Approximate Entropy and Sample Entropy

We now briefly describe the current entropy approaches to HRV analysis and results from our preliminary studies. For a time-series x1,x2, (,xN, let xm(i) denote the m points xi,xi+1, (,xi+m-1 which we call a template and can be considered a vector of length m. An instance where all the components of the vector xm(j) are within a distance r of xm(i) is called a template match. Let Bi denote the number of template matches with xm(i) and Ai denote the number of template matches with xm+1(i) . The number pi=Ai/Bi is an estimate of the conditional probability that the point xj+m is within r of xi+m-1 given that xm(j) matches xm(i). Pincus  QUOTE "49-53" 
49-53
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 introduced the statistic approximate entropy or Apen as a measure of regularity, denoted by ApEn(m,r,N), which can be calculated by
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and is the negative average natural logarithm of this conditional probability (in this proposal log and logarithm refers to the natural logarithm base e). Self-matches are included in the original ApEn algorithm to avoid the pi=0/0 indeterminate form, but this convention leads to noticeable bias especially for smaller N and larger m. 

A related but more robust statistic called sample entropy or SampEn  QUOTE "55" 
55
 does not include self-matches and was designed to reduce this bias. SampEn is calculated by
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which is just negative the logarithm of an estimate of the conditional probability of a match of length m+1 given a match of length m. SampEn has closer agreement with theory for data sets with known probabilistic content. SampEn is useful over a wider range of m,r,and N. Moreover, SampEn has added advantage that its statistical properties are more accessible than those of ApEn and confidence intervals can be constructed  QUOTE "38" 
38
.

Sample Entropy Analysis of Neonatal HR

We analyzed the neonatal HR data from our clinical studies further to better understand the mechanism of the contribution of entropy estimates to predictive capability and to optimize the implementation of entropy as an HRV analysis tool  QUOTE "38" 
38
. A random sample of 200 records was selected from the clinical data set to aid in the analysis. We derived a novel estimate of the standard error of the SampEn statistic and developed a procedure to optimally select the parameters m=3 and r=0.2 for analyzing neonatal HR data. 

For the random sample of neonatal HR data records, we calculated SampEn and a modification motivated by our proposed approach for decreasing values of r. The median results are shown in Figure 1. The modified entropy simply adds a correction factor based on r to make it an estimate of the absolute measure of a version of differential entropy. There is no evidence of convergence to a finite value for the current K-S entropy approach, but clear evidence that the modified entropy converges as r goes to 0. From this analysis, we conclude that an absolute measure of entropy for HRV analysis is appropriate and new methods for estimation needed. This preliminary study also suggests that neonatal HR data have infinite K-S entropy and exhibit little if any of the characteristics necessitating considering deterministic processes with finite K-S entropy. This suggests that the assumptions motivating the development of ApEn are not necessary for HRV analysis of this data and that alternative entropy measures may be appropriate. We propose to develop a mathematical framework and analysis capability for HR data that is firmly based in the theory of continuous-valued random processes with density functions. 
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The guiding entropy measures with this approach are differential (Shannon) entropy for continuous random variables and entropy rate for random processes. Differential entropy is widely and traditionally used in information theory and other fields. It is based on conditional densities and not conditional probabilities and in its simplest form merely adds a factor of log(2r) to statistics based on K-S entropy. This is the modified entropy shown in Figure 4.

Motivation for new approaches to estimating entropy.

A key connection between approximate entropy and the maximum likelihood estimation of the parameters of a Markov chain motivates our new approach to entropy estimation.  ApEn has been shown to be the rate of entropy of an approximating Markov chain  QUOTE "49" 
49
. We now show a similar result from our preliminary studies in terms of the standard statistical framework of maximum likelihood estimation. For notational simplicity let X= x1(N) denote the whole series. Further, first consider the case where the data only takes on discrete values so that r=0 for matching. If the sequence is assumed to be from a stationary Markov chain of order m, the conditional distribution of the present observation given the past only depends on the m previous observations. Hence, the likelihood or probability this particular set of data would be observed under this assumption, denoted by Lm(X)=P(X),  can be written as
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and the log-likelihood function is
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Each of the conditional probabilities P(xi+m| xi(m)), which are also called transitional probabilities in this context, can be estimated empirically with pi=Ai/Bi. Besides making common sense, these estimates are mathematically the maximum likelihood estimate (MLE).  Hence
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so that
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So approximate entropy in this case is just the negative log-likelihood of the data divided by the data length. As the sample size n goes to infinity, the expected value of the left hand side above, the negative average log-likelihood is precisely what is called the entropy rate of the process. The extension of entropy rate estimation to continuous data is straightforward but does give new insight. The difference is that the marginal and conditional probabilities become marginal and conditional densities leading to the factor of log(2r) discussed above
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This result shows that for a fixed m, entropy rate is an absolute rather than a relative measure and the selection of the parameter r for matching is not of fundamental importance; the only issue is one of accuracy of the estimate. 

