tug.org/pracjourn/2006-3/wilson
http://tug.ctan.org/
http://texcatalogue.sarovar.org/

	Introduction
	Writing your own macros
	How not to use macros
	Examples of my macros
	Foot or margin (or end) notes
	Abbreviations
	Punctuation
	Where to keep your macros
	Mini summary on macros
	Using others' macros in packages
	Choosing classes and packages
	Finding packages

	Summary

