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We do not present a brief calculation of the electrical conductance of a two-dimensional quantum
point contact (2D QPC). The QPC is modelled as a planar configuration in which two ideally
conductive leads are isolated from one another by a straight line, with the exception of a constriction
(a ‘window’ of a given lateral width 2a) through which they are short-circuited. The leads are
considered as reservoirs of a 2D strongly degenerate electron gas at T = 0. The Fermi wavelength is
assumed to be of the same order of magnitude as 2a. We distinguish between the self-conductance
of the QPC, when the resistance of the leads is neglected, and the conductance of the configuration
‘QPC plus leads taken as resistors’. (In measurements, the conductance of the leads cannot be
separated from the self-conductance of the QPC.) We show that the plots of the dependence of
conductance of the 2D QPC on the test momentum manifest curved steps exhibiting well-defined
spikes.

I. INTRODUCTION

The new transfering of electrons through two-
dimensional (2D) quantum point contacts (QPCs) has
been a topic attracting much attention during the past
two decades. A breakthrough came in 1989 when two
groups of investigators [1, 2] published results of precise
low-temperature measurements of the conductance of 2D
QPCs formed in GaAs/AlAs heterostructures. These
measurements corroborated the phenomenon of the con-
ductance quantization which was previously predicted
theoretically. The statistics of the conduction electrons
in such heterostructures as those described in [1, 2] is
the same as in a 2D metal. In metals, as is well known,
the theory of the electric conduction at low temperatures
may rely on the zero-temperature approximation. Corre-
spondingly, we may use the concept of the Fermi energy
EF and the Fermi momentum h̄kF = h/λF calculated
for T = 0. The zero-temperature approximation allows
us to calculate the conductance of the QPC in a purely
quantum-mechanical manner, without any necessity to
solve a kinetic equation.

The theory of QPCs may be viewed as a special sub-
ject of the theory of quantum transport in mesoscopic
structures. (Cf. e.g. the monograph [3]. We recommend
also the review [4] where early references to the topic
of the present paper can be found. An up to date in-
formation about great potentialities of the point contact
spectroscopy can be found in the monograph [5].) Since
1988, many theorists began to discuss various particular
problems related to the quantization of the conductance
of 2D QPCs (cf. e.g. [6-16]). Some papers provided an
extensive and elaborated analysis [11,16]. Notwithstand-
ing, we do feel that there is one detail in the theory of
QPCs which was not, as far as we know, scrutinized in
the literature yet and we want to focus attention espe-
cially on it. We have in mind the singular behavior of the
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dependence of the self-conductance of an ideal QPC on
the variable kF. We will denote the self-conductance of
the QPC as Γself . Here, to avoid any misunderstanding,
we deem it necessary to emphasize that when one mea-
sures the conductance of a point contact, one measures
actually the conductance of a system consisting of the
point contact itself plus its environment, but not the self-
conductance Γself separately. Indeed, let Rself and Renv

be the intrinsic resistance of the QPC and the resistance
of the environment of the QPC, respectively. Viewing
these resistances as resistances in series, we may define
(approximately) the total resistance of the QPC as the
sum Rpc = Rself + Renv. Correspondingly, for the con-
ductance Γpc = 1/Rpc, we may write

Γpc =
ΓselfΓenv

Γself + Γenv
(1)

where Γself = 1/Rself and Γenv = 1/Renv. Thus, although
we can predict the existence of singularities in the depen-
dence of Γself on kF, they are absent in the dependence
of Γpc on kF. This is because the value of Γenv is always
finite and Γpc → Γenv if Γself → ∞. Only if we take
formally Γenv →∞, we obtain Γpc → Γself .

Let a > 0 be a quantity characterizing the lateral size
of the QPC. (We will use a as the contact half-width.)
We say that the QPC is ideal if all stochastic influences −
such as fluctuations due to the non-zero temperature and
geometric roughness of boundaries − may be ignored. It
is convenient to use the dimensionless variable

u = kFa (2)

instead of kF and to employ the value

Γq = 2e2/h (3)

(meaning the conductance quantum [3]) in the role of a
conductance unit. Then we focus attention on the di-
mensionless quantities

F = Γpc/Γq , Fself = Γself/Γq , η = Γenv/Γq (4)