Gaussianity as a measure of physiological complexity

A main result of our work to date on developing novel entropy measures is the concept that the Gaussianity of heart rate reflects physiological complexity. We now provide a heuristic argument for this viewpoint. First of all, Gaussianity refers to the degree to which a probability distribution has a bell-shaped or normal (i.e., Gaussian) distribution. A series of consecutive RR intervals can be modeled as a random process where Gaussianity would mean that all the marginal distributions of any set of points have a multivariate normal distribution.

The duration of a heart beat depends in a complicated way on many physiological and signal transduction processes. A very simple mode of an RR interval is that it is that it is the result of a sum of the individual random effects of these many components. The Central Limit Theorem from statistics tells us that under suitable conditions, this sum will tend to become more and more bell-shaped as the number of terms increases. So, we argue that the more active physiological components affecting the heart beat, the more Gaussian the distributions of the resulting series of RR intervals appear. 

Observing highly non-Gaussian HR data would then be an indication that a relatively small number of components are active and, thus, the physiological complexity is reduced. There are many caveats to this argument that remain to be fully understood. The components making up a heart beat are certainly not independent and likely not purely additive. In any event, our preliminary work with neonatal HRV, shows that the extent to which the randomness has a Gaussian distribution is a very important part of model development. It remains to be seen whether these type of measures are significantly associated with sepsis or other aspects of the infant’s health.

Entropy measures of heart rate variability

Related to the long memory property, patterns of HR data have been observed to repeat, even at intervals of a large number (100-1000) of beats. The terms order, complexity, and regularity have all been used to reflect this idea and has been associated with evidence of determinism and underlying nonlinear dynamics in cardiac activity. Currently, this regularity has been quantified using measures of entropy discussed above involving the relatively simple and intuitive concept of using templates of length 
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 from the data and matching them within a tolerance 
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. However, these measures can have severe bias and ambiguous interpretation  QUOTE "38,55" 
38,55
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. In order to effectively model neonatal HR data and to accurately analyze and test hypotheses, we propose to develop new statistical tools and approaches. 

Introduced by Pincus  QUOTE "49" 
49
 in 1991, approximate entropy (ApEn) is a popular statistic designed to quantify regularity, but has limitations. ApEn was developed as a tool that could be applied to both correlated random and noisy deterministic processes, and its motivation is drawn from the fields of nonlinear dynamics and chaos theory. In particular, the entropy being approximated is Kolmogorov-Sinai (KS) entropy, which is generally finite for deterministic processes and infinite for random processes. ApEn is widely-used in medical research, in particular for heart rate data, to detect and test regularity  QUOTE "52,53,57" 
52,53,57
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. 

Sample entropy (SampEn) is an alternative measure with better statistical properties that we developed  QUOTE "55" 
55
 and utilized as part of a logistic regression model to assess the risk of neonatal sepsis. We have extensively studied SampEn and developed methods to estimate its standard error and optimally select the parameters 
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 and 
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  QUOTE "38" 
38
. A recent approach using SampEn over multiple scales  QUOTE "7" 
7
 is promising and a new direction we plan to study. 

Entropy as a measure of uncertainty and Gaussianity
We propose to characterize regularity in heart rate data under the framework of entropy and entropy rate for continuous random variables and stochastic processes as originally introduced by Shannon  QUOTE "8,60" 
8,60
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. The entropy of a continuous random variable 
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If 
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which shows that reduced entropy is indicative of reduced variance or increased uncertainty. 

Another important property of entropy is provided by the inequality 
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where 
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 is a standard Gaussian random variable. This result shows that the Gaussian distribution has maximum entropy among all random variables with the same variance. Thus, an estimate of entropy that is substantially lower than this upper bound for a random sample (with sample variance used as an estimate of 
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) provides evidence that the underlying population is not Gaussian. 

Entropy is an example of a measure of Gaussianity that has received much attention recently in a variety of applications. These measures are used in independent component analysis (ICA) where the alternative terminology measure of non-Gaussianity is used  QUOTE "26" 
26
. ICA is used, for example, to separate the signals from multiple speakers, which is informally called the cocktail party problem. Measures of Gaussianity are also used for exploratory projection pursuit (EPP), which searches for interesting low-dimensional projections of high-dimensional data. Here, interesting means non-Gaussian and is measured by what is called a projection index  QUOTE "29" 
29
. Non-Gaussian projections can be used as features for multivariate discrimination and for data visualization. (e.g., XGobi software )  QUOTE "56" 
56
. 

