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ABSTRACT

Abnormal heart rate characteristics of reduced variability and transient decelerations are present early in the course of neonatal sepsis. To investigate the dynamics, we calculated Sample Entropy, a similar but less biased measure than the popular Approximate Entropy.  Both calculate the probability that epochs of window length m that are similar within a tolerance r remain similar at the next point.  We studied 89 consecutive admissions to a tertiary care neonatal intensive care unit, in whom there were 21 episodes of sepsis, and we performed numerical simulations.  We addressed the fundamental issues of optimal selection of m and r, and the impact of missing data.  The major findings are that entropy falls before clinical signs of neonatal sepsis, and that missing points are well-tolerated.  The major mechanism, surprisingly, is unrelated to the regularity of the data - entropy estimates inevitably fall in any record with spikes.  We propose more informed selection of parameters and re-examination of studies where Approximate Entropy was interpreted solely as a regularity measure.
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INTRODUCTION


Premature infants in the neonatal intensive care unit (NICU) are at high risk for developing bacterial sepsis.  Diagnostic tests for neonatal sepsis are imperfect, especially early in the course of the illness.  A possible approach to improved diagnosis of neonatal sepsis is continuous monitoring of heart rate (HR) characteristics - early neonatal sepsis is marked by reduced baseline variability and transient decelerations of HR, similar to the findings of fetal distress  QUOTE "(6)" 
(6)
.  

In their study of HR records from fetuses and newborn infants  QUOTE "(19;21)" 
(19;21)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042087!Pincus & Viscarello 1992 2087 /id\00!\00 
, Pincus and co-workers interpreted these changes as representative of a change in the complexity of the physiological processes underlying control of HR, and quantified them using approximate entropy (ApEn).  Pincus developed this statistical measure from theory developed in the field of non-linear dynamical analysis and chaos  QUOTE "(16;20)" 
(16;20)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042082!Pincus & Goldberger 1994 2082 /id\00!\00 
.  Distressed fetuses and sick newborns sometimes showed reduced ApEn, interpreted as an increased regularity of cardiac rhythm.


In this context, entropy is the rate of generation of new information.  ApEn(m,r,N) is approximately the negative natural logarithm of the conditional probability CP that a data set of length N, having repeated itself within a tolerance r for m points, will also repeat itself for m+1 points.  An important point to keep in mind about the parameter r is that it is commonly expressed as a fraction of the standard deviation of the data, and in this way makes ApEn a scale-invariant measure. A low value arises from a high probability of repeated template sequences in the data. We define B to be the number of matches of length m, and A to be the subset of B that also matches for length m+1.  Thus CP= A/B.  For ApEn, one calculates -log CP for each template and averages these values for all the templates.  Since neither A nor B can be 0, CP must be redefined to 1+A / 1+B, a correction that can be rationalized as allowing templates to match themselves.  This is obviously inconsistent with the idea of new information, however, and is a strong source of bias toward CP=1 and ApEn = 0 when there are few matches and A and B are small  QUOTE "(16;18;20;22)" 
(16;18;20;22)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\0217\12Pincus 1991 17 /id\00\12\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042082!Pincus & Goldberger 1994 2082 /id\00!\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\03520\13Pincus 1995 520 /id\00\13\00 
. 

We developed a new related measure of time series regularity that we have called sample entropy (SampEn) QUOTE "(22)" 
(22)
.  SampEn(m,r,N) is precisely the negative natural logarithm of the conditional probability that a data set of length N, having repeated itself within a tolerance r for m points, will also repeat itself for m+1 points, without allowing self-matches. SampEn does not use a template-wise approach, and A and B accrue for all the templates.  SampEn was designed to reduce the bias of ApEn, and has closer agreement with theory for data sets with known probabilistic content.  Moreover, SampEn displays the property of relative consistency in situations where ApEn does not.  That is, if one record shows lower SampEn than another with  one set of values of m and r, it also shows lower SampEn with different values.  These measures have an indirect interpretation – the extent to which the data did not arise from a random process.  The terms order, regularity, complexity and ensemble orderliness have all been used to reflect this idea, and we will use the term regularity.  

Though m and r are critical in determining the outcome of either method for entropy estimation, no guidelines exist for optimizing their values. We view this as a severe shortcoming in the current art.  The various existing rules of thumb generally lead to the use of values of r between 0.1 and 0.25 and values of m of 1 or 2 for data records of length N ranging from 100 to 5000 data points  QUOTE "(7;15;20)" 
(7;15;20)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042066+Palazzolo, Estafanous, et al. 1998 2066 /id\00+\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042412$Groome, Mooney, et al. 1999 2412 /id\00$\00 
.  In principle, the accuracy and confidence of the entropy estimate improves as the numbers of matches of length m and m +1 increase. Intuitively, the advantages of SampEn include larger values of A and B and hence more confident estimation of CP.  In either method, the number of matches can be increased by choosing small m (short templates) and large r (wide tolerance).  There are penalties, however, for criteria that are too relaxed  QUOTE "(16)" 
(16)
.  First, there is a theoretical concern.  While these calculations only aim to estimate, entropy is defined in the limit as m approaches ( and as r approaches 0.  Second, there are practical concerns. As r increases, the probability of matches tends towards 1 and SampEn tends to 0 for all processes, thereby reducing the ability to distinguish any salient features in the data set.  As m decreases, underlying physical processes that are not optimally apparent at smaller values of m may be obscured. 

