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1 Introduction

This paper contains examples of various features from the widely used amsmath
package used with the Lucida math fonts.

When loading the packages, you must load amsmath before lucidabr. Work is
planned for improving interaction between these packages.

For more information about Lucida and TEX, and an order form for the fonts,
please see http://tug.org/store/lucida.

2 Enumeration of Hamiltonian paths in a graph

Let A = (𝑎𝑖𝑗) be the adjacency matrix of graph 𝐺. The corresponding Kirchhoff
matrix K = (𝑘𝑖𝑗) is obtained from A by replacing in −A each diagonal entry by
the degree of its corresponding vertex; i.e., the 𝑖th diagonal entry is identified with
the degree of the 𝑖th vertex. It is well known that

detK(𝑖|𝑖) = the number of spanning trees of 𝐺, 𝑖 = 1,… ,𝑛 (1)

where K(𝑖|𝑖) is the 𝑖th principal submatrix of K.

\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},

Let 𝐶𝑖(𝑗) be the set of graphs obtained from 𝐺 by attaching edge (𝑣𝑖𝑣𝑗) to each
spanning tree of 𝐺. Denote by 𝐶𝑖 = ⋃𝑗 𝐶𝑖(𝑗). It is obvious that the collection of
Hamiltonian cycles is a subset of𝐶𝑖. Note that the cardinality of𝐶𝑖 is 𝑘𝑖𝑖 detK(𝑖|𝑖).
Let 𝑋̂ = {𝑥̂1,… , 𝑥̂𝑛}.

$\wh X=\{\hat x_1,\dots,\hat x_n\}$
® Lucida is a trademark of Bigelow & Holmes Inc. registered in the U.S. Patent & Trademark Office and
other jurisdictions.
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Define multiplication for the elements of 𝑋̂ by

𝑥̂𝑖𝑥̂𝑗 = 𝑥̂𝑗𝑥̂𝑖, 𝑥̂2
𝑖 = 0, 𝑖, 𝑗 = 1,… ,𝑛. (2)

Let 𝑘̂𝑖𝑗 = 𝑘𝑖𝑗𝑥̂𝑗 and 𝑘̂𝑖𝑗 = −∑𝑗≠𝑖 𝑘̂𝑖𝑗. Then the number of Hamiltonian cycles 𝐻𝑐
is given by the relation [8]

(
𝑛

∏
𝑗=1

𝑥̂𝑗)𝐻𝑐 =
1
2
𝑘̂𝑖𝑗 det K̂(𝑖|𝑖), 𝑖 = 1,… ,𝑛. (3)

The task here is to express (3) in a form free of any 𝑥̂𝑖, 𝑖 = 1,… ,𝑛. The result also
leads to the resolution of enumeration of Hamiltonian paths in a graph.

It is well known that the enumeration of Hamiltonian cycles and paths in a
complete graph 𝐾𝑛 and in a complete bipartite graph 𝐾𝑛1𝑛2 can only be found
from first combinatorial principles [4]. One wonders if there exists a formula which
can be used very efficiently to produce 𝐾𝑛 and 𝐾𝑛1𝑛2 . Recently, using Lagrangian
methods, Goulden and Jackson have shown that 𝐻𝑐 can be expressed in terms of
the determinant and permanent of the adjacency matrix [3]. However, the formula
of Goulden and Jackson determines neither 𝐾𝑛 nor 𝐾𝑛1𝑛2 effectively. In this paper,
using an algebraic method, we parametrize the adjacency matrix. The resulting
formula also involves the determinant and permanent, but it can easily be applied
to 𝐾𝑛 and 𝐾𝑛1𝑛2 . In addition, we eliminate the permanent from 𝐻𝑐 and show that
𝐻𝑐 can be represented by a determinantal function of multivariables, each variable
with domain {0, 1}. Furthermore, we show that 𝐻𝑐 can be written by number
of spanning trees of subgraphs. Finally, we apply the formulas to a complete
multigraph 𝐾𝑛1…𝑛𝑝 .

The conditions 𝑎𝑖𝑗 = 𝑎𝑗𝑖, 𝑖, 𝑗 = 1,… ,𝑛, are not required in this paper. All
formulas can be extended to a digraph simply by multiplying 𝐻𝑐 by 2.

3 Main Theorem

Notation. For 𝑝, 𝑞 ∈ 𝑃 and 𝑛 ∈ 𝜔 we write (𝑞,𝑛) ≤ (𝑝,𝑛) if 𝑞 ≤ 𝑝 and 𝐴𝑞,𝑛 =
𝐴𝑝,𝑛.

\begin{notation} For $p,q\in P$ and $n\in\omega$
...
\end{notation}

Let B = (𝑏𝑖𝑗) be an 𝑛 × 𝑛 matrix. Let n = {1,… ,𝑛}. Using the properties of
(2), it is readily seen that

Lemma 3.1.

∏
𝑖∈n

( ∑
𝑗∈n

𝑏𝑖𝑗𝑥̂𝑖) = (∏
𝑖∈n

𝑥̂𝑖)perB (4)

where perB is the permanent of B.



Sample paper for the amsmath and lucidabr packages 3

Let 𝑌̂ = {𝑦̂1,… , 𝑦̂𝑛}. Define multiplication for the elements of 𝑌̂ by

𝑦̂𝑖𝑦̂𝑗 + 𝑦̂𝑗𝑦̂𝑖 = 0, 𝑖, 𝑗 = 1,… ,𝑛. (5)

Then, it follows that

Lemma 3.2.

∏
𝑖∈n

( ∑
𝑗∈n

𝑏𝑖𝑗𝑦̂𝑗) = (∏
𝑖∈n

𝑦̂𝑖)detB. (6)

Note that all basic properties of determinants are direct consequences of Lemma
3.2. Write

∑
𝑗∈n

𝑏𝑖𝑗𝑦̂𝑗 = ∑
𝑗∈n

𝑏(𝜆)
𝑖𝑗 𝑦̂𝑗 + (𝑏𝑖𝑖 − 𝜆𝑖)𝑦̂𝑖𝑦̂ (7)

where
𝑏(𝜆)
𝑖𝑖 = 𝜆𝑖, 𝑏(𝜆)

𝑖𝑗 = 𝑏𝑖𝑗, 𝑖 ≠ 𝑗. (8)

Let B(𝜆) = (𝑏(𝜆)
𝑖𝑗 ). By (6) and (7), it is straightforward to show the following result:

Theorem 3.3.

detB =
𝑛

∑
𝑙=0

∑
𝐼𝑙⊆𝑛

∏
𝑖∈𝐼𝑙

(𝑏𝑖𝑖 − 𝜆𝑖) detB(𝜆)(𝐼𝑙|𝐼𝑙), (9)

where 𝐼𝑙 = {𝑖1,… , 𝑖𝑙} and B(𝜆)(𝐼𝑙|𝐼𝑙) is the principal submatrix obtained from B(𝜆)

by deleting its 𝑖1,… , 𝑖𝑙 rows and columns.

Remark 3.1. Let M be an 𝑛 × 𝑛 matrix. The convention M(n|n) = 1 has been
used in (9) and hereafter.

Before proceeding with our discussion, we pause to note that Theorem 3.3
yields immediately a fundamental formula which can be used to compute the co-
efficients of a characteristic polynomial [9]:

Corollary 3.4. Write det(B−𝑥I) = ∑𝑛
𝑙=0(−1)𝑙𝑏𝑙𝑥𝑙. Then

𝑏𝑙 = ∑
𝐼𝑙⊆n

detB(𝐼𝑙|𝐼𝑙). (10)

Let

K(𝑡, 𝑡1,… , 𝑡𝑛) =
⎛⎜⎜⎜
⎝

𝐷1𝑡 −𝑎12𝑡2 … −𝑎1𝑛𝑡𝑛
−𝑎21𝑡1 𝐷2𝑡 … −𝑎2𝑛𝑡𝑛
. . . . . . . . . . . . . . . . . . . . . . . .
−𝑎𝑛1𝑡1 −𝑎𝑛2𝑡2 … 𝐷𝑛𝑡

⎞⎟⎟⎟
⎠

, (11)

\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}
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where
𝐷𝑖 = ∑

𝑗∈n

𝑎𝑖𝑗𝑡𝑗, 𝑖 = 1,… ,𝑛. (12)

Set
𝐷(𝑡1,… , 𝑡𝑛) =

𝛿
𝛿𝑡

detK(𝑡, 𝑡1,… , 𝑡𝑛)|𝑡=1 .

Then
𝐷(𝑡1,… , 𝑡𝑛) = ∑

𝑖∈n

𝐷𝑖 detK(𝑡 = 1, 𝑡1,… , 𝑡𝑛; 𝑖|𝑖), (13)

where K(𝑡 = 1, 𝑡1,… , 𝑡𝑛; 𝑖|𝑖) is the 𝑖th principal submatrix of K(𝑡 = 1, 𝑡1,… , 𝑡𝑛).
Theorem 3.3 leads to

detK(𝑡1, 𝑡1,… , 𝑡𝑛) = ∑
𝐼∈n

(−1)|𝐼|𝑡𝑛−|𝐼| ∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗𝑡𝑗) detA(𝜆𝑡)(𝐼|𝐼). (14)

Note that

detK(𝑡 = 1, 𝑡1,… , 𝑡𝑛) = ∑
𝐼∈n

(−1)|𝐼| ∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗𝑡𝑗) detA(𝜆)(𝐼|𝐼) = 0. (15)

Let 𝑡𝑖 = 𝑥̂𝑖, 𝑖 = 1,… ,𝑛. Lemma 3.1 yields

(∑
𝑖∈n

𝑎𝑙𝑖𝑥𝑖)detK(𝑡 = 1,𝑥1,… ,𝑥𝑛; 𝑙|𝑙)

= (∏
𝑖∈n

𝑥̂𝑖) ∑
𝐼⊆n−{𝑙}

(−1)|𝐼| perA(𝜆)(𝐼|𝐼) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}). (16)

\begin{multline}
\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)
\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\
=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)
\sum_{I\subseteq\mathbf{n}-\{l \}}
(-1)^{\envert{I}}\per\mathbf{A}^{(\lambda)}(I|I)
\det\mathbf{A}^{(\lambda)}
(\overline I\cup\{l \}|\overline I\cup\{l \}).
\label{sum-ali}
\end{multline}

By (3), (6), and (7), we have

Proposition 3.5.