Another common projection index is the Friedman-Tukey (FT) index 
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which by Jensen’s inequality is related to entropy by 
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where equality holds when 
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 is uniformly distributed. The quantity 
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 is related to entropy in the same manner SampEn is related to ApEn. A very important practical consideration is that the FT index and SampEn can generally be estimated more accurately than entropy and ApEn. There are more important connections between entropy and the FT Index. The discrete form of the FT index is equivalent to the Gini index which is used as an alternative to entropy as an impurity measure for Classification and Regression Trees (CART)  QUOTE "5" 
5
. The entropy and FT index relationship is also analogous to long-standing debate of log-likelihood ratio versus Pearson chi-squared statistic for goodness-of-fit tests  QUOTE "54" 
54
. 

Entropy rate and Gaussian processes
Letting 
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 denote the random sequence 
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where the joint entropy of 
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 random variables 
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and 
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 is the joint probability density function. For stationary processes, an equivalent definition is 
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so entropy rate is the entropy of the conditional distribution of the present observation given the past. Low variance conditional distributions leads to low entropy so the entropy rate measures extent to which a sequence is uncertain which can be interpreted in terms of regularity, complexity, order, or predictability. Non-Gaussian conditional distributions also have low entropy, so entropy rate also measures the extent to which the sequence is Gaussian. Further, our own extensive experience with neonatal HR data has demonstrated that non-stationary spiky data have low entropy rate estimates  QUOTE "38" 
38
. The moral of this discussion is that it is dangerous to blindly interpret low entropy rate as increased regularity 

Entropy rate has an important property that makes it a measure of Gaussianity for the entire stochastic processes as well as the conditional distributions. Burg’s theorem  QUOTE "8" 
8
 states that the maximum entropy rate of a stationary random sequence constrained to have certain covariances 
[image: image38.wmf]()[]

nnk

ckEXX

+

=

 for lags 
[image: image39.wmf]01

k…m

=,,,

 is achieved by a Gaussian autoregressive process of order 
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. This result becomes 
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where 
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 is the one-step mean square prediction error of the estimated 
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where the right hand side is the entropy rate of a Gaussian process as shown by Kolmogorov  QUOTE "6" 
6
. Estimated values of 
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 significantly less than the upper bounds above provides evidence that the process is not Gaussian and thus entropy rate is a measure of Gaussianity for stochastic processes. A version of entropy rate using the SampEn and FT index approach is also a measure of Gaussianity and will be developed as part of this project. Measuring the extent to which HR data is Gaussian provides valuable information about the complexity of the underlying physiology and accurate estimates of entropy rate are needed to implement this strategy. 

The log-likelihood of a random sequence 
[image: image57.wmf]n

X

 can be written as 
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and the Shannon-McMillan-Breiman theorem  QUOTE "8" 
8
 states that for stationary ergodic processes the entropy rate of 
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 is related to the log-likelihood function by 
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where the convergence is with probability 1. We propose to use the term model-based entropy to indicate the estimate 
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obtained by modeling 
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 by a parameter 
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 estimated by the MLE 
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. As described in our preliminary studies, there is an important connection between this and current approaches: ApEn corresponds to model-based entropy where the parameters are the transition probabilities of a Markov chain of order 
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 and they are estimated empirically. 

Bias of model-based entropy
It is well-known that the MLE overestimates the log-likelihood function, a phenomenon often called overfitting. A Taylor series expansion and the properties of the MLE leads to the approximation 
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where 
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 is the number of parameters (i.e., the dimension of 
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). The bias is 
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 the penalty term used in the AIC model selection criterion. Thus, a bias-corrected version of model-based entropy is 
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However, when empirical estimates are used, the value 
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 is not so clear and requires further analysis. 
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is an empirical estimate of the density at 
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. The statistical properties of empirical density estimates are well-known. For equally spaced points 
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, the entropy can be estimated using the empirical density estimate 
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where 
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showing that 
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where 
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 over the entire support. This is a significant challenge for sparse data. For the histogram estimator, the bias can be estimated using 
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 as the number of bins with data. We propose a slightly revised value of 
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Figure 8 shows various methods of estimating entropy rate including this proposed approach. The dotted line is the current method ApEn, which breaks down after 
[image: image109.wmf]3

m

=

 or so (runs out of matches). The solid line represents the value of the maximum entropy Gaussian 
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 process, which provides an upper bound for entropy rate. The dashed line represents a bias-corrected histogram estimate using our proposed new approach. The minimum difference between the Gaussian entropy and bias-corrected entropy is approximately .4 at a template length of 3. This represents our proposed new statistic for measuring the Gaussianity, and thus the physiological complexity, of the heart rate variability.
�





Figure 4: Current entropy based on probabilities  diverge while proposed modified entropy based on densities converge for neonatal HR data. The outer thinner lines are the 5th and 95th percentiles.








�Figure 8: Comparison of methods to estimate entropy rate and Gaussianity for neonatal HR data in Figure 4.
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