The results of Pincus and co-workers motivated us to examine entropy as a possibly useful indicator of early stages of neonatal sepsis.  We thus have implemented SampEn analysis of a relevant clinical data set, and we have systematically addressed several practical and general questions inherent in estimating entropy: (1) what are the confidence intervals (CI) of SampEn estimates?; (2) how do we pick m and r?; (3) does entropy fall prior to the clinical diagnosis of neonatal sepsis?; (4) why does entropy diminish when reduced variability and transient decelerations are present?; and (5) do missing points matter?

Our results extend those of Pincus and co-workers  as we detect lower SampEn prior to the clinical diagnosis of neonatal sepsis.  In addition to their clinical relevance, the findings shed light on several general issues in using entropy estimates.  In particular, the findings argue against unguided use of the parameters m and r, and against an unquestioned acceptance of the idea that differences in entropy estimates are always the result of differences in time series regularity. 

METHODS

Clinical data


We studied 89 infants admitted consecutively to the University of Virginia neonatal intensive care unit (NICU) over a period of nine months using a previously described data collection and analysis procedure  QUOTE "(6)" 
(6)
.  The data collection protocol was approved by the University of Virginia Human Investigations Committee.  Data records consisting of 4096 RR intervals were collected over approximately 25 minutes. There were 73,097 of these data records collected during the study. To remove trends  QUOTE "(20)" 
(20)
, each was high-pass filtered by subtracting a low-pass filtered version of the record. Sepsis and sepsis-like illness was defined as an acute clinical deterioration that prompted a physician to obtain a blood culture and to administer antibiotics  QUOTE "(6)" 
(6)
. To evaluate the diagnostic potential of SampEn, we excluded data from the first 7 days after birth and for 14 days following each of the sepsis events.

 For comparison of SampEn values on the day of illness to other days, records were parsed into six-hour epochs beginning at midnight and labeled according to whether an episode of sepsis and sepsis-like illness occurred in the next 24 hours.  As a robust marker of reduced SampEn, the 10th percentile value of SampEn was determined for each six-hour epoch. Using this value as a test statistic, the ROC area for distinguishing days containing events from non-event days was calculated. The confidence intervals and significance level for the ROC area estimates were obtained via bootstrapping. The statistical significance was assessed for the coefficient of a logistic discrimination model whose variance was robustly determined by taking into account the repeated measures on individual infants. The added diagnostic information of SampEn over traditional methods of predicting sepsis was evaluated using the Wald chi square test on models developed with the demographic variables of gestational age and birth weight. 

Choosing the parameters m and r 


To aid in selecting the parameters for SampEn, a random sample of 200 records of 4096 RR intervals were selected from the clinical data set. The numbers of matches of lengths m and m+1, CP, SampEn and CI estimates were calculated for 16 values of r between 0.01 and 0.8 and for values of m from 1 to 10. Estimated results for r not explicitly calculated were obtained by linear interpolation. To further evaluate the parameter m, auto-regressive (AR) models of various orders were fit to the data using methods discussed in appendix part A. 

RESULTS

Confidence intervals of entropy estimates


One of our major goals is to devise a general strategy for optimal selection of m and r.  Part of this strategy is to ensure that the length of the CI around the SampEn estimate is acceptable.  

The statistic CP=A/B estimates the conditional probability of a match of length m+1 given there is a match of length m.  The accuracy of the estimate can be judged by the length of its CI, which is proportional to its standard error. If B were fixed and all B of the matches of length m were independent of each other, then the random variable A would be binomially distributed and the variance of CP would simply be CP(1-CP)/B.  The situation is, however, 

more complicated because A and B are correlated.  For example, there might be many pairs of matches that are dependent because of naturally occurring dependencies in the data or, more directly, because of overlapping pairs of matches with points in common. 

It is shown in appendix part B that an estimate of the variance is
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where KA is the number of pairs of matching templates of length m+1 that overlap, and KB is the number of pairs of matching templates of length m that overlap.  Using the standard approximation g(CP) ( |g`(CP)|CP with  g(CP)=-log(CP), the standard error of SampEn can be estimated by CP/CP. Thus the standard error of SampEn is exactly the relative error of CP. For m small enough and r large enough to ensure a sufficient number of matches, SampEn can be assumed to be normally distributed and we define the 95% CI for each SampEn calculation to be -log(CP)(1.96(CP/CP). 

Picking m and r for SampEn analysis of neonatal RR interval data records 

We first determined a range of m that was likely to capture essential elements of the data structure.  The autoregressive (AR) process order of each record was estimated, and we found 90% of the estimates to be between 3 and 9 inclusive. Based on this, we choose m to be no less than 3.