𝐻𝑐 =
1
2𝑛

𝑛

∑
𝑙=0

(−1)𝑙𝐷𝑙, (17)

where
𝐷𝑙 = ∑

𝐼𝑙⊆n

𝐷(𝑡1,… , 𝑡𝑛)2|𝑡𝑖={0, if 𝑖∈𝐼𝑙
1, otherwise , 𝑖=1,…,𝑛

. (18)
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4 Application

We consider here the applications of Theorems 5.1 and 5.2 to a complete multi-
partite graph 𝐾𝑛1…𝑛𝑝 . It can be shown that the number of spanning trees of 𝐾𝑛1…𝑛𝑝

may be written

𝑇 = 𝑛𝑝−2
𝑝

∏
𝑖=1

(𝑛 − 𝑛𝑖)𝑛𝑖−1 (19)

where
𝑛 = 𝑛1 +⋯+𝑛𝑝. (20)

It follows from Theorems 5.1 and 5.2 that

𝐻𝑐 =
1
2𝑛

𝑛

∑
𝑙=0

(−1)𝑙(𝑛 − 𝑙)𝑝−2 ∑
𝑙1+⋯+𝑙𝑝=𝑙

𝑝

∏
𝑖=1

(𝑛𝑖

𝑙𝑖
)

⋅ [(𝑛 − 𝑙) − (𝑛𝑖 − 𝑙𝑖)]𝑛𝑖−𝑙𝑖 ⋅ [(𝑛 − 𝑙)2 −
𝑝

∑
𝑗=1

(𝑛𝑖 − 𝑙𝑖)2].
(21)

... \binom{n_i}{l _i}\\

and

𝐻𝑐 =
1
2

𝑛−1

∑
𝑙=0

(−1)𝑙(𝑛 − 𝑙)𝑝−2 ∑
𝑙1+⋯+𝑙𝑝=𝑙

𝑝

∏
𝑖=1

(𝑛𝑖

𝑙𝑖
)

⋅ [(𝑛 − 𝑙) − (𝑛𝑖 − 𝑙𝑖)]𝑛𝑖−𝑙𝑖 (1 −
𝑙𝑝
𝑛𝑝

)[(𝑛 − 𝑙) − (𝑛𝑝 − 𝑙𝑝)].
(22)

The enumeration of 𝐻𝑐 in a 𝐾𝑛1⋯𝑛𝑝 graph can also be carried out by Theorem
7.2 or 7.3 together with the algebraic method of (2). Some elegant representations
may be obtained. For example, 𝐻𝑐 in a 𝐾𝑛1𝑛2𝑛3 graph may be written

𝐻𝑐 =
𝑛1! 𝑛2! 𝑛3!

𝑛1 +𝑛2 +𝑛3
∑
𝑖
[(𝑛1

𝑖
)( 𝑛2

𝑛3 −𝑛1 + 𝑖
)( 𝑛3

𝑛3 −𝑛2 + 𝑖
)

+ (𝑛1 − 1
𝑖

)( 𝑛2 − 1
𝑛3 −𝑛1 + 𝑖

)( 𝑛3 − 1
𝑛3 −𝑛2 + 𝑖

)] .
(23)

5 Secret Key Exchanges

Modern cryptography is fundamentally concerned with the problem of secure pri-
vate communication. A Secret Key Exchange is a protocol where Alice and Bob,
having no secret information in common to start, are able to agree on a common
secret key, conversing over a public channel. The notion of a Secret Key Exchange
protocol was first introduced in the seminal paper of Diffie and Hellman [1]. [1]
presented a concrete implementation of a Secret Key Exchange protocol, depen-
dent on a specific assumption (a variant on the discrete log), specially tailored to
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yield Secret Key Exchange. Secret Key Exchange is of course trivial if trapdoor per-
mutations exist. However, there is no known implementation based on a weaker
general assumption.

The concept of an informationally one-way function was introduced in [5]. We
give only an informal definition here:

Definition 5.1. A polynomial time computable function 𝑓 = {𝑓𝑘} is information-
ally one-way if there is no probabilistic polynomial time algorithm which (with
probability of the form 1 − 𝑘−𝑒 for some 𝑒 > 0) returns on input 𝑦 ∈ {0, 1}𝑘 a
random element of 𝑓−1(𝑦).

In the non-uniform setting [5] show that these are not weaker than one-way
functions:

Theorem 5.1 ([5] (non-uniform)). The existence of informationally one-way func-
tions implies the existence of one-way functions.

We will stick to the convention introduced above of saying “non-uniform” be-
fore the theorem statement when the theorem makes use of non-uniformity. It
should be understood that if nothing is said then the result holds for both the
uniform and the non-uniform models.

It now follows from Theorem 5.1 that

Theorem 5.2 (non-uniform). Weak SKE implies the existence of a one-way function.

More recently, the polynomial-time, interior point algorithms for linear pro-
gramming have been extended to the case of convex quadratic programs [11, 13],
certain linear complementarity problems [7, 10], and the nonlinear complemen-
tarity problem [6]. The connection between these algorithms and the classical
Newton method for nonlinear equations is well explained in [7].

6 Review

We begin our discussion with the following definition:

Definition 6.1. A function 𝐻∶ ℜ𝑛 → ℜ𝑛 is said to be B-differentiable at the point
𝑧 if (i) 𝐻 is Lipschitz continuous in a neighborhood of 𝑧, and (ii) there exists a
positive homogeneous function 𝐵𝐻(𝑧)∶ ℜ𝑛 → ℜ𝑛, called the B-derivative of 𝐻 at
𝑧, such that

lim
𝑣→0

𝐻(𝑧 + 𝑣) −𝐻(𝑧) − 𝐵𝐻(𝑧)𝑣
‖𝑣‖

= 0.

The function 𝐻 is B-differentiable in set 𝑆 if it is B-differentiable at every point in
𝑆. The B-derivative 𝐵𝐻(𝑧) is said to be strong if

lim
(𝑣,𝑣′)→(0,0)

𝐻(𝑧 + 𝑣) −𝐻(𝑧 + 𝑣′) − 𝐵𝐻(𝑧)(𝑣 − 𝑣′)
‖𝑣 − 𝑣′‖

= 0.

Lemma 6.1. There exists a smooth function𝜓0(𝑧) defined for |𝑧| > 1−2𝑎 satisfying
the following properties:
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(i) 𝜓0(𝑧) is bounded above and below by positive constants 𝑐1 ≤ 𝜓0(𝑧) ≤ 𝑐2.

(ii) If |𝑧| > 1, then 𝜓0(𝑧) = 1.

(iii) For all 𝑧 in the domain of 𝜓0, 𝛥0 ln𝜓0 ≥ 0.

(iv) If 1 − 2𝑎 < |𝑧| < 1 − 𝑎, then 𝛥0 ln𝜓0 ≥ 𝑐3 > 0.

Proof. We choose 𝜓0(𝑧) to be a radial function depending only on 𝑟 = |𝑧|. Let
ℎ(𝑟) ≥ 0 be a suitable smooth function satisfying ℎ(𝑟) ≥ 𝑐3 for 1 − 2𝑎 < |𝑧| <
1 − 𝑎, and ℎ(𝑟) = 0 for |𝑧| > 1 − 𝑎

2 . The radial Laplacian

𝛥0 ln𝜓0(𝑟) = ( 𝑑2

𝑑𝑟2 +
1
𝑟

𝑑
𝑑𝑟

) ln𝜓0(𝑟)

has smooth coefficients for 𝑟 > 1 − 2𝑎. Therefore, we may apply the existence
and uniqueness theory for ordinary differential equations. Simply let ln𝜓0(𝑟) be
the solution of the differential equation

( 𝑑2

𝑑𝑟2 +
1
𝑟

𝑑
𝑑𝑟

) ln𝜓0(𝑟) = ℎ(𝑟)

with initial conditions given by ln𝜓0(1) = 0 and ln𝜓′
0(1) = 0.

Next, let 𝐷𝜈 be a finite collection of pairwise disjoint disks, all of which are
contained in the unit disk centered at the origin in 𝐶. We assume that 𝐷𝜈 = {𝑧 ∣
|𝑧 − 𝑧𝜈| < 𝛿}. Suppose that 𝐷𝜈(𝑎) denotes the smaller concentric disk 𝐷𝜈(𝑎) =
{𝑧 ∣ |𝑧 − 𝑧𝜈| ≤ (1−2𝑎)𝛿}. We define a smooth weight function 𝛷0(𝑧) for 𝑧 ∈ 𝐶−
⋃𝜈 𝐷𝜈(𝑎) by setting𝛷0(𝑧) = 1when 𝑧 ∉ ⋃𝜈 𝐷𝜈 and𝛷0(𝑧) = 𝜓0((𝑧−𝑧𝜈)/𝛿)when
𝑧 is an element of 𝐷𝜈. It follows from Lemma 6.1 that 𝛷0 satisfies the properties:

(i) 𝛷0(𝑧) is bounded above and below by positive constants 𝑐1 ≤ 𝛷0(𝑧) ≤ 𝑐2.

(ii) 𝛥0 ln𝛷0 ≥ 0 for all 𝑧 ∈ 𝐶−⋃𝜈 𝐷𝜈(𝑎), the domain where the function 𝛷0 is
defined.

(iii) 𝛥0 ln𝛷0 ≥ 𝑐3𝛿−2 when (1 − 2𝑎)𝛿 < |𝑧 − 𝑧𝜈| < (1 − 𝑎)𝛿.

Let 𝐴𝜈 denote the annulus 𝐴𝜈 = {(1 − 2𝑎)𝛿 < |𝑧 − 𝑧𝜈| < (1 − 𝑎)𝛿}, and set 𝐴 =
⋃𝜈 𝐴𝜈. The properties (2) and (3) of𝛷0 may be summarized as 𝛥0 ln𝛷0 ≥ 𝑐3𝛿−2𝜒𝐴,
where 𝜒𝐴 is the characteristic function of 𝐴.

Suppose that 𝛼 is a nonnegative real constant. We apply Proposition 3.5 with
𝛷(𝑧) = 𝛷0(𝑧)𝑒𝛼|𝑧|2 . If 𝑢 ∈ 𝐶∞

0 (𝑅2 − ⋃𝜈 𝐷𝜈(𝑎)), assume that 𝒟 is a bounded
domain containing the support of 𝑢 and 𝐴 ⊂ 𝒟 ⊂ 𝑅2 − ⋃𝜈 𝐷𝜈(𝑎). A calculation
gives

∫
𝒟
|𝜕𝑢|2 𝛷0(𝑧)𝑒𝛼|𝑧|2 ≥ 𝑐4𝛼∫

𝒟
|𝑢|2 𝛷0𝑒𝛼|𝑧|2 + 𝑐5𝛿−2 ∫

𝐴
|𝑢|2 𝛷0𝑒𝛼|𝑧|2 .
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The boundedness, property (1) of 𝛷0, then yields

∫
𝒟
|𝜕𝑢|2 𝑒𝛼|𝑧|2 ≥ 𝑐6𝛼∫

𝒟
|𝑢|2 𝑒𝛼|𝑧|2 + 𝑐7𝛿−2 ∫

𝐴
|𝑢|2 𝑒𝛼|𝑧|2 .

Let 𝐵(𝑋) be the set of blocks of 𝛬𝑋 and let 𝑏(𝑋) = |𝐵(𝑋)|. If 𝜙 ∈ 𝑄𝑋 then 𝜙
is constant on the blocks of 𝛬𝑋.