When speaking of spectra of QPCs, we have in mind
the dependence of the conductance Γpc on kF with fixed
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values of Γenv > 0. Correspondingly, according to def-
initions (4), the spectrum of a QPC is defined by the
function F = F (u, η) of the variable u > 0 with a fixed
value of the parameter η > 0. We will calculate Fself

in the so-called ‘ballistic approximation’. This means
that Fself is η-independent. Both Fself(u) and F (u, η)
are step-like functions of the variable u. The coordinates
of the edges of the steps in the Fself vs. u and F vs. u
plots are un = πn/2 , n = 1, 2, . . . This manifests the
phenomenon of the conductance quantization. The con-
stancy of the width un+1 − un = π/2 of the steps of the
functions Fself(u) and F (u, η) is characteristic especially
of 2D QPCs. In the case of 3D QPCs, the widths of the
steps differ from step to step in an apparently irregular
way [17].

Since the intrinsic conductance (self-conductance) of
the 2D QPC behaves singularly if u approaches from the
right the points u = un, the steps in the Fself vs. u plot
have to be considerably curved. Nevertheless, according
to the measurements [1, 2], the steps in the dependence
of the conductance Γpc of the 2D QPCs on kF should look
like horizontal plateaus. We have a simple explanation
of these plateau-like form of the steps: it represents the
limiting shape of the function F (u, η) if the values of the
parameter η are small. The main objective of the present
paper is right to discuss whether and when it is possible
to approximate the steps as plateaus.
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FIG. 1: Scheme of a 2D quantum point contact. The vertical
axis is the y-axis. The doted region is a degenerate semicon-
ductor. The bold horizontal lines located in the x-axis and
separated by the gap of width 2a represent the gate. The gate
is considered as a good conductor isolated from the semicon-
ductor neighborhood and adjustable to a variable voltage UG.

We will deal with the model of the QPC whose scheme
is shown in Fig. 1. Two 2D reservoirs of electrons are
separated by a straight-line screen. The interval (0, 2a) of
the coordinate x corresponds to a window in the screen.
On the flanks of the window, i.e. for x < 0 and x > 2a,
the screen is opaque for the electrons. We assume that
the reservoirs play the role of metallic leads. Both the
leads are perfectly coalesced with one another through
the window. Thus the window represents a perfect elec-
trical contact between the leads. Let b be the thickness

of the screen. We assume that 2a and b are nanoscaled
quantities and that b � 2a. The leads are considered as
rectangles with the widths Lx and Ly. (The distance be-
tween the electrodes is 2Ly.) As the y-axis is the current
axis, we have on purpose denoted the lower and upper
lead in Fig. 1 as L and R, respectively. (Realizing Fig.
1 rotated by 90 degrees, L and R is the left and right
lead, given by y < 0 and y > 0, respectively.) If an elec-
tric current flows across the window suggested in Fig. 1,
the potential of L differs from the potential of R. Let the
potential of the left lead be ϕL = 0. Then the gate po-
tential is ϕG = UG and the potential of the right lead is
ϕR = UG +U . The role of the gate potential is to control
the value of the variable kFa. Clearly, the dependence
of the intrinsic conductance of the QPC Γself on kFa is
directly related to the dependence of the current I (or
rather of the derivative ∂I/∂UG) on the gate voltage UG.

II. INTEGRAL FORMULA FOR THE
INTRINSIC CONDUCTANCE OF 2D POINT

CONTACTS

The 2D electron gas is a concept relevant to semicon-
ductor nanolayers. We consider a direct-gap semicon-
ductor with the isotropic dispersion function E(k) =
h̄2k2/(2m) of the conduction band. The parameter
m > 0 is the effective mass of the conduction electrons.
In the effective-mass approximation, − h̄2∇2/(2m) is the
‘kinetic-energy operator’ of the one-electron hamiltonian
Ĥ(r) corresponding to the conduction band of the semi-
conductor. We consider a nanolayer of the semiconductor
parallel with the plane (x, y) and define the ‘potential-
energy operator’ V⊥(z) of the hamiltonian Ĥ(r). We as-
sume that V⊥(z) represents a potential-energy well whose
perpendicular profile is invariant along any direction par-
allel with the nanolayer. In this well, the motion of each
conduction electrons is perpendicularly quantized, i.e.
the hamiltonian Ĥ(r) allows discrete eigen-energies En
in the z-direction. If the well is sufficiently narrow, the
distance between the basic eigen-energy E0 and the first
excited eigen-energy E1 may be relatively large. Then, at
low temperatures, almost all conduction electrons have
their ‘perpendicular kinetic energy’ fixed to E0 and we
may speak of a 2D electron gas. We will consider this
gas at the zero temperature, T = 0.