We now seek a value r that is neither so stringent that the number of matches is too near 0 (low confidence) nor so relaxed that CP is too near 1 (low discrimination)  QUOTE "(16)" 
(16)
.  We propose selecting r to minimize the quantity
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which is the maximum of the relative error of SampEn and of the CP estimate, respectively.  This metric favors estimates with low variance and thus reflects the efficiency of the entropy estimate.  In addition, this criterion represents a tradeoff of accuracy and discrimination capability, as it simultaneously penalizes CP near 0 and near 1.  Figure 1 shows a color map of the median value of this criterion for 200 randomly selected records from our clinical database, calculated for a range of values of m (rows) and r (columns).  The maximum relative error of either SampEn or CP ranges from 0, a deep blue, to 0.15, a deep red, and is black where no matches of length m are found.

Inspection reveals major features of the map. A window length of 1 allows confident estimation of entropy for a wide range of r. For m=2 or greater, though, optimum values of r are clearly evident and lie generally between about 0.2 and about 0.5.  The dependence of the error on r is very steep for low r, and intolerably large error precludes many combinations of m and r even in these relatively large data records of 4096 points. We aim for a maximum relative error no higher than about 0.05, so that the 95% CI of the entropy estimate is about 10% of its value.  For our data, we select m=3 and r=0.2 based on the findings that (1) m=3 is acceptable because of the AR analysis, (2) r=0.2 is optimum of m=3, based on inspection of the color map, and (3) the 95% CI of the estimate is about 10% of its value. We proceeded to analyze the clinical database with m=3 and r=0.2 based on this analysis.

SampEn of neonatal HR falls prior to the clinical diagnosis of sepsis and sepsis-like illness

 
Figure 2 shows analysis of SampEn in an infant who was diagnosed with sepsis.  Panels A and B show plots of SampEn (3, 0.2, 4096) as a function of the infant’s age, and the dotted line is the 95% CI for each estimate.  The infant was diagnosed with sepsis at the point labeled CRASH, but beforehand develops the previously described abnormal HR characteristics of reduced variability and transient decelerations  QUOTE "(6)" 
(6)
.  The three insets show data records of 4096 RR intervals and progress from normal (left) to reduced variability with a single large deceleration (middle) to repeated decelerations (right).  None of the decelerations reach 100 beats per minute (RR interval 600 msec), and thus would not have triggered an alarm by the bedside EKG monitor.  Instead, the feature that might have alerted the clinician - reduced variability and transient decelerations in the second and third records - would not have been reported.  SampEn is reduced in the abnormal records, and inspection of this patient’s records suggests that SampEn might be a useful tool in the early diagnosis of neonatal sepsis.


We tested this hypothesis using regression analysis in a large clinical data set from 89 infants in which 19 episodes of sepsis and sepsis-like illness occurred.  We chose the 10th percentile value of SampEn to over the past 12 hours as an appropriate representation.  Frequency histograms of SampEn and the 10th percentile values are shown in Figure 3.  Both have near-normal distributions.  We found that SampEn was significantly associated with upcoming sepsis and sepsis-like illness (ROC area 0.64, 95% CI 0.56 - 0.74, p=0.001).  Moreover, SampEn significantly added diagnostic information to the variables gestational age and birth weight (p<0.001).

Mechanism of reduced entropy for data with reduced variability and transient decelerations: Surrogate data records 

To understand the effect of reduced baseline variability and transient decelerations, or spikes, on SampEn, we performed analysis and experiments with surrogate data records.  These were produced by summing pairs of records as illustrated in Figure 4.  

The first is the mean process (panel A), which consists of two modes, a constant rate and the spike.  The second is the baseline process (b) (panel B), which represents the heart rate  variability (HRV).  Their sum (panel C) is a surrogate data record. For the spike mode of the mean process, we used either a square step for the analytical results or a clinically observed deceleration lasting 50 RR intervals that occurred near the time of clinical diagnosis of sepsis in one patient.

We considered three kinds of baseline processes.  First, for the analytical results, we used Gaussian random numbers and refer to this as random data or white noise.  Second, as demonstrated in panels D to F of Figure 4, we constructed isospectral surrogate data records.  The method is to randomize the phase of inverse Fourier transforms of the power spectral densities of observed data records. Panel D is an observed clinical data record, scaled in msec on the left axis and in S.D. on the right axis.  Panel E shows the isospectral surrogate scaled so that it has mean=0 and S.D.=variance=1.  Panel F shows the sum of the record in panel E and the clinically observed deceleration that has been scaled so that the overall variance of the record is 2.  Thus, the spike contributes 50% of the combined variance in this example record.

Finally, as an example of a deterministic model, we mapped series from the logistic map xi+1=4xi(1-xi) onto a Gaussian random process.  The resulting series has the identical marginal density and approximates the spectral properties of Gaussian white noise but, being a deterministic process after an initial random seed x1, has entropy that does not approach infinity as r approaches 0. 