𝑃𝑋 = {𝜙 ∈ 𝑀 ∣ 𝛬𝜙 = 𝛬𝑋}, 𝑄𝑋 = {𝜙 ∈ 𝑀 ∣ 𝛬𝜙 ≥ 𝛬𝑋}. (24)

If 𝛬𝜙 ≥ 𝛬𝑋 then 𝛬𝜙 = 𝛬𝑌 for some 𝑌 ≥ 𝑋 so that

𝑄𝑋 = ⋃
𝑌≥𝑋

𝑃𝑌.

Thus by Möbius inversion

|𝑃𝑌| = ∑
𝑋≥𝑌

𝜇(𝑌,𝑋) |𝑄𝑋| .

Thus there is a bijection from 𝑄𝑋 to 𝑊𝐵(𝑋). In particular |𝑄𝑋| = 𝑤𝑏(𝑋).
Next note that 𝑏(𝑋) = dim𝑋. We see this by choosing a basis for 𝑋 consisting

of vectors 𝑣𝑘 defined by

𝑣𝑘
𝑖 = {

1 if 𝑖 ∈ 𝛬𝑘,
0 otherwise.

\[v^{k}_{i}=
\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\
0 &\text{otherwise.} \end{cases}
\]

Lemma 6.2. Let 𝒜 be an arrangement. Then

𝜒(𝒜, 𝑡) = ∑
ℬ⊆𝒜

(−1)|ℬ|𝑡dim𝑇(ℬ).

In order to compute 𝑅″ recall the definition of 𝑆(𝑋,𝑌) from Lemma 3.1. Since
𝐻 ∈ ℬ, 𝒜𝐻 ⊆ ℬ. Thus if 𝑇(ℬ) = 𝑌 then ℬ ∈ 𝑆(𝐻,𝑌). Let 𝐿″ = 𝐿(𝒜″). Then

𝑅″ = ∑
𝐻∈ℬ⊆𝒜

(−1)|ℬ|𝑡dim𝑇(ℬ)

= ∑
𝑌∈𝐿″

∑
ℬ∈𝑆(𝐻,𝑌)

(−1)|ℬ|𝑡dim𝑌

= − ∑
𝑌∈𝐿″

∑
ℬ∈𝑆(𝐻,𝑌)

(−1)|ℬ−𝒜𝐻|𝑡dim𝑌

= − ∑
𝑌∈𝐿″

𝜇(𝐻,𝑌)𝑡dim𝑌

= −𝜒(𝒜″, 𝑡).

(25)

Corollary 6.3. Let (𝒜,𝒜′,𝒜″) be a triple of arrangements. Then

𝜋(𝒜, 𝑡) = 𝜋(𝒜′, 𝑡) + 𝑡𝜋(𝒜″, 𝑡).
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Definition 6.2. Let (𝒜,𝒜′,𝒜″) be a triple with respect to the hyperplane 𝐻 ∈ 𝒜.
Call 𝐻 a separator if 𝑇(𝒜) ∉ 𝐿(𝒜′).

Corollary 6.4. Let (𝒜,𝒜′,𝒜″) be a triple with respect to 𝐻 ∈ 𝒜.

(i) If 𝐻 is a separator then
𝜇(𝒜) = −𝜇(𝒜″)

and hence
|𝜇(𝒜)| = |𝜇(𝒜″)| .

(ii) If 𝐻 is not a separator then

𝜇(𝒜) = 𝜇(𝒜′) − 𝜇(𝒜″)

and
|𝜇(𝒜)| = |𝜇(𝒜′)| + |𝜇(𝒜″)| .

Proof. It follows from Theorem 5.1 that 𝜋(𝒜, 𝑡) has leading term

(−1)𝑟(𝒜)𝜇(𝒜)𝑡𝑟(𝒜).

The conclusion follows by comparing coefficients of the leading terms on both
sides of the equation in Corollary 6.3. If 𝐻 is a separator then 𝑟(𝒜′) < 𝑟(𝒜) and
there is no contribution from 𝜋(𝒜′, 𝑡).

The Poincaré polynomial of an arrangement will appear repeatedly in these
notes. It will be shown to equal the Poincaré polynomial of the graded algebras
which we are going to associate with 𝒜. It is also the Poincaré polynomial of the
complement 𝑀(𝒜) for a complex arrangement. Here we prove that the Poincaré
polynomial is the chamber counting function for a real arrangement. The comple-
ment 𝑀(𝒜) is a disjoint union of chambers

𝑀(𝒜) = ⋃
𝐶∈Cham(𝒜)

𝐶.

The number of chambers is determined by the Poincaré polynomial as follows.

Theorem 6.5. Let 𝒜R be a real arrangement. Then

|Cham(𝒜R)| = 𝜋(𝒜R, 1).

Proof. We check the properties required in Corollary 6.4: (i) follows from𝜋(𝛷𝑙, 𝑡) =
1, and (ii) is a consequence of Corollary 3.4.

Theorem 6.6. Let 𝜙 be a protocol for a random pair (𝑋,𝑌). If one of 𝜎𝜙(𝑥′, 𝑦)
and 𝜎𝜙(𝑥,𝑦′) is a prefix of the other and (𝑥,𝑦) ∈ 𝑆𝑋,𝑌, then

⟨𝜎𝑗(𝑥′, 𝑦)⟩∞𝑗=1 = ⟨𝜎𝑗(𝑥,𝑦)⟩∞𝑗=1 = ⟨𝜎𝑗(𝑥,𝑦′)⟩∞𝑗=1.
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(figure intentionally left blank)

Figure 1: 𝑄(𝒜1) = 𝑥𝑦𝑧(𝑥 − 𝑧)(𝑥 + 𝑧)(𝑦 − 𝑧)(𝑦 + 𝑧)

(figure intentionally left blank)

Figure 2: 𝑄(𝒜2) = 𝑥𝑦𝑧(𝑥 +𝑦+ 𝑧)(𝑥 +𝑦− 𝑧)(𝑥 −𝑦+ 𝑧)(𝑥 −𝑦− 𝑧)
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Proof. We show by induction on 𝑖 that

⟨𝜎𝑗(𝑥′, 𝑦)⟩𝑖𝑗=1 = ⟨𝜎𝑗(𝑥,𝑦)⟩𝑖𝑗=1 = ⟨𝜎𝑗(𝑥,𝑦′)⟩𝑖𝑗=1.

The induction hypothesis holds vacuously for 𝑖 = 0. Assume it holds for 𝑖 − 1,
in particular [𝜎𝑗(𝑥′, 𝑦)]𝑖−1

𝑗=1 = [𝜎𝑗(𝑥,𝑦′)]𝑖−1
𝑗=1. Then one of [𝜎𝑗(𝑥′, 𝑦)]∞𝑗=𝑖 and

[𝜎𝑗(𝑥,𝑦′)]∞𝑗=𝑖 is a prefix of the other which implies that one of 𝜎𝑖(𝑥′, 𝑦) and
𝜎𝑖(𝑥,𝑦′) is a prefix of the other. If the 𝑖th message is transmitted by 𝑃𝒳 then,
by the separate-transmissions property and the induction hypothesis, 𝜎𝑖(𝑥,𝑦) =
𝜎𝑖(𝑥,𝑦′), hence one of 𝜎𝑖(𝑥,𝑦) and 𝜎𝑖(𝑥′, 𝑦) is a prefix of the other. By the
implicit-termination property, neither 𝜎𝑖(𝑥,𝑦) nor 𝜎𝑖(𝑥′, 𝑦) can be a proper pre-
fix of the other, hence theymust be the same and𝜎𝑖(𝑥′, 𝑦) = 𝜎𝑖(𝑥,𝑦) = 𝜎𝑖(𝑥,𝑦′).
If the 𝑖th message is transmitted by 𝑃𝒴 then, symmetrically, 𝜎𝑖(𝑥,𝑦) = 𝜎𝑖(𝑥′, 𝑦)
by the induction hypothesis and the separate-transmissions property, and, then,
𝜎𝑖(𝑥,𝑦) = 𝜎𝑖(𝑥,𝑦′) by the implicit-termination property, proving the induction
step.

If 𝜙 is a protocol for (𝑋,𝑌), and (𝑥,𝑦), (𝑥′, 𝑦) are distinct inputs in 𝑆𝑋,𝑌, then,
by the correct-decision property, ⟨𝜎𝑗(𝑥,𝑦)⟩∞𝑗=1 ≠ ⟨𝜎𝑗(𝑥′, 𝑦)⟩∞𝑗=1.

Equation (25) defined 𝑃𝒴’s ambiguity set 𝑆𝑋|𝑌(𝑦) to be the set of possible 𝑋
values when 𝑌 = 𝑦. The last corollary implies that for all 𝑦 ∈ 𝑆𝑌, the multiset1
of codewords {𝜎𝜙(𝑥,𝑦) ∶ 𝑥 ∈ 𝑆𝑋|𝑌(𝑦)} is prefix free.

7 One-Way Complexity
̂𝐶1(𝑋|𝑌), the one-way complexity of a random pair (𝑋,𝑌), is the number of bits 𝑃𝒳

must transmit in the worst case when 𝑃𝒴 is not permitted to transmit any feedback
messages. Starting with 𝑆𝑋,𝑌, the support set of (𝑋,𝑌), we define 𝐺(𝑋|𝑌), the
characteristic hypergraph of (𝑋,𝑌), and show that

̂𝐶1(𝑋|𝑌) = ⌈ log𝜒(𝐺(𝑋|𝑌))⌉ .

Let (𝑋,𝑌) be a random pair. For each 𝑦 in 𝑆𝑌, the support set of 𝑌, Equa-
tion (25) defined 𝑆𝑋|𝑌(𝑦) to be the set of possible 𝑥 values when 𝑌 = 𝑦. The
characteristic hypergraph 𝐺(𝑋|𝑌) of (𝑋,𝑌) has 𝑆𝑋 as its vertex set and the hyper-
edge 𝑆𝑋|𝑌(𝑦) for each 𝑦 ∈ 𝑆𝑌.

We can now prove a continuity theorem.

