Dear Herbert,<br><br>Thank you for this example. I worked on it again for producing the contours on the surface and their level lines on the xy plane. It was not easy since the function (and its parametric equation) is diffucult to study. Maybe, the intersections between the surface and z=const. planes can be used for reducing into a specific plane like xy.<br><br>Aydin<br>  <br><br>\documentclass[12pt]{article} % A. Ustun 09.01.2011<br>\usepackage{pst-solides3d}<br>\pagestyle{empty}<br><br>\begin{document}<br>\psset{arrowlength=3,arrowinset=0}<br>\psset{viewpoint=50 30 25 rtp2xyz,Decran=50}<br>\psset{lightsrc=viewpoint}<br><br>\begin{pspicture}(-7,-8)(7,8)<br>\axesIIID[linecolor=gray](0,0,0)(7,7,7)<br>\psSolid[ngrid=.3 .3,object=grille,base=1.5 6.5 1.5 6.5,linewidth=0.4pt,linecolor=gray!50,action=draw]%<br>\psPoint(4,4,4 5 sub 2 exp 4 5 sub 2 exp sub 6 div 5 add){P}<br>\psPoint(4,4,0){Po}<br>\pcline[linecolor=red,linestyle=dashed](P)(Po)\Aput{$z=f(x,y)$}<br><br>\psSurface[ngrid=.3 .3,fillcolor=green!30,incolor=gray!30,<br>  intersectiontype=0,<br>  intersectionplan={<br>   [0 0 1 -6.5]<br>   [0 0 1 -6.1]<br>   [0 0 1 -5.7]<br>   [0 0 1 -5.3]<br>   [0 0 1 -4.9]},<br>  intersectioncolor=(bleu),<br>  intersectionlinewidth=1,<br>  linewidth=0.4pt,<br>  algebraic](1.5,1.5)(6.5,6.5){%<br>  ((y-5)^2-(x-5)^2)/6+5 }<br><br>\psdot[linecolor=red,dotscale=0.7](P)<br>\psdot[dotscale=0.7](Po)<br>\psPoint(1.5,6.5,0){D}\uput[90](D){$D$}<br>\psPoint(2,6.5,6.5 5 sub 2 exp 2 5 sub 2 exp sub 6 div 5 add){S}\uput[0](S){$S$}<br><br>%% Contouring on xy plane for z=6.5 6.1 5.7 5.3 4.9<br>%% Explicit representation: z=((y-5)^2-(x-5)^2)/6+5<br>%% Parametric representation of z=f(x,y)<br>%% x=x(x)=x<br>%% y=y(x)=sqrt((x-5)^2+6*(z-5))+5<br>%% z=z(x)=0<br>\psset{object=courbe,r=0,linecolor=blue,resolution=360,function=Fxy}<br>\defFunction[algebraic]{Fxy}(x){x}{-sqrt((x-5)^2+6*(6.5-5))+5}{0}<br>\psSolid[range=3.155 6.5]<br>\defFunction[algebraic]{Fxy}(x){x}{-sqrt((x-5)^2+6*(6.1-5))+5}{0}<br>\psSolid[range=2.6 6.5]<br>\defFunction[algebraic]{Fxy}(x){x}{-sqrt((x-5)^2+6*(5.7-5))+5}{0}<br>\psSolid[range=2.15 6.5]<br>\defFunction[algebraic]{Fxy}(x){x}{-sqrt((x-5)^2+6*(5.3-5))+5}{0}<br>\psSolid[range=1.75 6.5]<br>\defFunction[algebraic]{Fxy}(x){x}{sqrt((x-5)^2+6*(5.3-5))+5}{0}<br>\psSolid[range=4.35 5.7]<br>\defFunction[algebraic]{Fxy}(x){-sqrt((x-5)^2+6*(5-4.9))+5}{x}{0}<br>\psSolid[range=1.6 6.5]<br>\defFunction[algebraic]{Fxy}(x){sqrt((x-5)^2+6*(5-4.9))+5}{x}{0}<br>\psSolid[range=3.7 6.3]<br>\end{pspicture}<br>\end{document}<br><br><br>----- Orjinal Mesaj -----<br>Kimden: Herbert Voss <Herbert.Voss@fu-berlin.de><br>Tarih: Tuesday, January 11, 2011 23:55<br>Konu: [pstricks] surface plot<br>Kime: Graphics with PSTricks <pstricks@tug.org><br><br>> here is the example from Aydın as a parameter plot.