Mechanism of reduced entropy for data with reduced variability and transient decelerations: Analytical results

We first analyzed a mean process with a square-topped spike of height  and duration N beats where is small. Because of the spike, the mean varies and can be considered as a random variable with two modes, one a constant value 0 with probability 1- and another a constant value 0+ with probability .  Thus the mean process has variance 2(=(1-). We denote the variance of the baseline process by 2b. The combined variance 2 of the entire record is the sum of the variances of the mean process and the baseline, or 2 = 2b+2(=2b+(1-). In appendix part C it is shown that in this case, the sample entropy can be approximate by
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The critically important finding from this analysis is that CP increases and SampEn decreases when spikes that are large (increased () or long-lasting (increased () inflate the combined variance 2 and, with it, the tolerance r As is shown in appendix part C, this model can be generalized to a signal that consists of a spectrum of modes.  We note that the combined variance can be large relative to the baseline variance in a number of ways other than a large single spike. So, for example, SampEn will also be significantly reduced if there are a moderate number of moderate sized spikes, as we have observed clinically. 


We conclude from this analysis that SampEn must fall when spikes inflate the variance of the series.

Mechanism of reduced entropy for data with reduced variability and transient decelerations: Experimental results

To investigate the effects of spikes in HR data records, we calculated SampEn in the sample of 200 observed data records, their isospectral surrogates, Gaussian random data, and the deterministic model of the Gaussian-mapped logistic map.  Scaled versions of the clinically observed deceleration, or spike, were added, and the results plotted as a function of the size of the spike measured as its contribution to the combined variance.

Figure 5A shows the results of SampEn calculations for white noise, raw data, isospectral surrogate data, and deterministic white noise. As expected from the analytical results above, SampEn of random data falls in the presence of spikes.  More relevant to the clinical problem, SampEn values of the observed HR and surrogate data both fall in the presence of spikes.  For example, the median SampEn value for the observed data falls from 1.3 to 0.75 when a spike that doubles the combined variance (i.e., 50% of the combined variance is due to the spike) is added.  An analogous example is shown as Figure 4F.

We reject the interpretation that these changes in SampEn reflect alterations in the regularity of the points because 99% of the data are not altered.  There is only one spike, so recent findings suggesting that ApEn is sensitive to pulse frequency do not apply  QUOTE "(28)" 
(28)
.  Instead, we interpret the changes to be the arithmetic consequence of outlying points that inflate the combined variance.

SampEn values of the raw data were significantly less than the surrogate data (p<0.001, Wilcoxon rank sum test). This result has been used in fetal HR analysis to demonstrate nonlinearity in the data  QUOTE "(7)" 
(7)
. Given the presence of spikes, this is not a proper conclusion here. This result only suggests that neonatal heart rata data contains some combination of non-stationary and nonlinear characteristics not captured by a linear stationary process. Finding methods that can distinguish among these components is a very important future task.

A possible approach to addressing this issue would be to model nonstationarity into the surrogate data to isolate nonlinear effects. Similarly, spikes, outliers and other nonstationary properties of the heart rate data could be removed from the data before the analysis. These methods rely on a sufficient understanding of the mechanism of nonstationarity in heart rate data and the development of a robust mathematical model. For example, the occurrence of spikes can be modeled as a Poisson process with the height and duration of the spikes following some random distribution. Neonatal heart rate data, however, include many nonstationary features, and more sophisticated models are likely necessary for their description.    

It is noteworthy that SampEn of the deterministic model is unaffected by spikes contributing less than 80% of the combined variance. Thus a process in which SampEn is driven exclusively by the regularity is much more resistant to the effect of outlying points that inflate the variance.

We conclude from this analysis that reduced SampEn in neonatal HR data is strongly influenced by spikes rather than increased regularity. 

Is SampEn sensitive to missing points?

Long HR data records are vulnerable to missing points, as electrocardiographic waveforms are easily distorted by motion of the patient. SampEn, however, is potentially very sensitive to missing points as it is based entirely on the ordering of the data. We randomly removed varying proportions of the 200 sample clinical data sets, and calculated the correlation coefficient between SampEn of the intact and the decimated data sets.  Figure 5B shows that randomly removing as much as 40% of the RR interval data did not reduce the correlation coefficient below 0.95.  On the other hand, removal of even a small proportion of points from a series from the logistic map drastically alters SampEn.  We conclude from this analysis that missing points do not greatly alter the SampEn estimate for clinical HR data records, arguing further against increased regularity as the major mechanism of low entropy prior to the clinical diagnosis of neonatal sepsis.

DISCUSSION


We studied sample entropy (SampEn), which was developed as a measure of time series regularity, of RR interval data records from newborn infants.  Our most important findings are: [1] parameters for SampEn estimation can be optimized; [2] SampEn falls early in the course of neonatal sepsis and sepsis-like illness; [3] SampEn falls in the presence of spikes in a record with reduced variability; [4] the mechanism is not a change in regularity; and [5] SampEn of neonatal HR records is not very sensitive to missing points.   The findings corroborate the earlier work of Pincus and co-workers who found reduced ApEn in acidotic fetuses and sick newborns, and point to a clinical utility for SampEn monitoring of infants at risk of sepsis and sepsis-like illness. 