Theorem 7.1. Let 𝛺 ⊂ R𝑛 be an open set, let 𝑢 ∈ 𝐵𝑉(𝛺;R𝑚), and let

𝑇𝑢
𝑥 = {𝑦 ∈ R𝑚 ∶ 𝑦 = 𝑢̃(𝑥) + ⟨ 𝐷𝑢

|𝐷𝑢|
(𝑥), 𝑧⟩ for some 𝑧 ∈ R𝑛} (26)

for every 𝑥 ∈ 𝛺\𝑆𝑢. Let 𝑓∶ R𝑚 → R𝑘 be a Lipschitz continuous function such that
𝑓(0) = 0, and let 𝑣 = 𝑓(𝑢)∶ 𝛺 → R𝑘. Then 𝑣 ∈ 𝐵𝑉(𝛺;R𝑘) and

𝐽𝑣 = (𝑓(𝑢+) − 𝑓(𝑢−)) ⊗ 𝜈𝑢 ⋅ ℋ𝑛−1|𝑆𝑢
. (27)

1A multiset allows multiplicity of elements. Hence, {0, 01, 01} is prefix free as a set, but not as a
multiset.
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In addition, for |𝐷̃𝑢|-almost every 𝑥 ∈ 𝛺 the restriction of the function 𝑓 to 𝑇𝑢
𝑥 is

differentiable at 𝑢̃(𝑥) and

𝐷̃𝑣 = ∇(𝑓|𝑇𝑢
𝑥 )(𝑢̃)

𝐷̃𝑢
|𝐷̃𝑢|

⋅ |𝐷̃𝑢| . (28)

Before proving the theorem, we state without proof three elementary remarks
which will be useful in the sequel.
Remark 7.1. Let𝜔∶ ]0,+∞[ → ]0,+∞[ be a continuous function such that𝜔(𝑡) →
0 as 𝑡 → 0. Then

lim
ℎ→0+

𝑔(𝜔(ℎ)) = 𝐿 ⇔ lim
ℎ→0+

𝑔(ℎ) = 𝐿

for any function 𝑔∶ ]0,+∞[ → R.
Remark 7.2. Let 𝑔∶ R𝑛 → R be a Lipschitz continuous function and assume that

𝐿(𝑧) = lim
ℎ→0+

𝑔(ℎ𝑧) − 𝑔(0)
ℎ

exists for every 𝑧 ∈ Q𝑛 and that 𝐿 is a linear function of 𝑧. Then 𝑔 is differentiable
at 0.
Remark 7.3. Let 𝐴∶ R𝑛 → R𝑚 be a linear function, and let 𝑓∶ R𝑚 → R be a
function. Then the restriction of 𝑓 to the range of 𝐴 is differentiable at 0 if and
only if 𝑓(𝐴)∶ R𝑛 → R is differentiable at 0 and

∇(𝑓|Im(𝐴))(0)𝐴 = ∇(𝑓(𝐴))(0).

Proof. We begin by showing that 𝑣 ∈ 𝐵𝑉(𝛺;R𝑘) and

|𝐷𝑣| (𝐵) ≤ 𝐾 |𝐷𝑢| (𝐵) ∀𝐵 ∈ B(𝛺), (29)

where𝐾 > 0 is the Lipschitz constant of𝑓. By (13) and by the approximation result
quoted in §3, it is possible to find a sequence (𝑢ℎ) ⊂ 𝐶1(𝛺;R𝑚) converging to 𝑢
in 𝐿1(𝛺;R𝑚) and such that

lim
ℎ→+∞

∫
𝛺
|∇𝑢ℎ| 𝑑𝑥 = |𝐷𝑢| (𝛺).

The functions 𝑣ℎ = 𝑓(𝑢ℎ) are locally Lipschitz continuous in𝛺, and the definition
of differential implies that |∇𝑣ℎ| ≤ 𝐾 |∇𝑢ℎ| almost everywhere in 𝛺. The lower
semicontinuity of the total variation and (13) yield

|𝐷𝑣| (𝛺) ≤ lim inf
ℎ→+∞

|𝐷𝑣ℎ| (𝛺) = lim inf
ℎ→+∞

∫
𝛺
|∇𝑣ℎ| 𝑑𝑥

≤ 𝐾 lim inf
ℎ→+∞

∫
𝛺
|∇𝑢ℎ| 𝑑𝑥 = 𝐾 |𝐷𝑢| (𝛺).

(30)

Since 𝑓(0) = 0, we have also

∫
𝛺
|𝑣| 𝑑𝑥 ≤ 𝐾∫

𝛺
|𝑢| 𝑑𝑥;



Sample paper for the amsmath and lucidabr packages 13

therefore𝑢 ∈ 𝐵𝑉(𝛺;R𝑘). Repeating the same argument for every open set𝐴 ⊂ 𝛺,
we get (29) for every 𝐵 ∈ B(𝛺), because |𝐷𝑣|, |𝐷𝑢| are Radon measures. To prove
Lemma 6.1, first we observe that

𝑆𝑣 ⊂ 𝑆𝑢, ̃𝑣(𝑥) = 𝑓(𝑢̃(𝑥)) ∀𝑥 ∈ 𝛺\𝑆𝑢. (31)

In fact, for every 𝜀 > 0 we have

{𝑦 ∈ 𝐵𝜌(𝑥) ∶ |𝑣(𝑦) − 𝑓(𝑢̃(𝑥))| > 𝜀} ⊂ {𝑦 ∈ 𝐵𝜌(𝑥) ∶ |𝑢(𝑦) − 𝑢̃(𝑥)| > 𝜀/𝐾},

hence

lim
𝜌→0+

|{𝑦 ∈ 𝐵𝜌(𝑥) ∶ |𝑣(𝑦) − 𝑓(𝑢̃(𝑥))| > 𝜀}|
𝜌𝑛 = 0

whenever 𝑥 ∈ 𝛺\𝑆𝑢. By a similar argument, if 𝑥 ∈ 𝑆𝑢 is a point such that there
exists a triplet (𝑢+, 𝑢−, 𝜈𝑢) satisfying (14), (15), then

(𝑣+(𝑥) − 𝑣−(𝑥)) ⊗ 𝜈𝑣 = (𝑓(𝑢+(𝑥)) − 𝑓(𝑢−(𝑥))) ⊗ 𝜈𝑢 if 𝑥 ∈ 𝑆𝑣

and 𝑓(𝑢−(𝑥)) = 𝑓(𝑢+(𝑥)) if 𝑥 ∈ 𝑆𝑢\𝑆𝑣. Hence, by (1.8) we get

𝐽𝑣(𝐵) = ∫
𝐵∩𝑆𝑣

(𝑣+ −𝑣−) ⊗ 𝜈𝑣 𝑑ℋ𝑛−1 = ∫
𝐵∩𝑆𝑣

(𝑓(𝑢+) − 𝑓(𝑢−)) ⊗ 𝜈𝑢 𝑑ℋ𝑛−1

= ∫
𝐵∩𝑆𝑢

(𝑓(𝑢+) − 𝑓(𝑢−)) ⊗ 𝜈𝑢 𝑑ℋ𝑛−1

and Lemma 6.1 is proved.

To prove (31), it is not restrictive to assume that 𝑘 = 1. Moreover, to sim-
plify our notation, from now on we shall assume that 𝛺 = R𝑛. The proof of (31)
is divided into two steps. In the first step we prove the statement in the one-
dimensional case (𝑛 = 1), using Theorem 5.2. In the second step we achieve the
general result using Theorem 7.1.

Step 1

Assume that 𝑛 = 1. Since 𝑆𝑢 is at most countable, (7) yields that |𝐷̃𝑣| (𝑆𝑢\𝑆𝑣) = 0,
so that (19) and (21) imply that 𝐷𝑣 = 𝐷̃𝑣 + 𝐽𝑣 is the Radon-Nikodým decompo-
sition of 𝐷𝑣 in absolutely continuous and singular part with respect to |𝐷̃𝑢|. By
Theorem 5.2, we have

𝐷̃𝑣
|𝐷̃𝑢|

(𝑡) = lim
𝑠→𝑡+

𝐷𝑣([𝑡, 𝑠[)
|𝐷̃𝑢| ([𝑡, 𝑠[)

,
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡) = lim
𝑠→𝑡+

𝐷𝑢([𝑡, 𝑠[)
|𝐷̃𝑢| ([𝑡, 𝑠[)

|𝐷̃𝑢|-almost everywhere in R. It is well known (see, for instance, [12, 2.5.16])
that every one-dimensional function of bounded variation 𝑤 has a unique left
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continuous representative, i.e., a function 𝑤̂ such that 𝑤̂ = 𝑤 almost everywhere
and lim𝑠→𝑡− 𝑤̂(𝑠) = 𝑤̂(𝑡) for every 𝑡 ∈ R. These conditions imply

𝑢̂(𝑡) = 𝐷𝑢(]−∞, 𝑡[), ̂𝑣(𝑡) = 𝐷𝑣(]−∞, 𝑡[) ∀𝑡 ∈ R (32)

and
̂𝑣(𝑡) = 𝑓(𝑢̂(𝑡)) ∀𝑡 ∈ R. (33)

Let 𝑡 ∈ R be such that |𝐷̃𝑢| ([𝑡, 𝑠[) > 0 for every 𝑠 > 𝑡 and assume that the limits
in (22) exist. By (23) and (24) we get

̂𝑣(𝑠) − ̂𝑣(𝑡)
|𝐷̃𝑢| ([𝑡, 𝑠[)

=
𝑓(𝑢̂(𝑠)) − 𝑓(𝑢̂(𝑡))

|𝐷̃𝑢| ([𝑡, 𝑠[)

=

𝑓(𝑢̂(𝑠)) − 𝑓(𝑢̂(𝑡) +
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡) |𝐷̃𝑢| ([𝑡, 𝑠[))

|𝐷̃𝑢| ([𝑡, 𝑠[)

+

𝑓(𝑢̂(𝑡) +
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡) |𝐷̃𝑢| ([𝑡, 𝑠[)) − 𝑓(𝑢̂(𝑡))

|𝐷̃𝑢| ([𝑡, 𝑠[)

for every 𝑠 > 𝑡. Using the Lipschitz condition on 𝑓 we find

||||||||||||

̂𝑣(𝑠) − ̂𝑣(𝑡)
|𝐷̃𝑢| ([𝑡, 𝑠[)

−

𝑓(𝑢̂(𝑡) +
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡) |𝐷̃𝑢| ([𝑡, 𝑠[)) − 𝑓(𝑢̂(𝑡))

|𝐷̃𝑢| ([𝑡, 𝑠[)

||||||||||||

≤ 𝐾
||||||

𝑢̂(𝑠) − 𝑢̂(𝑡)
|𝐷̃𝑢| ([𝑡, 𝑠[)

−
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡)
||||||
.

By (29), the function 𝑠 → |𝐷̃𝑢| ([𝑡, 𝑠[) is continuous and converges to 0 as 𝑠 ↓ 𝑡.
Therefore Remark 7.1 and the previous inequality imply

𝐷̃𝑣
|𝐷̃𝑢|

(𝑡) = lim
ℎ→0+

𝑓(𝑢̂(𝑡) + ℎ
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡)) − 𝑓(𝑢̂(𝑡))

ℎ
|𝐷̃𝑢| -a.e. in R.