The 3D wave function of each conduction electron may
be written as ψ3D(r) = ψ1D

0 (z)ψ2D(x, y), where ψ1D
0 (z) is

the 1D eigen-function corresponding to E0. The function
ψ2D(x, y) is the solution of the Schrödinger equation with
the 2D hamiltonian

Ĥ2D(x, y) ≡ Ĥ(r) +
h̄2

2m
∂2

∂z2
− V⊥(z) ≡

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V‖(x, y)
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We define the potential energy V‖(x, y) in the form
V‖(x, y) = Vb [Θ(y) − Θ(y − b)] [1 − Θ(x) + Θ(x − 2a)].
Here Θ(x) is the unit step function defined for real x and
equal to unity if x > 0 and to zero if x < 0. We assume
that the value of b > 0 is very small while the value of
Vb > 0 is very large. In the limiting case when b → 0
and when Vbb → ∞, we say that the potential energy
V‖(x, y) defines an ideal 2D QPC. Evidently, the condi-
tion Vbb → ∞ means that the x-axis represents an im-
penetrable screen for the conduction electrons, with the
exception of the gap of width 2a where the potential en-
ergy is equal to zero. We interpret the regions L and R as
‘massive’ 2D leads. In the thermodynamic equilibrium,
the electron gas in both the leads has the Fermi energy
E

(0)
F = h̄2k2

F/(2m) + E0. The density n2D of the conduc-
tion electrons in the leads is a constant. The Fermi mo-
mentum h̄kF corresponding to the zero-temperature equi-
librium Fermi energy E

(0)
F is proportional to the square

root of n2D: kF =
√

2πn2D.
Our objective is to study the non-equilibrium scenario

when a voltage U is applied on the point contact. From
now on, we will leave out the superfix ‘2D’ in ψ2D(x, y).
With b → 0, we write the 2D wave function as

ψ(x, y) =
{
ψL(x, y) for y < 0
ψR(x, y) for y > 0

If U 6= 0, we have to take into account that the Fermi en-
ergy of the rear side of the screen, E+0

F = EF, differs from
that of the frontal side of the screen, E−0

F = EF+eU . We
assume that eU > 0 is a small value. According to Ohm’s
law, the voltage U is proportional to the electric current
I flowing (perpendicularly) through the point contact.
Inversely, we write the relationship

I = ΓselfU (5)

(Equation (5) corresponds to Ohm’s law.) We assume
that when calculating the quantity Γself , we need not
consider electron collisions inside the leads. Of course,
these collisions determine the value of Γenv, cf. formula
(1).

If an electron travels towards the screen with a given
(group) velocity from the left at an angle of incidence θ0
(−π/2 < θ0 < π/2), we consider the plane wave

ψ0(x, y) = exp[i(k0xx+k0yy)] = exp[ik(x sin θ0+y cos θ0)]

for y < 0. We have to solve the equations

∂2ψL,R(x, y)/∂x2 + ∂2ψL,R(x, y)/∂y2 + k2ψL,R(x, y) = 0

(L for y < 0, R for y > 0) with respect to the boundary
conditions

ψL(x,−0)
ψR(x,+0)

}
= 0 for x < 0 and for x > 2a

The wave function ψ(x, y) is a superposition of plane
waves exp(ik.r) with wave vectors k = (kx, ky, 0) dif-
fering by directions but not by absolute values. Clearly,

k2 = k2
x + k2

y = k2
0x + k2

0y and

ky =

{
∓
√
k2 − k2

x = ∓
√
k2
0x + k2

0y − k2
x if |kx| < k

±i
√
k2
x − k2 = ±i

√
k2
x − k2

0x − k2
0y if |kx| > k

(6)
(The upper sign in definition (6) is valid for y < 0, the
lower sign for y > 0.)

Let us now focus attention on a stripe Sε parallel with
the x-axis and defined by inequalities −ε < y < ε in the
(x, y)-plane. We assume that ε > 0 is a small parameter.