Confidence intervals for entropy estimates
We derived an expression to estimate the variance of the conditional probability that epochs within a series that match within tolerance r for m points will also match for m+1 points, taking into account the fact that epochs might overlap.  This new estimate is based on data and is independent of the mechanism underlying the process.  

We note that this variance measure is fundamentally different from Pincus’ estimate of the S.D. of ApEn, which was calculated using replicates of the MIX process  QUOTE "(19)" 
(19)
.  This is another and more empirical approach, which we also performed by determining the CI directly from analysis of multiple surrogate data sets with the same properties as HR.  We calculated the 95% CI of multiple realizations of isospectral surrogate data using this bootstrap analysis, and found that there was close correlation between the analytical and empirical results.  The CI from the analytical method for r=0.2, though, were about twice those of the surrogate data.  The discrepancy may be due to the failure of the surrogate data, which are matched for frequency content, to capture all the dynamical features of the real data.  We used the more conservative analytical method to select values of m and r.

Pincus and co-workers  QUOTE "(19;20)" 
(19;20)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042088'Pincus, Gladstone, et al. 1991 2088 /id\00'\00 
 noted that analytical definition of the standard error of ApEn is much more complicated.  Since the ApEn calculation involves the sum of the logarithms rather than the logarithm of the sums, our methods are not applicable. Recently, it has been noted that the asymptotic distribution of ApEn is related to the chi-square distribution  QUOTE "(23)" 
(23)
. This result, however, only applies to large sets of uniformly distributed discrete data and is not applicable to most experimental data. We know of no general methods to determine a CI for ApEn.

Parameters for entropy estimation can be optimized

Optimal selection of m and r has been an unexplored area of paramount importance.  Pincus  QUOTE "(17)" 
(17)
, for example, showed very large uncertainty in the ApEn of a 1000-point MIX(0.4) series with the popular choices of m=2 and r=0.05 * the range of the data, or r (0.3* S.D.   While some of the error is the bias of ApEn  QUOTE "(20)" 
(20)
, the rest may be an unwittingly sub-optimal choice of m and r.  

We developed a systematic general approach to picking m and r based on a new metric of the efficiency of the entropy estimate.  The two steps are to (1) pick a range of values of m based on an understanding of the physical process or by fitting AR models, and (2) calculate SampEn for a range of r, and select the value that optimizes an efficiency metric such as the maximum of CP /CP andCP /(-log(CP)CP).

 Our analysis led us to select m= 3 and r= 0.2 for neonatal HR data records.  The resulting CI were acceptably low (Figure 2).  We note, though, that these values are not universally applicable to all data sets.  In fact, data sets of length 4096 are quite long compared to many for which ApEn analysis has been used.  The confidence with which ApEn results can be viewed for short, clinically observed data sets for any values of m and r is not known. We suggest that calculation of CI is an essential part of entropy estimation.  

SampEn falls early in the course of neonatal sepsis and sepsis-like illness

We observe reduced variability and transient decelerations in HR data prior to neonatal sepsis, and we hypothesized that SampEn would fall prior to the clinical diagnosis.  This was the case - multivariable logistic regression modeling showed that SampEn added independent information to birthweight, gestational age and days of age in predicting sepsis by up to 24 hours.  We note, however, that low SampEn in these records does not distinguish between HR decelerations (which are of interest) and HR accelerations (which are not).  To enhance the diagnostic usefulness of SampEn in this setting, we tested the effect of adding measurements of the third moment, or skewness, to the multivariable model. By its sign, skewness cleanly separates records of low SampEn with decelerations, where long intervals lead to skewness >0, from those with accelerations.  A model incorporating the skewness had improved discriminating ability (ROC area 0.77, CI 0.69 - 0.85, p<0.001). Thus skewness adds information to SampEn, justifying a multivariate approach to the clinical goal of early detection of sepsis.

Entropy falls in the presence of spikes in a record with reduced variability, but the mechanism is not a change in regularity

Our findings suggest that a reduction in SampEn in a time series might be due to two very different mechanisms – an increase in the degree of regularity, or outlying data points that inflate the S.D. We demonstrate analytically and experimentally that SampEn falls in the presence of spikes, and we conclude that reduced SampEn in neonatal HR data could be due, at least in part, to the spikes rather than increased regularity.  In principle, neither measure should be sensitive to outlying points - the result is due only to establishing r as a function of the S.D. of the data. This conclusion contradicts that of Pincus and Huang  QUOTE "(19)" 
(19)
, who stated that ApEn is insensitive to outliers, and differs from those of previous studies that attribute reduced entropy solely to changes in regularity, and some investigators go so far as to draw conclusions about nonlinear dynamics in heart beat data  QUOTE "(3;5;7;9-12;15;21)" 
(3;5;7;9-12;15;21)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042087!Pincus & Viscarello 1992 2087 /id\00!\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042412$Groome, Mooney, et al. 1999 2412 /id\00$\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042453%Garde, Regalado, et al. 2001 2453 /id\00%\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042454&Chaffin, Barnard, et al. 1998 2454 /id\00&\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042069*Makikallio, Ristimae, et al. 1998 2069 /id\00*\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042075*Makikallio, Seppanen, et al. 1996 2075 /id\00*\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042455"Newlin, Wong, et al. 2000 2455 /id\00"\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042071%Lipsitz, Pincus, et al. 1997 2071 /id\00%\00 
.  