By (22), 𝑢̂(𝑥) = 𝑢̃(𝑥) for every 𝑥 ∈ R\𝑆𝑢; moreover, applying the same argument
to the functions 𝑢′(𝑡) = 𝑢(−𝑡), 𝑣′(𝑡) = 𝑓(𝑢′(𝑡)) = 𝑣(−𝑡), we get

𝐷̃𝑣
|𝐷̃𝑢|

(𝑡) = lim
ℎ→0

𝑓(𝑢̃(𝑡) + ℎ
𝐷̃𝑢
|𝐷̃𝑢|

(𝑡)) − 𝑓(𝑢̃(𝑡))

ℎ
|𝐷̃𝑢| -a.e. in R

and our statement is proved.
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Step 2

Let us consider now the general case 𝑛 > 1. Let 𝜈 ∈ R𝑛 be such that |𝜈| = 1,
and let 𝜋𝜈 = {𝑦 ∈ R𝑛 ∶ ⟨𝑦,𝜈⟩ = 0}. In the following, we shall identify R𝑛 with
𝜋𝜈 ×R, and we shall denote by 𝑦 the variable ranging in 𝜋𝜈 and by 𝑡 the variable
ranging in R. By the just proven one-dimensional result, and by Theorem 3.3, we
get

lim
ℎ→0

𝑓(𝑢̃(𝑦 + 𝑡𝜈) + ℎ
𝐷̃𝑢𝑦

|𝐷̃𝑢𝑦|
(𝑡)) − 𝑓(𝑢̃(𝑦 + 𝑡𝜈))

ℎ
=

𝐷̃𝑣𝑦

|𝐷̃𝑢𝑦|
(𝑡) |𝐷̃𝑢𝑦| -a.e. in R

for ℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈. We claim that

⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑦 + 𝑡𝜈) =
𝐷̃𝑢𝑦

|𝐷̃𝑢𝑦|
(𝑡) |𝐷̃𝑢𝑦| -a.e. in R (34)

for ℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈. In fact, by (16) and (18) we get

∫
𝜋𝜈

𝐷̃𝑢𝑦

|𝐷̃𝑢𝑦|
⋅ |𝐷̃𝑢𝑦| 𝑑ℋ𝑛−1(𝑦) = ∫

𝜋𝜈

𝐷̃𝑢𝑦 𝑑ℋ𝑛−1(𝑦)

= ⟨𝐷̃𝑢, 𝜈⟩ =
⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

⋅ |⟨𝐷̃𝑢, 𝜈⟩| = ∫
𝜋𝜈

⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑦 + ⋅𝜈) ⋅ |𝐷̃𝑢𝑦| 𝑑ℋ𝑛−1(𝑦)

and (24) follows from (13). By the same argument it is possible to prove that

⟨𝐷̃𝑣, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑦 + 𝑡𝜈) =
𝐷̃𝑣𝑦

|𝐷̃𝑢𝑦|
(𝑡) |𝐷̃𝑢𝑦| -a.e. in R (35)

for ℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈. By (24) and (25) we get

lim
ℎ→0

𝑓(𝑢̃(𝑦 + 𝑡𝜈) + ℎ
⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑦 + 𝑡𝜈)) − 𝑓(𝑢̃(𝑦 + 𝑡𝜈))

ℎ
=

⟨𝐷̃𝑣, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑦 + 𝑡𝜈)

for ℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈, and using again (14), (15) we get

lim
ℎ→0

𝑓(𝑢̃(𝑥) + ℎ
⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑥)) − 𝑓(𝑢̃(𝑥))

ℎ
=

⟨𝐷̃𝑣, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑥)

|⟨𝐷̃𝑢, 𝜈⟩|-a.e. in R𝑛.
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Since the function |⟨𝐷̃𝑢, 𝜈⟩| / |𝐷̃𝑢| is strictly positive |⟨𝐷̃𝑢, 𝜈⟩|-almost every-
where, we obtain also

lim
ℎ→0

𝑓(𝑢̃(𝑥) + ℎ
|⟨𝐷̃𝑢, 𝜈⟩|

|𝐷̃𝑢|
(𝑥)

⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑥)) − 𝑓(𝑢̃(𝑥))

ℎ

=
|⟨𝐷̃𝑢, 𝜈⟩|

|𝐷̃𝑢|
(𝑥)

⟨𝐷̃𝑣, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

(𝑥)

|⟨𝐷̃𝑢, 𝜈⟩|-almost everywhere in R𝑛.
Finally, since

|⟨𝐷̃𝑢, 𝜈⟩|

|𝐷̃𝑢|
⟨𝐷̃𝑢, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

=
⟨𝐷̃𝑢, 𝜈⟩
|𝐷̃𝑢|

= ⟨ 𝐷̃𝑢
|𝐷̃𝑢|

, 𝜈⟩ |𝐷̃𝑢| -a.e. in R𝑛

|⟨𝐷̃𝑢, 𝜈⟩|

|𝐷̃𝑢|
⟨𝐷̃𝑣, 𝜈⟩
|⟨𝐷̃𝑢, 𝜈⟩|

=
⟨𝐷̃𝑣, 𝜈⟩
|𝐷̃𝑢|

= ⟨ 𝐷̃𝑣
|𝐷̃𝑢|

, 𝜈⟩ |𝐷̃𝑢| -a.e. in R𝑛

and since both sides of (33) are zero |𝐷̃𝑢|-almost everywhere on |⟨𝐷̃𝑢, 𝜈⟩|-negligible
sets, we conclude that

lim
ℎ→0

𝑓⎛
⎝
𝑢̃(𝑥) + ℎ⟨ 𝐷̃𝑢

|𝐷̃𝑢|
(𝑥), 𝜈⟩⎞

⎠
− 𝑓(𝑢̃(𝑥))

ℎ
= ⟨ 𝐷̃𝑣

|𝐷̃𝑢|
(𝑥), 𝜈⟩ ,

|𝐷̃𝑢|-a.e. in R𝑛. Since 𝜈 is arbitrary, by Remarks 7.2 and 7.3 the restriction of 𝑓
to the affine space 𝑇𝑢

𝑥 is differentiable at 𝑢̃(𝑥) for |𝐷̃𝑢|-almost every 𝑥 ∈ R𝑛 and
(26) holds.

It follows from (13), (14), and (15) that

𝐷(𝑡1,… , 𝑡𝑛) = ∑
𝐼∈n

(−1)|𝐼|−1 |𝐼|∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗𝑡𝑗) detA(𝜆)(𝐼|𝐼). (36)

Let 𝑡𝑖 = 𝑥̂𝑖, 𝑖 = 1,… ,𝑛. Lemma 1 leads to

𝐷(𝑥̂1,… , 𝑥̂𝑛) = ∏
𝑖∈n

𝑥̂𝑖 ∑
𝐼∈n

(−1)|𝐼|−1 |𝐼| perA(𝜆)(𝐼|𝐼) detA(𝜆)(𝐼|𝐼). (37)

By (3), (13), and (37), we have the following result:

Theorem 7.2.

𝐻𝑐 =
1
2𝑛

𝑛

∑
𝑙=1

𝑙(−1)𝑙−1𝐴(𝜆)
𝑙 , (38)

where
𝐴(𝜆)

𝑙 = ∑
𝐼𝑙⊆n

perA(𝜆)(𝐼𝑙|𝐼𝑙) detA(𝜆)(𝐼𝑙|𝐼𝑙), |𝐼𝑙| = 𝑙. (39)
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It is worth noting that 𝐴(𝜆)
𝑙 of (39) is similar to the coefficients 𝑏𝑙 of the charac-

teristic polynomial of (10). It is well known in graph theory that the coefficients 𝑏𝑙
can be expressed as a sum over certain subgraphs. It is interesting to see whether
𝐴𝑙, 𝜆 = 0, structural properties of a graph.

Wemay call (38) a parametric representation of𝐻𝑐. In computation, the param-
eter 𝜆𝑖 plays very important roles. The choice of the parameter usually depends on
the properties of the given graph. For a complete graph 𝐾𝑛, let 𝜆𝑖 = 1, 𝑖 = 1,… ,𝑛.
It follows from (39) that

𝐴(1)
𝑙 = {

𝑛!, if 𝑙 = 1
0, otherwise.

(40)

By (38)
𝐻𝑐 =

1
2
(𝑛 − 1)!. (41)

For a complete bipartite graph 𝐾𝑛1𝑛2 , let 𝜆𝑖 = 0, 𝑖 = 1,… ,𝑛. By (39),

𝐴𝑙 = {
−𝑛1!𝑛2!𝛿𝑛1𝑛2 , if 𝑙 = 2
0, otherwise .

(42)

Theorem 7.2 leads to
𝐻𝑐 =

1
𝑛1 +𝑛2

𝑛1!𝑛2!𝛿𝑛1𝑛2 . (43)

Now, we consider an asymmetrical approach. Theorem 3.3 leads to

detK(𝑡 = 1, 𝑡1,… , 𝑡𝑛; 𝑙|𝑙)
= ∑

𝐼⊆n−{𝑙}
(−1)|𝐼| ∏

𝑖∈𝐼
𝑡𝑖 ∏

𝑗∈𝐼
(𝐷𝑗 + 𝜆𝑗𝑡𝑗) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}). (44)

By (3) and (16) we have the following asymmetrical result:

Theorem 7.3.

𝐻𝑐 =
1
2 ∑

𝐼⊆n−{𝑙}
(−1)|𝐼| perA(𝜆)(𝐼|𝐼) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}) (45)

which reduces to Goulden–Jackson’s formula when 𝜆𝑖 = 0, 𝑖 = 1,… ,𝑛 [9].

8 Various font features of the amsmath package

8.1 Bold versions of special symbols

In the amsmath package \boldsymbol is used for getting individual bold math
symbols and bold Greek letters—everything in math except for letters of the Latin
alphabet, where you’d use \mathbf. For example,
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A_\infty + \pi A_0 \sim
\mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}
\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}

looks like this:
𝐴∞ +𝜋𝐴0 ∼ A∞ +𝜋A0

8.2 “Poor man’s bold”

If a bold version of a particular symbol doesn’t exist in the available fonts, then
\boldsymbol can’t be used to make that symbol bold. At the present time, this
means that \boldsymbol can’t be used with symbols from the msam and msbm
fonts, among others. In some cases, poor man’s bold (\pmb) can be used instead
of \boldsymbol:

𝜕𝑥
𝜕𝑦

|||𝜕𝑦
𝜕𝑧

\[\frac{\partial x}{\partial y}
\pmb{\bigg\vert}
\frac{\partial y}{\partial z}\]

So-called “large operator” symbols such as ∑ and ∏ require an additional com-
mand, \mathop, to produce proper spacing and limits when \pmb is used. For
further details see The TEXbook.

∑
𝑖<𝐵
𝑖 odd

∏
𝜅

𝜅𝐹(𝑟𝑖) ∑∑∑
𝑖<𝐵
𝑖 odd

∏∏∏
𝜅

𝜅(𝑟𝑖)

\[\sum_{\substack{i<B\\\text{$i$ odd}}}
\prod_\kappa \kappa F(r_i)\qquad
\mathop{\pmb{\sum}}_{\substack{i<B\\\text{$i$ odd}}}
\mathop{\pmb{\prod}}_\kappa \kappa(r_i)
\]

9 Compound symbols and other features

9.1 Multiple integral signs

\iint, \iiint, and \iiiint give multiple integral signs with the spacing between
them nicely adjusted, in both text and display style. \idotsint gives two integral
signs with dots between them.

