Taylor's Theorem

Theorem and Definition: Let f be an ($n+1$)-times continuously differentiable function on an open interval $I \in \mathbb{R}$. Then for any $x, x_{0} \in I$,

$$
f(x)=T_{f, x_{0}, n}(x)+R_{f, x_{0}, n}(x)
$$

where

$$
T_{f, x_{0}, n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

is called the Taylor polynomial of degree n at x_{0} and

$$
R_{f, x_{0}, n}(x):=\frac{\left(x-x_{0}\right)^{n+1}}{n!} \int_{0}^{1} t^{n} f^{(n+1)}\left(x+t\left(x_{0}-x\right)\right) d t
$$

is called the remainder term. (There are other formulations of the remainder term, but this one is the most useful for estimating $\sup _{x \in I}\left|R_{f, x_{0}, n}(x)\right|$.)

