
MetaPost: A Reference Manual

Peter Grogono

22 June 2014

Contents

1 Introduction 1

2 Basic Concepts 2
2.1 Version . 2
2.2 Input format . 2
2.3 The LATEX File . 3
2.4 Comments . 4
2.5 Units . 4
2.6 Scaling a Picture . 5
2.7 Coordinates . 5
2.8 Variables . 5
2.9 Internal Variables . 6
2.10 Declarations . 6
2.11 Scope . 7
2.12 Expressions . 8
2.13 Assignment . 9
2.14 Equations . 9

3 Types 10
3.1 Booleans . 10
3.2 Strings . 10
3.3 Colors . 12
3.4 Numerics . 13
3.5 Pairs . 14
3.6 Pens . 15
3.7 Transforms . 17
3.8 Pictures . 19
3.9 Lists . 21

4 Paths 22
4.1 Straight lines . 22
4.2 Dots and Dashes . 22
4.3 Circles, Disks, and Arcs . 23

i

Contents

4.4 Curves . 23
4.5 Parametric Paths . 25
4.6 Path Constructors . 27

5 Commands 28
5.1 Drawing Commands . 28

5.1.1 btex and verbatimtex . 28
5.1.2 clip . 29
5.1.3 draw . 30
5.1.4 drawarrow . 30
5.1.5 fill . 31
5.1.6 label . 32

5.2 Non-drawing Commands . 32
5.2.1 drawoptions . 33
5.2.2 filenametemplate . 33
5.2.3 for . 34
5.2.4 if . 35
5.2.5 message . 36
5.2.6 readfrom . 36
5.2.7 save . 37
5.2.8 show and friends . 37
5.2.9 write . 37

6 Macros 38
6.1 def macros . 38
6.2 vardef and other macro forms . 40

7 Macro Packages 41
7.1 Boxes . 41

7.1.1 Creating and Drawing Boxes . 41
7.1.2 Joining Boxes . 43

7.2 Linking Boxes . 43
7.2.1 Oval Boxes . 44
7.2.2 Text in Boxes . 45

7.3 Graphs . 45
7.4 TEX . 46
7.5 MetaUML . 47

8 Debugging 47

9 Examples 49
9.1 Euler Integration . 49
9.2 The Lorentz Transformation . 50
9.3 Dissipation . 53
9.4 Sunflower . 53
9.5 The Hanging Chain . 54
9.6 Histogram . 56
9.7 Desargues’ Theorem . 57

ii

List of Figures

9.8 Cobweb Plots . 58
9.9 Three Dimensions . 59
9.10 Reading a File . 61

10 Links 62

Index 64

List of Figures

1 The effect of linecap and linejoin . 17
2 Parametric curves . 25
3 LATEX fonts . 29
4 Drawing a LATEX table . 30
5 Escape sequences for filenametemplate . 33
6 Using for...within to obtain a partial analysis of a picture. 35
7 Box variables . 42
8 Oval variables . 45
9 Simulated coin tossing . 46
10 The UML diagram generated from the code in Figure 11 47
11 Using MetaUML . 48
12 Euler Integration . 49
13 The Lorentz Transformation . 51
14 Point numbering used in Figure 13 . 51
15 Area reduction in a dissipative system . 53
16 Position of florets in the head of a sunflower . 54
17 The Hanging Chain: (a) diagram; (b) reference points. 55
18 Programming the Hanging Chain . 55
19 Histogram of Marks . 56
20 Desargue’s Theorem . 58
21 Programming Desargues’ Theorem . 59
22 Cobweb plot for the logistic map . 60
23 Coding the cobweb plot in Figure 22 . 60
24 Perspective view of a cube . 61

iii

1 Introduction

MetaPost is a picture-drawing language that generates diagrams and pictures in embedded post-
script. MetaPost, an extension of Donald Knuth’s MetaFont, was designed and implemented by
John Hobby at AT&T Bell Laboratories.

The official guide for MetaPost, Hobby’s A User’s Manual for MetaPost, referred to in this
manual as umm, is written in a narrative style that is easy to read but hard to learn from. Several
other people have written MetaPost manuals in narrative form. This manual is intended both to
help beginners and to serve as a reference.

Examples of MetaPost code in this manual are intentionally short. This should make it easier to
see the point of the example. With long and complex examples, it is sometimes hard to relate the
code to the output. There are some longer examples at the end (§9 : 49).

This manual is not complete. Important omissions are indicated by a reference to umm. In par-
ticular, umm includes a complete grammar for MetaPost, whereas this manual relies mostly on
examples.