∬
𝐴

𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦 ∭
𝐴

𝑓(𝑥,𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 (46)

⨌
𝐴

𝑓(𝑤,𝑥,𝑦, 𝑧)𝑑𝑤𝑑𝑥𝑑𝑦𝑑𝑧 ∫⋯∫
𝐴

𝑓(𝑥1,… ,𝑥𝑘) (47)
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9.2 Over and under arrows

Some extra over and under arrow operations are provided in the amsmath package.
(Basic LATEX provides \overrightarrow and \overleftarrow).

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝜓𝛿(𝑡)𝐸𝑡ℎ = 𝜓𝛿(𝑡)𝐸𝑡ℎ⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃯
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝜓𝛿(𝑡)𝐸𝑡ℎ = 𝜓𝛿(𝑡)𝐸𝑡ℎ⃮⃮ ⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮⃮
⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗𝜓𝛿(𝑡)𝐸𝑡ℎ = 𝜓𝛿(𝑡)𝐸𝑡ℎ

\begin{align*}
\overrightarrow{\psi_\delta(t) E_t h}&
=\underrightarrow{\psi_\delta(t) E_t h}\\
\overleftarrow{\psi_\delta(t) E_t h}&
=\underleftarrow{\psi_\delta(t) E_t h}\\
\overleftrightarrow{\psi_\delta(t) E_t h}&
=\underleftrightarrow{\psi_\delta(t) E_t h}
\end{align*}

These all scale properly in subscript sizes:

∫
⃖⃖⃖⃖⃗𝐴𝐵

𝑎𝑥𝑑𝑥

\[\int_{\overrightarrow{AB}} ax\,dx\]

9.3 Dots

Normally you need only type \dots for ellipsis dots in a math formula. The main
exception is when the dots fall at the end of the formula; then you need to spec-
ify one of \dotsc (series dots, after a comma), \dotsb (binary dots, for binary
relations or operators), \dotsm (multiplication dots), or \dotsi (dots after an in-
tegral). For example, the input

Then we have the series $A_1,A_2,\dotsc$,
the regional sum $A_1+A_2+\dotsb$,
the orthogonal product $A_1A_2\dotsm$,
and the infinite integral
\[\int_{A_1}\int_{A_2}\dotsi\].

produces

Then we have the series 𝐴1, 𝐴2,… , the regional sum 𝐴1 + 𝐴2 + ⋯ ,
the orthogonal product 𝐴1𝐴2 ⋯ , and the infinite integral

∫
𝐴1

∫
𝐴2

⋯
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9.4 Accents in math

Double accents:
̂𝐻̂ ̌̌𝐶 ̃𝑇̃ ́́𝐴 ̀̀𝐺 ̇𝐷̇ ̈𝐷̈ ̆̆𝐵 ̄̄𝐵 ⃗⃗𝑉

\[\Hat{\Hat{H}}\quad\Check{\Check{C}}\quad
\Tilde{\Tilde{T}}\quad\Acute{\Acute{A}}\quad
\Grave{\Grave{G}}\quad\Dot{\Dot{D}}\quad
\Ddot{\Ddot{D}}\quad\Breve{\Breve{B}}\quad
\Bar{\Bar{B}}\quad\Vec{\Vec{V}}\]

This double accent operation is complicated and tends to slow down the process-
ing of a LATEX file.

9.5 Dot accents

\dddot and \ddddot are available to produce triple and quadruple dot accents in
addition to the \dot and \ddot accents already available in LATEX:

𝑄⃛ 𝑅

\[\dddot{Q}\qquad\ddddot{R}\]

9.6 Roots

In the amsmath package \leftroot and \uproot allow you to adjust the position
of the root index of a radical:

\sqrt[\leftroot{-2}\uproot{2}\beta]{k}

gives good positioning of the 𝛽:
𝛽√𝑘

9.7 Boxed formulas

The command \boxed puts a box around its argument, like \fbox except that the
contents are in math mode:

\boxed{W_t-F\subseteq V(P_i)\subseteq W_t}

𝑊𝑡 − 𝐹 ⊆ 𝑉(𝑃𝑖) ⊆ 𝑊𝑡 .
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9.8 Extensible arrows

\xleftarrow and \xrightarrow produce arrows that extend automatically to
accommodate unusually wide subscripts or superscripts. The text of the subscript
or superscript are given as an optional resp. mandatory argument: Example:

0
𝛼
←−
𝜁

𝐹 ×△[𝑛− 1]
𝜕0𝛼(𝑏)
−−−→ 𝐸𝜕0𝑏

\[0 \xleftarrow[\zeta]{\alpha} F\times\triangle[n-1]
\xrightarrow{\partial_0\alpha(b)} E^{\partial_0b}\]

9.9 \overset, \underset, and \sideset
Examples:

∗
𝑋 𝑋

∗

𝑎
𝑋
𝑏

\[\overset{*}{X}\qquad\underset{*}{X}\qquad
\overset{a}{\underset{b}{X}}\]

The command \sideset is for a rather special purpose: putting symbols at
the subscript and superscript corners of a large operator symbol such as ∑ or ∏,
without affecting the placement of limits. Examples:

∗
∗∏

∗
∗

𝑘
∑′

0≤𝑖≤𝑚
𝐸𝑖𝛽𝑥

\[\sideset{_*^*}{_*^*}\prod_k\qquad
\sideset{}{'}\sum_{0\le i\le m} E_i\beta x
\]

9.10 The \text command

The main use of the command \text is for words or phrases in a display:

y = y′ if and only if 𝑦′
𝑘 = 𝛿𝑘𝑦𝜏(𝑘)

\[\mathbf{y}=\mathbf{y}'\quad\text{if and only if}\quad
y'_k=\delta_k y_{\tau(k)}\]

9.11 Operator names

The more common math functions such as log, sin, and lim have predefined con-
trol sequences: \log, \sin, \lim. The amsmath package provides \DeclareMathOperator
and \DeclareMathOperator* for producing new function names that will have
the same typographical treatment. Examples:

‖𝑓‖∞ = ess sup𝑥∈𝑅𝑛 |𝑓(𝑥)|
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\[\norm{f}_\infty=
\esssup_{x\in R^n}\abs{f(x)}\]

meas1{𝑢 ∈ 𝑅1
+ ∶ 𝑓∗(𝑢) > 𝛼} = meas𝑛{𝑥 ∈ 𝑅𝑛 ∶ |𝑓(𝑥)| ≥ 𝛼} ∀𝛼 > 0.

\[\meas_1\{u\in R_+^1\colon f^*(u)>\alpha\}
=\meas_n\{x\in R^n\colon \abs{f(x)}\geq\alpha\}
\quad \forall\alpha>0.\]

\esssup and \meas would be defined in the document preamble as

\DeclareMathOperator*{\esssup}{ess\,sup}
\DeclareMathOperator{\meas}{meas}

The following special operator names are predefined in the amsmath package:
\varlimsup, \varliminf, \varinjlim, and \varprojlim. Here’s what they look
like in use:

lim
𝑛→∞

𝒬(𝑢𝑛, 𝑢𝑛 −𝑢#) ≤ 0 (48)

lim
𝑛→∞

|𝑎𝑛+1| / |𝑎𝑛| = 0 (49)

lim−→(𝑚𝜆
𝑖 ⋅)∗ ≤ 0 (50)

lim←−
𝑝∈𝑆(𝐴)

𝐴𝑝 ≤ 0 (51)

\begin{align}
&\varlimsup_{n\rightarrow\infty}

\mathcal{Q}(u_n,u_n-u^{\#})\le0\\
&\varliminf_{n\rightarrow\infty}

\left\lvert a_{n+1}\right\rvert/\left\lvert a_n\right\rvert=0\\
&\varinjlim (m_i^\lambda\cdot)^*\le0\\
&\varprojlim_{p\in S(A)}A_p\le0
\end{align}

9.12 \mod and its relatives

The commands \mod and \pod are variants of \pmod preferred by some authors;
\mod omits the parentheses, whereas \pod omits the ‘mod’ and retains the paren-
theses. Examples:

𝑥 ≡ 𝑦+ 1 (mod 𝑚2) (52)
𝑥 ≡ 𝑦+ 1 mod 𝑚2 (53)
𝑥 ≡ 𝑦+ 1 (𝑚2) (54)

\begin{align}
x&\equiv y+1\pmod{m^2}\\
x&\equiv y+1\mod{m^2}\\
x&\equiv y+1\pod{m^2}
\end{align}
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9.13 Fractions and related constructions

The usual notation for binomials is similar to the fraction concept, so it has a
similar command \binom with two arguments. Example:

∑
𝛾∈𝛤𝐶

𝐼𝛾 = 2𝑘 −(𝑘
1
)2𝑘−1 +(𝑘

2
)2𝑘−2

+⋯+ (−1)𝑙(
𝑘
𝑙
)2𝑘−𝑙 +⋯+ (−1)𝑘

= (2 − 1)𝑘 = 1

(55)

\begin{equation}
\begin{split}
[\sum_{\gamma\in\Gamma_C} I_\gamma&
=2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}\\
&\quad+\dots+(-1)^l\binom{k}{l}2^{k-l}
+\dots+(-1)^k\\
&=(2-1)^k=1
\end{split}
\end{equation}

There are also abbreviations

\dfrac \dbinom
\tfrac \tbinom

for the commonly needed constructions

{\displaystyle\frac ... } {\displaystyle\binom ... }
{\textstyle\frac ... } {\textstyle\binom ... }

The generalized fraction command \genfrac provides full access to the six
TEX fraction primitives:

\over:
𝑛+ 1

2
\overwithdelims: ⟨

𝑛+ 1
2

⟩ (56)

\atop:
𝑛+ 1

2
\atopwithdelims: (

𝑛+ 1
2

) (57)

\above:
𝑛+ 1

2
\abovewithdelims: [

𝑛+ 1
2

] (58)

\text{\cn{over}: }&\genfrac{}{}{}{}{n+1}{2}&
\text{\cn{overwithdelims}: }&

\genfrac{\langle}{\rangle}{}{}{n+1}{2}\\
\text{\cn{atop}: }&\genfrac{}{}{0pt}{}{n+1}{2}&
\text{\cn{atopwithdelims}: }&
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\genfrac{(}{)}{0pt}{}{n+1}{2}\\
\text{\cn{above}: }&\genfrac{}{}{1pt}{}{n+1}{2}&
\text{\cn{abovewithdelims}: }&

\genfrac{[}{]}{1pt}{}{n+1}{2}

9.14 Continued fractions

The continued fraction
1

√2 +
1

√2+
1

√2+
1

√2+
1

√2+⋯

(59)

can be obtained by typing
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+\dotsb

}}}}}
Left or right placement of any of the numerators is accomplished by using \cfrac[l]
or \cfrac[r] instead of \cfrac.