Contrary to prediction, very small subsets of the data can indeed dramatically affect entropy estimates  QUOTE "(20)" 
(20)
. In general, we suggest that a reduction in entropy estimates indicates increased regularity, the presence of spikes, or both.  Finding methods that distinguish these components is a very important future task.

SampEn analysis of neonatal heart rate variability is not sensitive to missing points

Frequency domain analysis of HRV dissects sympathetic and parasympathetic activity  QUOTE "(1;14;27)" 
(1;14;27)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\03361#Baldzer, Dykes, et al. 1989 361 /id\00#\00 

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\03362\1FOri, Monir, et al. 1992 362 /id\00\1F\00 
 but is very sensitive to missing data points  QUOTE "(2;24)" 
(2;24)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\042045 Berntson & Stowell 1998 2045 /id\00 \00 
.  We found SampEn little affected by loss of more than one-third of the data, the practical limit that we might encounter.  This is surprising, since loss of small amounts of data significantly impaired the detection of regularity in truly deterministic data.  The finding, however, is consistent with other results presented here that SampEn of HR records reports on spikes as well as regularity.  In this context, loss of data points is irrelevant to the calculation.

Physiological and clinical relevance of SampEn analysis of neonatal heart rate variability

The physiological mechanism underlying reduced variability and transient decelerations is not known, but seems likely to represent dysfunction of the autonomic nervous system or of intracellular signal transduction processes perhaps by circulating cytokines  QUOTE "(8;13)" 
(8;13)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\041989#Kuster, Weiss, et al. 1998 1989 /id\00#\00 
.  Since the pathophysiology may not be specific for sepsis, SampEn may find use as a general estimate of the health of the infant.  Regardless of the mechanism, the findings are important in clinical medicine, as SampEn can be considered a candidate measure for monitoring at-risk infants, either alone or as part of a multi-variable scheme.  Given the frequency and severity of sepsis and sepsis-like illness in premature newborn infants  QUOTE "(26)" 
(26)
, any scheme that improves on the current clinical practice would be welcome.  Moreover, it seems reasonable to conjecture that cumulative measures of SampEn might reflect the burden of illness in infants, and be useful both in estimating prognosis and in resource utilization in the newborn intensive care unit.

Summary

We propose new and general methods for optimal selection of m and r for SampEn and ApEn.  Our most important finding, though, applies to all studies using either measure.  SampEn and ApEn are modulated by outlying points that are irrelevant to the intuitive idea of the regularity of the process. Thus increased regularity is not always the mechanism of lower entropy.  This observation allows a simpler interpretation of why reduced variability and transient decelerations in fetal and neonatal HR records lead to lower ApEn and SampEn.  Instead of regularity that might or might not be visually apparent  QUOTE "(17;21)" 
(17;21)

 QUOTE ""  ADDIN REFMAN ÿ\11\05‘\19\01\00\00\00\00\01\00\00C\5C\5CRm3hpc3\5CRM3H LAPTOP C-Drive\5CProgram Files\5CReference Manager 9\5CHRV\03\00\03403\13Pincus 1995 403 /id\00\13\00 
, we suggest that these time series features inevitably lead to lower entropy estimates for reasons unrelated to regularity.

APPENDIX

A: Autoregressive Models

Auto-regressive (AR) models of various orders were fit to the data. The motivation for this approach was that if data comes from an AR(p) process then m ( p. For a series {u(i): 1(i(N} of length N, the parameters of an AR(p) process a1,a2,…,ap were estimated to minimize the least-squares fit to the data
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which is accurately determined by solving the first p Yule-Walker equations with correlations estimated using the sample autocorrelation coefficients  QUOTE "(4)" 
(4)
. The order of the process was then estimated to minimize the Schwarz’s Bayesian Criterion  QUOTE "(25)" 
(25)
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which represents a tradeoff between the fit of the AR model and the number of parameters estimated.