We define the integer N by the inequalities πN/2 < ka,
π(N + 1)/2 ≥ ka. Then we write the wave function in
the lower half of the stripe Sε (i.e. for y < 0) in the form

ψL(x, y) = exp[ ik(x sin θ0 + y cos θ0)]

+
N∑
n=1

sin
(
πnx

2a

)
exp

[
− i
(
k2 − π2n2

4a2

)1/2

y

]
Rn(θ0)

+
∞∑

n=N+1

sin
(
πnx

2a

)
exp

[(
π2n2

4a2
−k2

)1/2

y

]
Rn(θ0) (7)

This series becomes accurate if ε→ +0. Similarly we can
write the wave function in the upper half of Sε (i.e. for
y > 0):

ψR(x, y) =

N∑
n=1

sin
(
πnx

2a

)
exp

[
i
(
k2 − π2n2

4a2

)1/2

y

]
Tn(θ0)

+
∞∑

n=N+1

sin
(
πnx

2a

)
exp

[
−
(
π2n2

4a2
− k2

)1/2

y

]
Tn(θ0)

(8)
The second sums (running from N + 1 to infinity) in se-
ries (7) and (8) correspond to evanescent waves. They
do not contribute to the conductance of the point con-
tact. According to quantum mechanics, the one-electron
contribution to the current density in the window of the
screen is given by the formula

j
(1)
y (x|θ0)

∣∣
y=+0

=

i
h̄e

2m

[
ψR(x, y)

∂ψ∗R(x, y)
∂y

− ψ∗R(x, y)
ψR(x, y)
∂y

]
y=+0

When employing series (8), we obtain the sum

j
(1)
y (x|θ0)

∣∣
y=+0

=

h̄e

m

N∑
n=1

(
k2 − π2n2

4a2

)1/2

sin2

(
πnx

2a

)
|Tn(θ0|2

Hence,

I(1)(θ0) =
∫ 2a

0

dx j(1)y (x|θ0)
∣∣
y=+0

=
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h̄e

m

N∑
n=1

(k2a2 − π2n2/4)1/2 |Tn(θ0)|2 (9)

The coefficients Tn(θ0) follow from the continuity of the
wave function ψ(x, y) and of its derivative ∂ψ(x, y)/∂y
on the interval (0, 2a) of the x-axis. For k > πn/(2a),
the Fourier analysis gives the solution

Tn(θ0) =
[
1 +

ka sin θ0
(k2a2 − π2n2/4)1/2

]
In(θ0) (10)

where

In(θ0) =
1
2a

∫ 2a

0

dx exp(ikx sin θ0) sin
(
πnx

2a

)
=

πn

4
1− (−1)n exp(2ika sin θ0)
π2n2/4− k2a2 sin2 θ0

After a straightforward calculation, we obtain the squares

|I2p−1(θ0)|2 =

π2(2p− 1)2

4[π2(2p− 1)2/4− k2a2 sin2 θ0]2
cos2(ka sin θ0) (11a)

and

|I2p(θ0)|2 =

π2p2

[π2p2/4− k2a2 sin2 θ0]2
sin2(ka sin θ0) , (11b)

with p = 1, 2, . . . As is seen,

|In(−θ0)|2 = |In(θ0)|2 (12)

Let us now consider incident wave vectors with absolute
values

√
k2
0x + k2

0y lying in the interval (kF, kF + ∆F),

∆kF ≈ meU/(h̄2kF). (Recall that U is the voltage be-
tween the frontal and rear side of the screen and eU > 0.)
In the small area defined in the plane (kx, ky) of the k-
space by the intervals (kF, kF + ∆F) and (θ0, θ0 + dθ0),
there are 2kF∆kFdθ0/(2π)2 electrons per unit area of the
frontal (i.e. left) lead. Therefore the total amount of the
charge flowing per second through the point contact is
given by the integral

I = U
me

2π2h̄2

∫ π/2

−π/2
dθ0 I(1)(θ0)

∣∣
k=kF

(13)

We have to distinguish between two cases: i . kFa < π/2
and ii . kFa > π/2. The first case is simple:

Γself = 0 if kFa < π/2 (14)

According to equation (14), the self-conductance of the
QPC is equal to zero if the lateral width 2a of the window
is smaller than the half of the Fermi wavelength λF =

2π/kF. The proper topic of the present paper concerns
the second case. When putting equations (9), (10), (11a),
(11b), (12) and (13) together, we can easily obtain, for
kFa > π/2, the formula

Γself(u)
Γq

=
1
π

N∑
n=1

∫ π/2

0

dθ0

[
(u2 − π2n2/4)1/2

+
u2 sin2 θ0

(u2 − π2n2/4)1/2

]
|In(θ0)|2

∣∣
u

(15)

where Γq is given by equation (3). The squares
|In(θ0)|2

∣∣
u

are functions of the variable u defined by
equation (2).