Conventions

• Since there are a large number of cross-references in this manual, we use a concise notation.
For example, (§3.7 : 17) is a reference to Section 3.7 which is to be found on page 17.

• Most lists in MetaPost use comma as a separator. Unless stated otherwise, the term “list
of X” means a list of the form X1, X2, X3,

• In grammar rules, 〈pred〉 indicates a predicate (boolean-valued expression) and 〈seq〉 indi-
cates a sequence of commands.

• The command “show 〈expr〉;” displays ‘>>’ followed by the value of the expression (§5.2.8 : 37).
In examples containing show, we put the code on the left of the page and the output to the
right of it, like this:

show (3,4) + (5,6); >> (8,10)

• Similarly, we illustrate drawing techniques by putting code on the left and the picture pro-
duced on the right. The “#15” in the right margin indicates that this figure was generated
by commands between beginfig(15) and endfig in the MetaPost source file, mpref.mp.
The order of figures in the MetaPost source file does not correspond to the order in which
they are used in the manual.

draw unitsquare rotated 45 scaled 25; #15

• We use the symbol
∆
= to mean “is defined to be equal to”.

Acknowledgments I am indebted to Brian Shearing for ingenious hints on MetaPost usage —
and, indeed, for informing me of its existence in the first place.

2 Basic Concepts

2 Basic Concepts

2.1 Version

Features were added to MetaPost as it evolved. This manual describes Version 1.000 but also
includes some useful features of later versions. The string constant mpversion (§3.2 : 10) will tell
you what version you are using, but only if it is a fairly recent version.

show mpversion; >> "1.005"

2.2 Input format

MetaPost is a program that reads an input file with a name of the form 〈name〉.mp and writes
several output files. By default, the names of the output files are 〈name〉.1, 〈name〉.2, 〈name〉.3,
etc. For example, if the input file was fig.mp then the output files would be are fig.1, fig.2,
fig.3, and so on. The precise form of the output file name is controlled by the command
filenametemplate (§5.2.2 : 33). For example, if the command

filenametemplate "figs-%c.mps";

occurs at the beginning of the MetaPost source file, the figure file names will be figs-1.mps,
figs-2.mps, and so on. The suffix .mps has the advantage that it is recognized by the LATEX
package graphicx.

The output files are read by TEX, LATEX, or any program that accepts embedded postscript files.

In the input file, each figure is introduced by beginfig(n), where n is the number of the figure,
and terminated with endfig. Commands may occur outside figures as well as inside them. An
input file has the general form (note the final end):

〈seq〉

beginfig(1);

〈seq〉
endfig;

〈seq〉

beginfig(2);

〈seq〉
endfig;

....

beginfig(n);
〈seq〉

endfig;

end

2

2 Basic Concepts

2.3 The LATEX File

There are several ways of including MetaPost diagrams in a LATEX files. Two of them are described
below.

Using the hyperref Package Assume that the file generated by MetaPost for figure n is called
〈name〉.〈number〉, where

• 〈name〉.mp is the name of the file processed by MetaPost

• 〈number〉 is the number of the figure

This is the format that MetaPost uses by default.

Include the hyperref package by writing

\usepackage[...]{hyperref}

in the preamble of your LATEX document. This package has many useful options, indicated here by
‘...’. To insert MetaPost figure n in your document, write

\convertMPtoPDF{〈name〉.〈number〉}{〈Xscale〉}{〈Yscale〉}

in which 〈Xscale〉 is the horizontal magnification factor and 〈Yscale〉 is the vertical magnification
factor. For example, to include Figure 3 generated from figs.mp at half its original size, write:

\convertMPtoPDF{figs.3}{0.5}{0.5}}

Using the graphicx Package Include the graphicx package by writing

\usepackage{graphicx}

in the preamble of your LATEX document.

The graphicx package may not recognize files created by MetaPost with default settings, because
these files have a numeric extension. To avoid this problem, include this directive at the beginning
of the MetaPost source file (§5.2.2 : 33):

filenametemplate "figs-%c.mps";

To insert MetaPost figure n in your document, write

\includegraphics{figs-n}

Use optional arguments to \includegraphics to scale the diagram if necessary. Use standard
LATEX commands to position it. One possibility is to use an equation environment to centre the
diagram. For example:

$$ \includegraphics[width=5in]{mypics.7} $$

3

2 Basic Concepts

The file mproof.tex The TEX file mproof creates a “proof sheet” in the form of a .dvi file from
MetaPost output. After the following run, mproof.dvi contains the text “figs.65” and the
corresponding figure.