<br>> x=u+5<br>> y=v+5<br>> z=(-u*u+v*v)/6+5<br>> <br>> Herbert<br>> <br>> \documentclass[12pt]{article} % A. Ustun 09.01.2011<br>> \usepackage{pst-solides3d}<br>> \pagestyle{empty}<br>> \begin{document}<br>> <br>> \psset{arrowlength=3,arrowinset=0}<br>> \psset{viewpoint=50 30 25 rtp2xyz,Decran=50}<br>> \psset{lightsrc=viewpoint}<br>> <br>> \begin{pspicture}(-7,-8)(7,8)<br>> \axesIIID[linecolor=gray](0,0,0)(7,7,7)<br>> \psSolid[ngrid=.4 .4,object=grille,base=1.5 6.5 1.5<br>> 6.5,linewidth=0.5\pslinewidth,linecolor=gray,action=draw]%<br>> \psPoint(4,4,4 5 sub 2 exp 4 5 sub 2 exp sub 6 div 5 add){P}<br>> \psPoint(4,4,0){Po}<br>> \pcline[linecolor=red,linestyle=dashed](P)(Po)\Aput{$z=f(x,y)$}<br>> \iffalse<br>> \psSurface[ngrid=.4 .4,fillcolor=green!50,incolor=gray!50,<br>>   intersectiontype=0,<br>>   intersectionplan={<br>>    [0 0 1 -6.5]<br>>    [0 0 1 -6.1]<br>>    [0 0 1 -5.7]<br>>    [0 0 1 -5.3]<br>>    [0 0 1 -4.9]<br>>    },<br>>   intersectioncolor=(bleu),<br>>   intersectionlinewidth=1,<br>>    linewidth=0.5\pslinewidth,%axesboxed,<br>>    algebraic](1.5,1.5)(6.5,6.5){((y-5)^2-(x-5)^2)/6+5}<br>> \fi<br>> % the original function as a parameter equation<br>> \defFunction[algebraic]{F_uv}(u,v){u+5}{v+5}{(-u*u+v*v)/6+5}<br>> \psSolid[object=surfaceparametree,linecolor=blue,<br>>   linewidth=0.05,<br>>   base=-3.5 1.5 -3.5 1.5,function=F_uv]<br>> \defFunction[algebraic]{F_uv}(u,v){u+5}{v+5}{0}<br>> \psSolid[object=surfaceparametree,linecolor=blue,<br>>   linewidth=0.05,<br>>   base=-3.5 1.5 -3.5 1.5,function=F_uv]<br>> %<br>> \psdot[linecolor=red,dotscale=0.7](P)<br>> \psdot[dotscale=0.7](Po)<br>> \psPoint(6,6,0){D}\uput[0](D){$D$}<br>> \psPoint(2,6,6 5 sub 2 exp 2 5 sub 2 exp sub 6 div 5 <br>> add){S}\uput[0](S){$S$}\end{pspicture}<br>> \end{document}<br>> <br>> -- <br>> This message has been scanned for viruses and<br>> dangerous content by MailScanner, and is<br>> believed to be clean.<br>> > _______________________________________________<br>> PSTricks mailing list<br>> PSTricks@tug.org<br>> http://tug.org/mailman/listinfo/pstricks<br>> archive: http://www.tug.org/pipermail/pstricks/<br><br>Dr. Aydın Üstün<br>Selçuk Üniversitesi<br>Mühendislik Mimarlık Fakültesi<br>Jeodezi Anabilim Dalı<br>Kampüs 42031 Konya/Türkiye<br>Tel:+90.332.2231937<br>Faks: +90.332.2410635<br>e-posta2: aydinustun2002@yahoo.com<br>