9.15 Smash

In amsmath there are optional arguments t and b for the plain TEX command
\smash, because sometimes it is advantageous to be able to ‘smash’ only the top
or only the bottom of something while retaining the natural depth or height. In
the formula 𝑋𝑗 = (1/√𝜆𝑗)𝑋′

𝑗 \smash[b] has been used to limit the size of the
radical symbol.
$X_j=(1/\sqrt{\smash[b]{\lambda_j}})X_j'$
Without the use of \smash[b] the formula would have appeared thus: 𝑋𝑗 =
(1/√𝜆𝑗)𝑋′

𝑗, with the radical extending to encompass the depth of the subscript
𝑗.

9.16 The ‘cases’ environment

‘Cases’ constructions like the following can be produced using the cases environ-
ment.

𝑃𝑟−𝑗 = {
0 if 𝑟 − 𝑗 is odd,
𝑟! (−1)(𝑟−𝑗)/2 if 𝑟 − 𝑗 is even.

(60)
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\begin{equation} P_{r-j}=
\begin{cases}

0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.

\end{cases}
\end{equation}

Notice the use of \text and the embedded math.

9.17 Matrix

Here are samples of the matrix environments, \matrix, \pmatrix, \bmatrix,
\Bmatrix, \vmatrix and \Vmatrix:

𝜗 𝜚
𝜑 𝜛 (𝜗 𝜚

𝜑 𝜛) [𝜗 𝜚
𝜑 𝜛] {𝜗 𝜚

𝜑 𝜛} |𝜗 𝜚
𝜑 𝜛| ‖𝜗 𝜚

𝜑 𝜛‖ (61)

\begin{matrix}
\vartheta& \varrho\\\varphi& \varpi
\end{matrix}\quad
\begin{pmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{pmatrix}\quad
\begin{bmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{bmatrix}\quad
\begin{Bmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{Bmatrix}\quad
\begin{vmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{vmatrix}\quad
\begin{Vmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{Vmatrix}

To produce a small matrix suitable for use in text, use the smallmatrix envi-
ronment.

\begin{math}
\bigl( \begin{smallmatrix}

a&b\\ c&d
\end{smallmatrix} \bigr)

\end{math}

To show the effect of the matrix on the surrounding lines of a paragraph, we put
it here: ( 𝑎 𝑏

𝑐 𝑑 ) and follow it with enough text to ensure that there will be at least
one full line below the matrix.
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\hdotsfor{number} produces a row of dots in a matrix spanning the given
number of columns:

𝑊(𝛷) =

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

𝜑
(𝜑1, 𝜀1)

0 … 0
𝜑𝑘𝑛2

(𝜑2, 𝜀1)
𝜑

(𝜑2, 𝜀2)
… 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝜑𝑘𝑛1

(𝜑𝑛, 𝜀1)
𝜑𝑘𝑛2

(𝜑𝑛, 𝜀2)
…

𝜑𝑘𝑛𝑛−1

(𝜑𝑛, 𝜀𝑛−1)
𝜑

(𝜑𝑛, 𝜀𝑛)

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

\[W(\Phi)= \begin{Vmatrix}
\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\
\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}&
\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\
\hdotsfor{5}\\
\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}&
\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots&
\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}&
\dfrac{\varphi}{(\varphi_n,\varepsilon_n)}
\end{Vmatrix}\]

The spacing of the dots can be varied through use of a square-bracket option, for
example, \hdotsfor[1.5]{3}. The number in square brackets will be used as a
multiplier; the normal value is 1.

9.18 The \substack command

The \substack command can be used to produce a multiline subscript or super-
script: for example

\sum_{\substack{0\le i\le m\\ 0<j<n}} P(i,j)

produces a two-line subscript underneath the sum:

∑
0≤𝑖≤𝑚
0<𝑗<𝑛

𝑃(𝑖, 𝑗) (62)

A slightly more generalized form is the subarray environment which allows you
to specify that each line should be left-aligned instead of centered, as here:

∑
0≤𝑖≤𝑚
0<𝑗<𝑛

𝑃(𝑖, 𝑗) (63)

\sum_{\begin{subarray}{l}
0\le i\le m\\ 0<j<n

\end{subarray}}
P(i,j)
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9.19 Big-g-g delimiters

Here are some big delimiters, first in \normalsize:

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠)

\[\biggl(\mathbf{E}_{y}
\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
\biggr)

\]

and now in \Large size:

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠)

{\Large
\[\biggl(\mathbf{E}_{y}

\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
\biggr)

\]}
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A Examples of multiple-line equation structures

Note: Starting on this page, vertical rules are added at the margins
so that the positioning of various display elements with respect
to the margins can be seen more clearly.

A.1 Split

The split environment is not an independent environment but should be used
inside something else such as equation or align.

If there is not enough room for it, the equation number for a split will be
shifted to the previous line, when equation numbers are on the left; the number
shifts down to the next line when numbers are on the right.

𝑓ℎ,𝜀(𝑥,𝑦) = 𝜀E𝑥,𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑢)𝜑(𝑥)𝑑𝑢

= ℎ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥(𝑑𝑧)

+ ℎ[
1
𝑡𝜀

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠 − 𝑡𝜀 ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥(𝑑𝑧))

+
1
𝑡𝜀

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠 −E𝑥,𝑦 ∫

𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑠)𝜑(𝑥)𝑑𝑠)]

= ℎ𝐿̂𝑥𝜑(𝑥) + ℎ𝜃𝜀(𝑥,𝑦),

(64)

Some text after to test the below-display spacing.

\begin{equation}
\begin{split}
f_{h,\varepsilon}(x,y)
&=\varepsilon\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\
&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\
&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\mathbf{E}_{y}

\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
-t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\

&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon}
\biggl(\mathbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)}

\varphi(x)\,ds -\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon s)}
\varphi(x)\,ds\biggr)\biggr]\\

&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y),
\end{split}
\end{equation}
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Unnumbered version:

𝑓ℎ,𝜀(𝑥,𝑦) = 𝜀E𝑥,𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑢)𝜑(𝑥)𝑑𝑢

= ℎ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥(𝑑𝑧)

+ ℎ[
1
𝑡𝜀

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠 − 𝑡𝜀 ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥(𝑑𝑧))

+
1
𝑡𝜀

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥(𝑠)𝜑(𝑥)𝑑𝑠 −E𝑥,𝑦 ∫

𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑠)𝜑(𝑥)𝑑𝑠)]

= ℎ𝐿̂𝑥𝜑(𝑥) + ℎ𝜃𝜀(𝑥,𝑦),

Some text after to test the below-display spacing.

\begin{equation*}
\begin{split}
f_{h,\varepsilon}(x,y)
&=\varepsilon\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\
&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\
&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\mathbf{E}_{y}

\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
-t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\

&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon}
\biggl(\mathbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)}

\varphi(x)\,ds -\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon s)}
\varphi(x)\,ds\biggr)\biggr]\\

&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y),
\end{split}
\end{equation*}
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If the option centertags is included in the options list of the amsmath package,
the equation numbers for split environments will be centered vertically on the
height of the split:

|𝐼2| = |∫
𝑇

0
𝜓(𝑡){𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)

𝑑𝜃
𝑘(𝜃, 𝑡)

∫
𝜃

𝑎
𝑐(𝜉)𝑢𝑡(𝜉, 𝑡)𝑑𝜉}𝑑𝑡|

≤ 𝐶6 ||𝑓∫
𝛺
|𝑆−1,0

𝑎,− 𝑊2(𝛺,𝛤𝑙)|| ||𝑢|
∘
→ 𝑊𝐴̃

2 (𝛺; 𝛤𝑟, 𝑇)|| .
(65)

Some text after to test the below-display spacing.
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Use of split within align:

|𝐼1| = |∫
𝛺
𝑔𝑅𝑢𝑑𝛺|

≤ 𝐶3 [∫
𝛺
(∫

𝑥

𝑎
𝑔(𝜉, 𝑡)𝑑𝜉)

2
𝑑𝛺]

1/2

× [∫
𝛺
{𝑢2

𝑥 +
1
𝑘
(∫

𝑥

𝑎
𝑐𝑢𝑡 𝑑𝜉)

2
}𝑐𝛺]

1/2

≤ 𝐶4 ||𝑓 |𝑆−1,0
𝑎,− 𝑊2(𝛺,𝛤𝑙)|| ||𝑢|

∘
→ 𝑊𝐴̃

2 (𝛺; 𝛤𝑟, 𝑇)|| .

(66)

|𝐼2| = |∫
𝑇

0
𝜓(𝑡){𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)

𝑑𝜃
𝑘(𝜃, 𝑡)

∫
𝜃

𝑎
𝑐(𝜉)𝑢𝑡(𝜉, 𝑡)𝑑𝜉}𝑑𝑡|

≤ 𝐶6 ||𝑓∫
𝛺
|𝑆−1,0

𝑎,− 𝑊2(𝛺,𝛤𝑙)|| ||𝑢|
∘
→ 𝑊𝐴̃

2 (𝛺; 𝛤𝑟, 𝑇)|| .
(67)

Some text after to test the below-display spacing.

\begin{align}
\begin{split}\abs{I_1}

&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\
&\le C_3\left[\int_\Omega\left(\int_{a}^x

g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\
&\quad\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k}

\left(\int_{a}^x cu_t\,d\xi\right)^2\right\}
c\Omega\right]^{1/2}\\

&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\label{eq:A}\\
\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t)

-\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)}
\int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\

&\le C_6\left\lvert \left\lvert f\int_\Omega
\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}
\end{align}
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Unnumbered align, with a number on the second split:

|𝐼1| = |∫
𝛺
𝑔𝑅𝑢𝑑𝛺|

≤ 𝐶3 [∫
𝛺
(∫

𝑥

𝑎
𝑔(𝜉, 𝑡)𝑑𝜉)

2
𝑑𝛺]

1/2

× [∫
𝛺
{𝑢2

𝑥 +
1
𝑘
(∫

𝑥

𝑎
𝑐𝑢𝑡 𝑑𝜉)

2
}𝑐𝛺]

1/2

≤ 𝐶4 ||𝑓 |𝑆−1,0
𝑎,− 𝑊2(𝛺,𝛤𝑙)|| ||𝑢|

∘
→ 𝑊𝐴̃

2 (𝛺; 𝛤𝑟, 𝑇)|| .

|𝐼2| = |∫
𝑇

0
𝜓(𝑡){𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)

𝑑𝜃
𝑘(𝜃, 𝑡)

∫
𝜃

𝑎
𝑐(𝜉)𝑢𝑡(𝜉, 𝑡)𝑑𝜉}𝑑𝑡|

≤ 𝐶6 ||𝑓∫
𝛺
|𝑆−1,0

𝑎,− 𝑊2(𝛺,𝛤𝑙)|| ||𝑢|
∘
→ 𝑊𝐴̃

2 (𝛺; 𝛤𝑟, 𝑇)|| .
(67′)