D:\Pubs>tex mproof figs.65

This is TeX, Version 3.141592 (MiKTeX 2.6)

(figs.65

figs.65: BoundingBox: llx = -1 lly = -3 urx = 61 ury = 72

figs.65: scaled width = 62.23178pt scaled height = 75.28038pt

)

[1]

Output written on mproof.dvi (1 page, 396 bytes).

2.4 Comments

MetaPost comments are delimited by the character ‘%’ and the end of the line on which % appears,
as in LATEX.

2.5 Units

The default units of MetaPost are Postscript points. Postscript points are also called “big points”
because they are slightly bigger than printer’s points. The abbreviations for Postscript points and
printer’s points are bp and pt, respectively, as in TEX:

1 bp = 1/72 inches

1 pt = 1/72.27 inches

MetaPost also understands the other units provided by TEX: cm (centimetres), mm (millimetres),
in (inches), and pc (picas: 1pc = 1

6in)). The units behave like constants defined with the appro-
priate values. For example, the value of 10*mm is the length 10 millimetres expressed in Postscript
points. The multiplication operator, *, can be omitted if the left operand is a number and the right
operand is a variable. At the last line, MetaPost does not report an error for n mm, but parses it
as a compound name (§2.8 : 5), n.mm, with no defined value.

n = 10;

show 10*mm;

show 10mm;

show n*mm;

show n mm;

>> 28.3464

>> 28.3464

>> 28.3464

>> n.mm

It is sometimes convenient to define a unit and use it to scale every number. Here is an example of
picture scaling. The first line can be written as either “u = 1cm;” or “u = cm;”.

u = 1cm;

draw (0u,0u) -- (1.5u,0u) -- (1.5u,1.5u) -- (0u,1.5u) -- cycle;

z1 = (0u,-0.2u);

z2 = (1.5u,-0.2u);

drawdblarrow z1 -- z2;

label.bot("1.5cm", 0.5[z1, z2]);
1.5cm

#20

4

2 Basic Concepts

2.6 Scaling a Picture

There are several ways of making sure that a MetaPost diagram has the required size:

1. The first method, which might be called the direct method, is to use MetaPost’s natural
units (Postscript points). Lines of text on this page are about 450bp long, so a diagram that
is 400bp wide and 300bp high fits nicely onto a page.

2. The second method is to use a better-known unit of length, such as inches or centimetres.
The example above shows how to construct a diagram using centimetres as units.

3. The third method is to construct a diagram of any size and then scale it using the optional
arguments of \convertMPtoPDF or \includegraphics (§2.3 : 3). Here are some examples:

\convertMPtoPDF{figs.3}{0.5}{0.5}}

\includegraphics[width=4in]{pic-1.mps}

\includegraphics[height=7cm]{pic-2.mps}

\includegraphics[scale=2]{pic-2.mps}

2.7 Coordinates

MetaPost uses the conventional coordinate system of mathematics: X values increase across the
page to the right and Y values increase up the page.

drawarrow (0,0) -- (0,30);

drawarrow (0,0) -- (30,0);

dotlabel.llft(btex (0, 0) etex, (0,0));

label.rt(btex X etex, (30,0));

label.top(btex Y etex, (0,30)); (0, 0)
X

Y

#22

Usually, it does not matter where the origin is, because the Postscript file that MetaPost generates
defines a bounding box for all of the visible components of the picture. The origin might be centered,
at the lower left, somewhere else inside the bounding box, or even outside it. However, if the origin
is inside the picture, some of the coordinates may be negative. Postscript processors occasionally
object to negative coordinates. This problem is rare but, if it occurs, it can be corrected by
concluding each figure with the command

currentpicture := currentpicture shifted (-llcorner currentpicture);

In this command, currentpicture (§3.8 : 19) is an internal variable of type picture, shifted is a
transform (§3.7 : 17) and llcorner gives the coordinates of the lower left corner of a picture.

2.8 Variables

Almost any string to which MetaPost does not assign a meaning can be used as a variable name.
For example, @&#$@ is a legal name. In practice, it is usually better to use more conventional names.

In general, a name consists of a tag optionally followed by a suffix . Any sequence of upper and
lower case letters is a valid tag. Tags may also contain other characters, of which the most common
is ‘.’. For example, MetaPost uses tags such as b.n and b.s to denote points on boxes.