III. CONDUCTANCE QUANTIZATION

A. Self-conductance of the QPC

The function Fself(u) = Γself(u)/Γq is piecewise con-
tinuous, exhibiting discontinuities at discrete values un
of u, un = πn/2, n = 1, 2, . . . For the Nth step of the
Γself(u) vs. u plot, we write Γself,N (u) ≡ Γself(u) if
uN < u < uN+1. Then

Γself(u) =
∞∑
N=1

Γself,N (u)[Θ(u−uN )−Θ(u−uN+1)] (16)

The function Γself,N (u) in equation (16) is equal to the
sum

Γself,N (u) = Γq

N∑
n=1

Gn(u) (17)

where Gn(u) is given, according to equation (15), by the
integral

Gn(u) =

1
π

∫ π/2

0

dθ0

[
(u2 − u2

n)1/2 +
u2 sin2 θ0

(u2 − u2
n)1/2

]
|In(θ0)|2

∣∣
u

(18)
defined for u > un.

After inserting expressions (11a) and (11b) here, we ob-
tain (for p = 1, 2, . . .) the functions

G2p−1(u) =
u2

2p−1

π

∫ π/2

0

dθ0

[
(u2 − u2

2p−1)1/2

+
u2 sin2 θ0

(u2 − u2
2p−1)1/2

] [
cos(u sin θ0)

u2 sin2 θ0 − u2
2p−1

]2
(19a)

and

G2p(u) =
u2

2p

π

∫ π/2

0

dθ0

[
(u2 − u2

2p)
1/2
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+
u2 sin2 θ0

(u2 − u2
2p)1/2

] [
sin(u sin θ0)

u2 sin2 θ0 − u2
2p

]2
(19b)

Unless u is equal to one of the edges of the steps, the sub-
integral functions in integrals (19a) and (19b) are finite
since

lim
ξ→u2p−1

∣∣∣∣ cos ξ
ξ2 − u2

2p−1

∣∣∣∣ =
1

(2p− 1)π

and

lim
ξ→u2p

∣∣∣∣ sin ξ
ξ2 − u2

2p

∣∣∣∣ =
1

2p π

There is probably no other way of calculating integrals
(19a) and (19b) than a numerical integration.

We interpret the index n as the serial number of the
eigen-channels. Having in mind the Nth step of the Γself

vs. u plot, we say that N active eigen-channels con-
tribute to the value of the conductance. This has been
expressed explicitly by formula (17). Whenever the vari-
able u crosses the rear side of a step, a new eigen-channel
begins to take part in the transport of electrons across
the point contact.

If n = 1, . . . , N − 1, the functions Gn(u) behave on
the interval (uN , uN+1) quite regularly. On the other
hand, the case when n = N is exceptional. Indeed,
the function GN (u) is singular if u → uN from the
right. The singularity is of the type ∼ (u2 − u2

N )−1/2 ≈
(2uN )−1/2(u− uN )−1/2, as is seen from the second term
of the sub-integral function in integral (18).

In the calculation of integrals (19a) and (19b), it is con-
venient to use the substitution sin θ0 = t and introduce,
for P ≥ 1, the function

CP (u, t) =

1
π

P∑
p=1

[
(u2−u2

2p−1)1/2+
u2t2

(u2 − u2
2p−1)1/2

]
u2

2p−1

(u2t2 − u2
2p−1)2

defined for u > u2P−1 and function

SP (u, t) =

1
π

P∑
p=1

[
(u2 − u2

2p)
1/2 +

u2t2

(u2 − u2
2p)1/2

]
u2

2p

(u2t2 − u2
2p)2

defined for u > u2P . Using the formal identities
C0(u, t) ≡ 0 and S0(u, t) ≡ 0, we can write, for
P = 1, 2, . . . , the obvious recursive scheme

CP (u, t) = CP−1(u, t) + ∆CP (u, t)

with

∆CP (u, t) =

1
π

[
(u2−u2

2P−1)1/2 +
u2t2

(u2 − u2
2P−1)1/2

]
u2

2P−1

(u2t2 − u2
2P−1)2

for u > u2P−1) and

SP (u, t) = SP−1(u, t) + ∆SP (u, t)

with

∆SP (u, t) =

1
π

[
(u2 − u2

2P )1/2 +
u2t2

(u2 − u2
2P )1/2

]
u2

2P

(u2t2 − u2
2P )2

for u > u2P .