B: Estimation of the variance of SampEn

Let xm(i)  denote the template {u(i+k):0(k(m-1} of length m from a time series {u(i): 1(i(N} of length N assumed to be independent and identically distributed. The number of matches of length m+1 can be expressed as A=Uij where Uij=1 if xm+1(i) matches xm+1(j) and 0 otherwise. The summation can be restricted to the B pairs (i,j) of matches of length m, where xm(i) matches xm(j). The variance of CP can thus be written:
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For the B pairs where i=k and j=l in the above sum, Cov[Uij,,Ukl]= Var[Uij,] = CP(1-CP). If the templates involved for Uij and Ukl have no points in common, they are independent and thus uncorrelated so that Cov[Uij,,Ukl]=0.  If the templates overlap, the covariance can be estimated by UijUkl- CP 2, which is 1- CP 2 when both pairs of m+1 templates match and (-)CP 2 otherwise. So the variance can be estimated as
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[image: image11.wmf]where KA is the number of pairs of matching templates of length m+1 that overlap, and KB is the number of pairs of matching templates of length m that overlap. Calculating KA and KB is not trivial from either the computational or algorithmic point of view, especially for smaller values of m. The calculation involves consideration of all B2 pairs of m matches. Since B is of order N2, this is of order N4 and could be very large for smaller m and larger r.  Note that the condition for the template pair (i,j) to overlap the template pair (k,l) is equivalent to min(|i-k|,|i-l|,|j-k|,|j-l|)(m and care needs to be taken to avoid double-counting overlapping pairs. 

C: Analysis of the effect of spikes on SampEn

A spike of height  and duration N  has variance 2(=(1-) and the combined variance of the entire record is 2 = 2b+2(=2b+(1-). Recall that r is the tolerance for finding matches. Assume  is large enough relative to r and  that there are few if any matches between points inside the spike and points outside the spike. That is to say, matches occur only within the same mode of the mean process. When the baseline process is Gaussian white noise, the difference D between two potential matching points has a Gaussian distribution with mean 0 and variance 22b. Because of independence, the conditional probability of a match is independent of m and equal to 
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where the approximation is valid for small r. We convert CP to SampEn by taking its negative logarithm, and make two approximations: 
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where the second approximation is valid for (1-)<<2b. 

For a signal that consists of a spectrum of modes, CP depends in a complex way on how the process makes transitions from one mode to another. If matches predominantly occur only within the same mode, the analysis holds, and SampEn can be approximated for small r by
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in agreement with our result above where 2 =(1-). 

 REFERENCES

1. Baldzer, K., F. D. Dykes, S. A. Jones, M. Brogan, T. A. Carrigan, and D. P. Giddens. Heart rate variability analysis in full-term infants: spectral indices for study of neonatal cardiorespiratory control. Pediatr Res 26: 188-195, 1989.

2. Berntson, G. G. and J. R. Stowell. ECG artifacts and heart period variability: don't miss a beat. Psychophysiol 35: 127-132, 1998.

3. Chaffin, D. G., Jr., J. M. Barnard, T. Phernetton, and K. L. Reed. Decreased Approximate Entropy of Heart Rate Variability in the Hypoxic Ovine Fetus. Journal of Maternal-Fetal Medicine 8: 23-26, 1998.

4. Chatfield, C. The analysis of time series. New York, Chapman and Hall. 1985.

5. Garde, S., M. G. Regalado, V. L. Schechtman, and M. C. Khoo. Nonlinear dynamics of heart rate variability in cocaine-exposed neonates during sleep. Am J Physiol Heart Circ Physiol 280: H2920-H2928, 2001.

6. Griffin, M. P. and J. R. Moorman. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 107: 97-104, 2001.

7. Groome, L. J., D. M. Mooney, S. B. Holland, L. A. Smith, J. L. Atterbury, and P. C. Loizou. Human fetuses have nonlinear cardiac dynamics. J Appl.Physiol 87: 530-537, 1999.

8. Kuster, H., M. Weiss, A. E. Willeitner, S. Detlefsen, I. Jeremias, J. Zbojan, R. Geiger, G. Lipowsky, and G. Simbruner. Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 352: 1271-1277, 1998.

9. Lipsitz, L. A., S. M. Pincus, R. J. Morin, S. Tong, L. P. Eberle, and P. M. Gootman. Preliminary evidence for the evolution in complexity of heart rate dynamics during autonomic maturation in neonatal swine. Journal of the Autonomic Nervous System 65: 1-9, 1997.

10. Makikallio, T. H., T. Ristimae, K. E. Airaksinen, C. K. Peng, A. L. Goldberger, and H. V. Huikuri. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 81: 27-31, 1998.

11. Makikallio, T. H., T. Seppanen, M. Niemela, K. E. Airaksinen, M. Tulppo, and H. V. Huikuri. Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction. J Am Coll Cardiol 28: 1005-1011, 1996.

12. Newlin, D. B., C. J. Wong, J. M. Stapleton, and E. D. London. Intravenous cocaine decreases cardiac vagal tone, vagal index (derived in Lorenz space), and heart period complexity (approximate entropy) in cocaine abusers. Neuropsychopharmacology 23: 560-568, 2000.

13. Oddis, C. V. and M. S. Finkel. Cytokines and nitric oxide synthase inhibitor as mediators of adrenergic refractoriness in cardiac myocytes. European Journal of Pharmacology 320: 167-174, 1997.

14. Ori, Z., G. Monir, J. Weiss, X. Sayhouni, and D. H. Singer. Heart rate variability: frequency domain analysis. Cardiology Clinics 10: 499-533, 1992.

15. Palazzolo, J. A., F. G. Estafanous, and P. A. Murray. Entropy measures of heart rate variation in conscious dogs. Am.J.Physiol. 274: H1099-H1105, 1998.