5

2 Basic Concepts

The suffix may be a simple numeric, as in p3, or an expression in brackets, as in p[i+3]. Multidi-
mensional indexes must be separated with dots or brackets: p.3.4 is equivalent to p[3][4].

The names x, y, and z play a special role. First, they are implicitly local (§2.11 : 7). Second, they
are linked by the implicit equations

z = (x, y)

xpart z = x

ypart z = y

where x, y, and z stand for names that start with x, y, or z and are followed by a suffix. Thus
z.a[3] denotes the pair (x.a[3], y.a[3]).

2.9 Internal Variables

MetaPost has a large number of internal variable names. Internal variables are implicitly declared
within MetaPost but can be given new values by assignment (§2.13 : 9).

The command newinternal introduces new variables that behave like internal variables. This is
not very useful in simple diagrams but can be useful in macro packages (§6 : 38). To introduce new
internal variables Jack and Jill, write:

newinternal Jack, Jill;

2.10 Declarations

A type name followed by a list of variable names serves to declare the variables named in the list.
The type names are: boolean, color, numeric, pair, path, pen, picture, string, transform.
Each type is described in detail later (§3 : 10).

If a variable is used without declaration, it is assumed to be a numeric. Occasionally, MetaPost
is able to determine the type of a variable from its use, and an explicit declaration is not required.
In most cases, however, a declaration is required. In particular, a declaration is required when:

• The type of the variable cannot be determined from the context in which it is used.

• A declaration can be used to “undefine” the variable, that is, to change its value to “unknown”.

• An array is being declared. Following the declaration

pair p[];

the variables p0, p1, p2, . . . , p[i], in which i is an integer expression, are all available for use.

• Multidimensional arrays can be declared with flexible syntax:

path p[][], q[]r[];

Corresponding values would include p[1][2], q[i]r6, etc.

Declarations with numeric suffixes, such as

pair p1, p2;

are not allowed; the general form p[] described above must be used.

6

2 Basic Concepts

2.11 Scope

In general, the scope of a name starts at the point of its declaration or first use and extends to the
end of the source file. There are two exceptions to this rule. First, the names x, y, and z play a
special role to be described shortly. Second, the constructs begingroup and endgroup provide an
environment in which local names can be declared.

MetaPost uses groups to provide local variables. The syntax of a group is

begingroup 〈seq〉 endgroup

in which 〈seq〉 is a sequence of commands. The last item in the sequence may be an expression, in
which case the value of this expression becomes the value of the group.

Within a group, the command save (§5.2.7 : 37) followed by a list of variable names makes those
names local to the group. The global values of these names, if any, are saved. In the code below:

• a is used both globally and locally; its global value, 1, is restored on group exit.

• b is defined as a local variable within the group and becomes undefined on group exit.

• c is defined within the group but is not declared as a local variable. Consequently, it is treated
as a global variable and its value is retained on group exit.

a = 1;

begingroup

save a, b;

a = 2;

b = 3;

c = 4;

endgroup;

show a;

show b;

show c;

>> 1

>> b

>> 4

The command interim allows you to redefine a internal variable inside a group without changing
its global value. For example, the following statements draw an arrow (§5.1.4 : 30) with an elongated
head without changing the global value of ahlength:

begingroup;

interim ahlength := 15;

drawarrow (0,0) -- (40,40);

endgroup;

#66

The scope of the special names x, y, and z is restricted to a particular figure. That is, the code on
the left has the effect of the code on the right (of course, the beginfig/endfig environment also
creates a figure file, etc.):

beginfig(n)
〈seq〉

endfig

begingroup

save x, y, z;

〈seq〉
endgroup

7

2 Basic Concepts

Recommendation: save all of the variables in a
figure that are not needed for other figures.

2.12 Expressions

An expression in MetaPost is a 〈primary〉, 〈secondary〉, 〈tertiary〉, or 〈expression〉. A binary
operator with highest precedence is called a 〈primary binop〉 and its operands must either be
〈primary〉s or be enclosed between parentheses. Since unary operators have higher precedence than
binary operators, there are four levels of precedence. Binary operators are organized as follows,
with the top line having highest priority.

〈unop〉 abs angle arclength . . .

〈primary binop〉 * / ** and dotprod div mod infont

〈secondary binop〉 + - ++ +-+ or intersectionpoint intersectiontimes

〈tertiary binop〉 & < <= <> = >= > cutafter cutbefore

However, division (/) has highest precedence if both of its operands are numbers. This means that,
for example:

sqrt 2/3 ≡
√

2/3

sqrt n/d ≡
√
n/d

sqrt(n/d) ≡
√
n/d

The exponent operator ** has the same precedence as multiply (*). Consequently:

3*a**2 ≡ (3a)2.

