by kind permission of the author): +, data from Mason (1977), the horizontal bars representing mean values and the vertical bars standard errors; \diamondsuit , data from Lofquist & Purtell (1984). The continuous lines represent the models (1.16) for large F and (1.17)--(1.18) for small F.

(1.18b)

Figure 2. Experimental measurements of the stratified drag ΔC_D on a sphere (from Greenslade 2000,

The stratified drag coefficient ΔC_D is defined, after Lofquist & Purtell (1984), Hanazaki (1988) and Shishkina (1996), by the decomposition $C_D(Re,F) = C_D(Re,\infty) + \Delta C_D(Re,F), \tag{1.19}$

A = 0.86, B = 3.43 (Lofquist & Purtell 1984 data).

which separates, in the total drag coefficient $C_D(Re, F)$ depending on both the Reynolds number Re = 2Ua/v and the internal Froude number F = U/(Na), two contributions:

one, $C_D(Re, \infty)$, of unstratified fluid dynamics, and the other, $\Delta C_D(Re, F)$, specific to the stratification; here a is the radius of the sphere and v the kinematic viscosity. It has been verified by Lofquist & Purtell (1984), in the range 150 < Re < 5000, that $\Delta C_D(Re, F)$ is effectively independent from Re. Hence $\Delta C_D(Re, F)$ represents an essentially inviscid

stratified addition $\Delta C_D(F)$ to the drag.