16. Pincus, S. M. Approximate entropy as a measure of system complexity. Proc.Natl.Acad.Sci. 88: 2297-2301, 1991.

17. Pincus, S. M. Approximate entropy (ApEn) as a complexity measure. Chaos 5: 110-117, 1995.

18. Pincus, S. M. Quantifying complexity and regularity of neurobiological systems. Methods in Neurosciences 28: 336-363, 1995.

19. Pincus, S. M., I. M. Gladstone, and R. A. Ehrenkranz. A regularity statistic for medical data analysis. Journal of Clinical Monitoring 7: 335-345, 1991.

20. Pincus, S. M. and A. L. Goldberger. Physiological time-series analysis: what does regularity quantify? Am.J.Physiol. 266: H1643-H1656, 1994.

21. Pincus, S. M. and R. R. Viscarello. Approximate entropy: a regularity measure for fetal heart rate analysis. OB & GYN 79: 249-255, 1992.

22. Richman, J. S. and J. R. Moorman. Physiological time series analysis using approximate entropy and sample entropy. Am.J.Physiol. 278: H2039-H2049, 2000.

23. Rukhin, A. L. Approximate entropy for testing randomness. Journal of Applied Probability 37: 88-100, 2000.

24. Schechtman, V. L., K. A. Kluge, and R. M. Harper. Time domain system for assessing variations in heart rate. Med Biol Eng Comp 26: 367-373, 1988.

25. Schwarz, G. Estimating the dimension of a model. Annals of Statistics 6: 461-464, 1978.

26. Stoll, B. J., T. Gordon, S. B. Korones, S. Shankaran, J. E. Tyson, C. R. Bauer, A. A. Fanaroff, J. A. Lemons, E. F. Donovan, W. Oh, D. K. Stevenson, R. A. Ehrenkranz, L. A. Papile, J. Verter, and L. L. Wright. Late-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J.Pediatr. 129: 63-71, 1996.

27. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability:  standards of measurement, physiological interpretation, and clinical use.  Circ 93: 1043-1065, 1996.

28. Veldhuis, J. D., M. L. Johnson, O. L. Veldhuis, M. Straume, and S. M. Pincus. Impact of pulsatility on the ensemble orderliness (approximate entropy) of neurohormone secretion. Am J Physiol Regul.Integr.Comp Physiol 281: R1975-R1985, 2001.

Figure legends.

Figure 1. 

A visual guide to optimal selection of window length (m) and tolerance (r) parameters for entropy estimation of neonatal heart rate time data records of length 4096.  The median value of a SampEn efficiency metric for 200 randomly selected data records is plotted in pseudocolor as a function of m and r.  A value of 0.05 corresponds to a 95% CI that is 10% of the SampEn estimate itself.  Given a value of m based on a priori reasoning, an optimal value of r can be selected to minimize the efficiency metric.  In this example, we selected r to be 0.2 because it led to the best value of the efficiency metric, which was less than 0.05.

Figure 2.

SampEn is decreased prior to episodes of neonatal sepsis.  SampEn as a function of time is shown for one infant in panel A as a solid line, with standard errors shown as dotted lines.  The time at which the clinical diagnosis of sepsis was suspected is labeled “CRASH” (Cultures, Resuscitation and Antibiotics Started Here).  The open circles are the 10th percentile-lowest value of the preceding 12 hours, and are given every 6 hours.  Panel B shows data from near the time of diagnosis on an expanded time scale.  The insets below are time series of 4096 RR intervals from the designated times, and show the development of the characteristic abnormalities of reduced variability and transient decelerations.

Figure 3.

Frequency histograms of SampEn (n=73,097; A) and the 10th percentile value of SampEn from each 12 hour epoch (n= 5626; B).  The smooth lines are Gaussian functions.

Figure 4.

Surrogate data records.  Panels A and B show the major components.  Panel A shows the mean process, which has set point and spike modes.  Panel B shows the baseline process, here meaning the heart rate variability and modeled as Gaussian random numbers.  Panel C shows their sum, a surrogate data record.  Panels D to F show a more realistic surrogate with the same frequency content as the observed data. Panel D shows a clinically-observed data record of 4096 RR intervals.  The left-hand ordinate is labeled in msec and the right-hand ordinate in S.D.  Panel E shows a 4096 point isospectral surrogate data set formed using the inverse Fourier transform of the periodogram of the data in panel D.  Panel F shows the surrogate data after addition of a clinically observed deceleration lasting 50 points and scaled so that the variance of the record is increased from 1 to 2.

Figure 5.

Entropy estimates of heart rate and surrogate data are affected by spikes but not by missing points.  Panel A shows that SampEn falls in the presence of spikes.  Data points are the median, and the dotted lines are the 95% CI for SampEn values of 200 series of Gaussian random numbers, observed data and their isospectral surrogates, and a deterministic model.  Panel B shows that entropy estimates of 200 observed data records and their isospectral surrogates are largely unchanged by removal of even large proportions of data points.  The entropy estimate of a deterministic series, though, is altered by removal of a small proportion of points. 
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