Some text after to test the below-display spacing.

\begin{align*}
\begin{split}

\abs{I_1}&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\
&\le C_3\left[\int_\Omega\left(\int_{a}^x
g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\

&\phantom{=}\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k}
\left(\int_{a}^x cu_t\,d\xi\right)^2\right\}
c\Omega\right]^{1/2}\\

&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\\
\begin{split}

\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t)
-\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)}
\int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\

&\le C_6\left\lvert \left\lvert f\int_\Omega
\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\tag{\theequation$'$}
\end{align*}
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A.2 Multline

Numbered version:

∫
𝑏

𝑎
{∫

𝑏

𝑎
[𝑓(𝑥)2𝑔(𝑦)2 +𝑓(𝑦)2𝑔(𝑥)2] − 2𝑓(𝑥)𝑔(𝑥)𝑓(𝑦)𝑔(𝑦)𝑑𝑥}𝑑𝑦

= ∫
𝑏

𝑎
{𝑔(𝑦)2 ∫

𝑏

𝑎
𝑓2 +𝑓(𝑦)2 ∫

𝑏

𝑎
𝑔2 − 2𝑓(𝑦)𝑔(𝑦)∫

𝑏

𝑎
𝑓𝑔}𝑑𝑦 (68)

To test the use of \label and \ref, we refer to the number of this equation here:
(68).

\begin{multline}\label{eq:E}
\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2]
-2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\
=\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2
\int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy

\end{multline}

Unnumbered version:

∫
𝑏

𝑎
{∫

𝑏

𝑎
[𝑓(𝑥)2𝑔(𝑦)2 +𝑓(𝑦)2𝑔(𝑥)2] − 2𝑓(𝑥)𝑔(𝑥)𝑓(𝑦)𝑔(𝑦)𝑑𝑥}𝑑𝑦

= ∫
𝑏

𝑎
{𝑔(𝑦)2 ∫

𝑏

𝑎
𝑓2 +𝑓(𝑦)2 ∫

𝑏

𝑎
𝑔2 − 2𝑓(𝑦)𝑔(𝑦)∫

𝑏

𝑎
𝑓𝑔}𝑑𝑦

Some text after to test the below-display spacing.

\begin{multline*}
\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2]
-2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\
=\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2
\int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy

\end{multline*}
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A.3 Gather

Numbered version with \notag on the second line:

𝐷(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ |𝑧 − 𝑎| < 𝑟}, (69)
seg(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ ℑ𝑧 = ℑ𝑎, |𝑧 − 𝑎| < 𝑟},

𝑐(𝑒, 𝜃, 𝑟) ≡ {(𝑥,𝑦) ∈ C∶ |𝑥 − 𝑒| < 𝑦 tan𝜃, 0 < 𝑦 < 𝑟}, (70)

𝐶(𝐸, 𝜃, 𝑟) ≡ ⋃
𝑒∈𝐸

𝑐(𝑒, 𝜃, 𝑟). (71)

\begin{gather}
D(a,r)\equiv\{z\in\mathbf{C}\colon \abs{z-a}<r\},\\
\seg(a,r)\equiv\{z\in\mathbf{C}\colon
\Im z= \Im a,\ \abs{z-a}<r\},\notag\\
c(e,\theta,r)\equiv\{(x,y)\in\mathbf{C}
\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\
C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r).
\end{gather}

Unnumbered version.

𝐷(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ |𝑧 − 𝑎| < 𝑟},
seg(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ ℑ𝑧 = ℑ𝑎, |𝑧 − 𝑎| < 𝑟},

𝑐(𝑒, 𝜃, 𝑟) ≡ {(𝑥,𝑦) ∈ C∶ |𝑥 − 𝑒| < 𝑦 tan𝜃, 0 < 𝑦 < 𝑟},
𝐶(𝐸, 𝜃, 𝑟) ≡ ⋃

𝑒∈𝐸
𝑐(𝑒, 𝜃, 𝑟).

Some text after to test the below-display spacing.

\begin{gather*}
D(a,r)\equiv\{z\in\mathbf{C}\colon \abs{z-a}<r\},\\
\seg (a,r)\equiv\{z\in\mathbf{C}\colon
\Im z= \Im a,\ \abs{z-a}<r\},\\
c(e,\theta,r)\equiv\{(x,y)\in\mathbf{C}
\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\
C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r).
\end{gather*}
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A.4 Align

Numbered version:

𝛾𝑥(𝑡) = (cos 𝑡𝑢 + sin 𝑡𝑥, 𝑣), (72)
𝛾𝑦(𝑡) = (𝑢, cos 𝑡𝑣 + sin 𝑡𝑦), (73)

𝛾𝑧(𝑡) = (cos 𝑡𝑢 +
𝛼
𝛽

sin 𝑡𝑣,−
𝛽
𝛼

sin 𝑡𝑢 + cos 𝑡𝑣) . (74)

Some text after to test the below-display spacing.

\begin{align}
\gamma_x(t)&=(\cos tu+\sin tx,v),\\
\gamma_y(t)&=(u,\cos tv+\sin ty),\\
\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv,

-\frac\beta\alpha\sin tu+\cos tv\right).
\end{align}

Unnumbered version:

𝛾𝑥(𝑡) = (cos 𝑡𝑢 + sin 𝑡𝑥, 𝑣),
𝛾𝑦(𝑡) = (𝑢, cos 𝑡𝑣 + sin 𝑡𝑦),

𝛾𝑧(𝑡) = (cos 𝑡𝑢 +
𝛼
𝛽

sin 𝑡𝑣,−
𝛽
𝛼

sin 𝑡𝑢 + cos 𝑡𝑣) .

Some text after to test the below-display spacing.

\begin{align*}
\gamma_x(t)&=(\cos tu+\sin tx,v),\\
\gamma_y(t)&=(u,\cos tv+\sin ty),\\
\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv,

-\frac\beta\alpha\sin tu+\cos tv\right).
\end{align*}

A variation:

𝑥 = 𝑦 by (84) (75)
𝑥′ = 𝑦′ by (85) (76)

𝑥+𝑥′ = 𝑦+𝑦′ by Axiom 1. (77)

Some text after to test the below-display spacing.

\begin{align}
x& =y && \text {by (\ref{eq:C})}\\
x'& = y' && \text {by (\ref{eq:D})}\\
x+x' & = y+y' && \text {by Axiom 1.}
\end{align}
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A.5 Align and split within gather

When using the align environment within the gather environment, one or the
other, or both, should be unnumbered (using the * form); numbering both the
outer and inner environment would cause a conflict.

Automatically numbered gather with split and align*:

𝜑(𝑥, 𝑧) = 𝑧 − 𝛾10𝑥− 𝛾𝑚𝑛𝑥𝑚𝑧𝑛

= 𝑧−𝑀𝑟−1𝑥−𝑀𝑟−(𝑚+𝑛)𝑥𝑚𝑧𝑛 (78)

𝜁0 = (𝜉0)2,
𝜁1 = 𝜉0𝜉1,
𝜁2 = (𝜉1)2,

Here the split environment gets a number from the outer gather environment;
numbers for individual lines of the align* are suppressed because of the star.

\begin{gather}
\begin{split} \varphi(x,z)
&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\
&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n
\end{split}\\[6pt]
\begin{align*}
\zeta^0 &=(\xi^0)^2,\\
\zeta^1 &=\xi^0\xi^1,\\
\zeta^2 &=(\xi^1)^2,
\end{align*}
\end{gather}

The *-ed form of gather with the non-*-ed form of align.

𝜑(𝑥, 𝑧) = 𝑧 − 𝛾10𝑥− 𝛾𝑚𝑛𝑥𝑚𝑧𝑛

= 𝑧−𝑀𝑟−1𝑥−𝑀𝑟−(𝑚+𝑛)𝑥𝑚𝑧𝑛

𝜁0 = (𝜉0)2, (79)
𝜁1 = 𝜉0𝜉1, (80)
𝜁2 = (𝜉1)2, (81)

Some text after to test the below-display spacing.

\begin{gather*}
\begin{split} \varphi(x,z)
&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\
&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n
\end{split}\\[6pt]
\begin{align} \zeta^0&=(\xi^0)^2,\\



Sample paper for the amsmath and lucidabr packages 37

\zeta^1 &=\xi^0\xi^1,\\
\zeta^2 &=(\xi^1)^2,
\end{align}
\end{gather*}
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A.6 Alignat

Numbered version:

𝑉𝑖 = 𝑣𝑖 − 𝑞𝑖𝑣𝑗, 𝑋𝑖 = 𝑥𝑖 − 𝑞𝑖𝑥𝑗, 𝑈𝑖 = 𝑢𝑖, for 𝑖 ≠ 𝑗; (82)

𝑉𝑗 = 𝑣𝑗, 𝑋𝑗 = 𝑥𝑗, 𝑈𝑗𝑢𝑗 + ∑
𝑖≠𝑗

𝑞𝑖𝑢𝑖. (83)

Some text after to test the below-display spacing.

\begin{alignat}{3}
V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j,
& \qquad U_i & = u_i,
\qquad \text{for $i\ne j$;}\label{eq:B}\\
V_j & = v_j, & \qquad X_j & = x_j,

& \qquad U_j & u_j + \sum_{i\ne j} q_i u_i.
\end{alignat}

Unnumbered version:

𝑉𝑖 = 𝑣𝑖 − 𝑞𝑖𝑣𝑗, 𝑋𝑖 = 𝑥𝑖 − 𝑞𝑖𝑥𝑗, 𝑈𝑖 = 𝑢𝑖, for 𝑖 ≠ 𝑗;
𝑉𝑗 = 𝑣𝑗, 𝑋𝑗 = 𝑥𝑗, 𝑈𝑗𝑢𝑗 + ∑

𝑖≠𝑗
𝑞𝑖𝑢𝑖.

Some text after to test the below-display spacing.

\begin{alignat*}3
V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j,
& \qquad U_i & = u_i,
\qquad \text{for $i\ne j$;} \\
V_j & = v_j, & \qquad X_j & = x_j,

& \qquad U_j & u_j + \sum_{i\ne j} q_i u_i.
\end{alignat*}
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The most common use for alignat is for things like

𝑥 = 𝑦 by (66) (84)
𝑥′ = 𝑦′ by (82) (85)

𝑥+𝑥′ = 𝑦+𝑦′ by Axiom 1. (86)

Some text after to test the below-display spacing.

\begin{alignat}{2}
x& =y && \qquad \text {by (\ref{eq:A})}\label{eq:C}\\
x'& = y' && \qquad \text {by (\ref{eq:B})}\label{eq:D}\\
x+x' & = y+y' && \qquad \text {by Axiom 1.}
\end{alignat}
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