We call ∆CP (u, t) and ∆SP (u, t) the singular parts of
the functions CP (u, t) and SP (u, t), respectively. Corre-
spondingly, having the Nth step in mind, we write

Fself,N (u) =
Γself,N (u)

Γq
= F reg

self,N (u) + F sing
self,N (u) (20)

The regular and singular parts of expression (20) are cal-
culated in the Appendix.

B. Conductance Γpc of the structure consisting of
the QPC and of its leads

For the Nth step, when recalling equation (1) and def-
initions (4), we can readily write down the formula for
the conductance Γpc,N (u, η) respecting the conductance
Γenv of the leads to which the QPC is connected:

Fpc,N (u, η) =
Γpc,N (u, η)

Γq
=

Fself,N (u) η
Fself,N (u) + η

(21)

We assume that the leads represent an n-type degenerate
semiconductor, such as n-GaAs. If it were possible to
imagine the leads as bulk materials (at T = 0) with the
concentration of ionized donors 5× 1015 cm−3, we might
consider the conduction electrons as a 3D degenerate gas
with the same density, n3D ≈ 5 × 1015 cm−3. However,
we consider the electrons as a 2D gas, so we may regard
the leads in a thin-layer realization, with a thickness d ≈
10 nm, say. Then the 2D density of the electrons is n2D =
n3D d ≈ 5×109cm−2. The conductance Γenv of the leads
in the arrangement shown in Fig. 1 is

Γenv =
eµen2D

2
Lx
Ly

(22)

As a possible value of the low-temperature mobility of
the electrons in GaAs, we choose µe = 2× 105 cm2/(Vs).
(This is a fairly high value of the low-temperature elec-
tron mobility in GaAs layers [18], although recently even
mobilities in excess of 5 × 106 cm2/(Vs) were reported
[19]. The value of µe is much dependent on technological
conditions of preparing a GaAs layer on a suitable sub-
strate.) When taking into account that e = 1.6×10−19 C,
we can readily verify that the factor eµen2D/2 in expres-
sion (22) is approximately equal to 8× 10−5 Ohm−1. On
the other hand, the conductance quantum Γq is equal to
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7.73 × 10−5 Ohm−1. Thus, in the example that we are
discussing, Γenv is roughly equal to Γq, i.e. η is approxi-
mately equal to unity, if Lx = Ly. We may then say that
the leads are long if Ly > Lx and short if Ly < Lx. It is
instructive to put forward graphical presentation of the
Fpc vs. u plots for several values of η. This is done in
the next section.

IV. GRAPHICAL PRESENTATION OF
RESULTS

Fig. 2 shows the quantization of the self-conductance
of the 2D QPC under consideration. Near to the frontal
edge of the Nth step, the function ΓN (u)/Γq (defined
for uN < u < uN+1) exhibits the singularity of the type
1/
√
u− uN . (The position of the frontal edge of the Nth

step is uN = πN/2.)

self-conductance

u
0

1
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3

4

5

6

2 4 6 8 10 12 14

FIG. 2: Dependence of the self-conductance Γself/Γq on the
variable u = kFa.

Figs. 3-6 show the conductance steps for four finite val-
ues of η. As is seen, the maximum value of all func-
tions (21) is equal to η. (The dotted horizontal lines
in Figs. 3-6.) The spikes in Figs. 3-6, in contrast to
Fig. 2, are not singular. (Let us recall that the function
Fself(u) = Γself(u, η)/Γq depicted in Fig. 2 corresponds
to the function Fpc(u, η) = Γpc(u, η)/Γq with η →∞.)

We define the height of the Nth step of the function
Fpc(u, η) as the difference

(∆Fpc)N = Fpc(uN+1, η)− Fpc(uN , η) (23)

Clearly, if N increases, the steps converge asymptotically
(from below) to the value η. This implies that the signif-
icance of the spikes of the steps becomes gradually weak-
ened if N → ∞, since the height of the steps defined by
equation (23) tends to zero.

If we disregard the spikes, we may state that the steps
in the Γpc(u, η)/Γq vs. u plots look indeed like almost
horizontal plateaus if the value of N is sufficiently high.

self-conductance
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FIG. 3: Dependence of the conductance Γpc/Γq on the vari-
able u with η = 5.

η = 2

conductance of QPC + leads
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FIG. 4: Dependence of the conductance Γpc/Γq on the vari-
able u with η = 2.

V. CONCLUDING REMARKS

In general, any theoretical prediction of singularities,
but also of finite spikes, in spectral curves evokes a con-
cern of spectroscopists. In real situations, naturally,
there are always stochastic reasons for a certain blurring
of singularities and/or spikes. For instance, the eigen-
energies in the ballistic theory in our derivation of the
function Γself(u) have a natural width. Measurements
of the conductance quantization should necessarily be
performed at low temperatures but it is impossible to
achieve the zero temperature. The electron-phonon col-
lisions (which are inelastic) may cause the blurring of
the eigen-energies, although these collisions may be rare
at low temperatures. Besides, according to the quan-
tum many-body theory [20], if the density of the electron
gas is too low (and the low density is actually advisable
for the manifestation of the conductance quantization),
the electron-electron interaction results in the loss of ac-
curacy in the use of the Fermi momentum h̄kF. The
electron-electron interaction, which does not lose its sig-
nificance even if the temperature tends to zero, affects not
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η = 1
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FIG. 5: Dependence of the conductance Γpc/Γq on the vari-
able u with η = 1.

η = 0.5

conductance of QPC + leads

u

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14
u

FIG. 6: Dependence of the conductance Γpc/Γq on the vari-
able u with η = 0.5.

only the blurring of the spikes but also some equalization
of the values of the functions Γself,N (u) and Γpc,N (u).

Notwithstanding, we do admit that it may be possible
to observe vestiges of the spikes as ‘humps’ in the depen-
dence of the conductance Γpc on the variable u = kFa.
In a sense, these vestiges may serve as markers of the
conductance steps. Fortunately, there is some evidence
supporting this idea. Experiments carried out with 3D
QPCs [21] suggested persuasively the presence of humps
at the frontal side of the steps in the dependence of Γpc

on u, in concordance with what we have recently calcu-
lated [17]. (In 3D QPCs, we considered a circular window
of radius a in a planar opaque screen.) Regrettably, no
such humps have been observed with 2D QPCs yet.

What is the origin of the singularities suggested in Fig.
2? We believe it is the same as in the case of the well-
known van Hove singularities derived for the quantum-
mechanical density of states g(E) [20]. The van Hove sin-
gularities of the type g(E) ∼ 1/

√
E − En (for E > En)

are typical for the density of states of electrons in a mag-
netic field: the 3D motion of the electrons is quantized
in the plane perpendicular to the magnetic field but not
in the direction parallel with the magnetic field. In the

problem concerning a QPC defined as an orifice in an
opaque screen, the lateral motion of electrons (parallel
to the screen) is quantized but the motion perpendicular
to the screen is not.

A comment should be said about the Landauer-
Büttiker formalism [3]. Our calculation of the self-
conductance of the QPC corresponding to Fig. 1 is not
in contradiction with the well known Landauer-Büttiker
theory. According to this theory, the self-conductance
should be expressed as the sum

Γself/Γq =
N∑
j,n

Tj,n (24)

where Tj,n is the transmission probability for an electron
incident in the subband j and leaving the window of the
screen in subband n. In our case, j is replaced by θ0. (θ0
may be considered as a continuous variable since when
solving the Schrödinger equation, we have approximated
the left lead as the half-plane y < 0, i.e. we have assumed
that Lx → ∞, Ly → ∞, respecting a finite value of
Lx/Ly.) In formula (24), the sum with respect to j is to
be understood as the integral (1/π)

∫ π/2
0

dθ0 . . . , and

Tj,n →[
(u2−π2n2/4)1/2 +

u2 sin2 θ0
(u2 − π2n2/4)1/2

]
|In(θ0)|2

∣∣
u

(25)

It is the second term in expression (25) which is respon-
sible for the singular behavior of the self-conductance
steps.

In this paper, we have demonstrated the conductance
quantization using the model of a 2D point contact with
b = 0 (Fig. 1). The geometry of the point contact in this
model has been defined with one parameter only, the
lateral width 2a. If the profile of the window depicted
in Fig. 1 is taken, in the (x, y)-plane, as a rectangle
with the perpendicular width b > 0, a new phenomenon
makes its appearance: the Schrödinger equation implies
oscillations of the Fabry-Pèrot type in the y-direction [7].
To suppress these oscillations, Van Wees et al. [1] used
a trapezoidal profile and other authors − cf. e.g. [14]
− considered profiles of the window with arched sides.
Quite generally, the width of the quantized steps in the
function Γpc(u) with u = kFa is a universal feature of
point contacts with the given lateral width 2a. However,
the shape of the conductance steps is sensitive to the
shape of the profile of the window. In this context we
state that although the model of the 2D QPC with b = 0
was before treated by some other authors (cf. e.g. [6-10],
[13], [18]), none of them mentioned the spikes, or humps,
in the steps of the function Γpc(u)/Γq.

There are, of course, some particulars in the theory
presented in the present paper that may call for a refine-
ment. Namely, we employed the simplest possible ap-
proximation (which was also accepted by other authors)
in which the conduction electrons were considered as an
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ideal gas. Details of our results may undergo changes if
a self-consistent many-body approach (in the style of a
Thomas-Fermi theory, say [20]) is applied. To improve
the calculation of the conductance of quantum point con-
tacts in this sense is a difficult problem that we have left
open yet.

Appendix A: Calculation of Γself,N (u)/Γq

The objective of this Appendix is to indicate some
technical details of our calculations that enabled us to
present the functions Γself,N (u)/Γq in Fig. 2. Through-
out this Appendix, we assume that P ≥ 1.

The regular parts of the conductance are defined as

Γ reg
self,2P−1(u)/Γq =

∫ 1

0

dt√
1− t2

[
cos2(ut)CP−1(u, t)

+ sin2(ut)SP−1(u, t)
]
, u2P−1 < u < u2P

and

Γ reg
self,2P (u)/Γq =

∫ 1

0

dt√
1− t2

[
cos2(ut)CP (u, t)

+ sin2(ut)SP−1(u, t)
]
, u2P < u < u2P+1

Clearly, Γ reg
1 (u) ≡ 0.

Fig. 7 shows the regular functions defined by the above
integrals. As is seen, the plots of these functions in the
intervals (uN , uN+1)/2 do not differ much from straight
lines. Anticipating this fact, we divided each inter-
val (uN , uN+1) into four subintervals. The end co-
ordinates {uN,j} of these subintervals were chosen as
uN,j = uN + (j/4)(uN+1 − uN ), j = 0, 1, . . . , 4. For
each step, we calculated the values Γ reg

self,N (uN,j)/Γq with
the aid of programs involved in MAPLE 8. Fig. 7 rep-
resents actually the result of the piecewise interpolation
of Γ reg

self,N (u)/Γq by means of the spline command with
first-order polynomials. (This means that the neighbor-
ing points (uN,j ,Γ

reg
N (uN,j)/Γq) in the 2D plot of the Nth

step were connected by straight lines. The fact that each
step in Fig. 7 is depicted as a broken line is hardly appar-
ent.) The computing time for the implementation of the
plot shown in Fig. 3 with Pentium AMD Athlon(tm) (64
Processor, 3000+, RAM 1GB) and with the 2D graphics
of MAPLE 8 was about 1.5 minutes.

Fig. 8 shows the singular functions Γ sing
self,N (u)/Γq, N =

1, 2, . . . These functions are responsible for the spikes
shown in Fig. 2. The function plotted in Fig. 2 is the
sum of the functions plotted in Figs. 7 and 8. (The axes
in Figs. 2, 7 and 8 have been equally scaled.) In the sub-
wavelength case when 0 < kFa < π/2 (which means that
N = 0), we have simply to respect that Γ reg

self,0(u) ≡ 0
and Γ sing

self,0(u) ≡ 0.
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FIG. 7: Plot of the regular parts Γ reg
self,N (u)/Γq of the functions

Γself,N (u)/Γq for the first eight steps, N = 1, . . . , 8 .
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FIG. 8: Plot of the singular parts Γ sing
self,N (u)/Γq of the func-

tions Γself,N (u)/Γq for the first eight steps, N = 1, . . . , 8 .

The singular parts of the conductance are defined as

Γ sing
self,2P−1(u)/Γq =

u2
2P−1

π

∫ 1

0

dt√
1− t2

cos2(ut)
(u2t2 − u2

2P−1)2

×
[
(u2−u2

2P−1)1/2+
u2t2

(u2 − u2
2P−1)1/2

]
, u2P−1 < u < u2P

and

Γ sing
self,2P (u)/Γq =

u2
2P

π

∫ 1

0

dt√
1− t2

sin2(ut)
(u2t2 − u2

2P )2

×
[
(u2− u2

2P )1/2 +
u2t2

(u2 − u2
2P )1/2

]
, u2P < u < u2P+1
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