The meaning of most of the operators are conventional. There are special operators for the hy-
potenuse and difference of squares:

a ++ b ≡
√
a2 + b2

a +-+ b ≡
√
a2 − b2

There are also many operators with names, both unary and binary. The operators that may be
used with each type, and their meanings, are discussed later with the corresponding types (§3 : 10).

Some expressions use the keyword of. The general format of these expressions is

〈of operator〉 〈expression〉 of 〈primary〉

where 〈of operator〉 is one of:

arctime direction directiontime directionpoint penoffset point postcontrol

precontrol subpath substring

For example (§3.2 : 10):

substring (2,4) of "abcde" ≡ "cd".

8

2 Basic Concepts

2.13 Assignment

The assignment operator is :=, and it has the usual effect of giving the variable on its left side the
new value obtained by evaluating its left side. Previous values of the variable are discarded.

Assignment (:=) should be distinguished from equality (=), which is used in equations, as described
in the next section.

2.14 Equations

Variables may receive values either explicitly by assignment, as above, or implicitly by linear
equations. Equations use the equality comparison, =. Equations may be built up from numer-
ics (§3.4 : 13), pairs (§3.5 : 14), or colors (§3.3 : 12).

MetaPost must be able solve equations before
drawing any pictures that use their values.

MetaPost easily solves the equations below, obtaining a = 3, b = 4, c = 5. Note that 2*a can be
abbreviated to 2a, etc. The effect of the command showdependencies is to display the inferences
that MetaPost has made from the equations at that point, as shown at the right.

2a + 2b + c = 19;

3a-b = 5;

showdependencies;

4b-3c = 1;

>> a=-0.125c+3.625

>> b=-0.375c+5.875

A value obtained by solving equations may be changed by assignment. However, the assignment
changes only the variable assigned.

a = 2;

a = b;

a := 3;

% gives a the value 2

% gives b the value 2

% gives a the value 3 but does not change b

The symbol whatever introduces a new, anonymous variable. It may be used to avoid introducing
variables unnecessarily. For example, we could find the intersection i of two lines (p,q) and (r,s)

by using the fact that a[p,q] is a point on the line from p to q (§2.12 : 8).

i = a[p,q];

i = b[r,s];

Since the names of the numerics a and b are not needed, we could write instead:

i = whatever[p,q] = whatever[r,s];

It does not matter that the two instances of whatever will have different values.

9

3 Types

3 Types

The types provided by MetaPost are: boolean, string, color, numeric, pair, path, pen,
picture, and transform. All of them are described in this section except path, which has its own
section (§4 : 22).

3.1 Booleans

The values of boolean are true and false. The binary comparison operators =, <>, <, <=, =>, and >

return boolean values. The unary operator not and the binary operators and and or take boolean

operands and return the expected boolean values. Booleans are also needed for if statements
(§5.2.4 : 35).

The equality operators = and <> work with all types. The comparison operators, <, <=, =>, and >,
work with most types and have the expected boolean values for reasonable types.

Type names can be used as predicates:

boolean b
∆
= b is a boolean

color c
∆
= c is a color

rgbcolor c
∆
= c is a rgbcolor

cmykcolor c
∆
= c is a cmykcolor

numeric n
∆
= n is a numeric

pair p
∆
= p is a pair

path p
∆
= p is a path

pen p
∆
= p is a pen

picture p
∆
= p is a picture

string s
∆
= s is a string

transform t
∆
= t is a transform

Other predicates include:

odd n
∆
= the closest integer to n is odd

cycle p
∆
= path p is a cycle

known x
∆
= x has a value

unknown x
∆
= x does not have a value

3.2 Strings

Strings are sequences of characters bounded by double quotes ("). Strings may not contain double
quotes or line breaks. The binary comparison operators =, <>, <, <=, =>, and > accept string

operands and use the underlying character codes for ordering.

10

3 Types

Functions for strings include:

string s
∆
= true if s is a string

length s
∆
= the number of characters in s

Constants and functions yielding strings include:

ditto
∆
= the one-character string "

mpversion
∆
= a string giving the version of MetaPost

substring (m,n) of s
∆
= characters m to n of string s

scantokens(s)
∆
= the result of parsing the token sequence s (§9.10 : 61)

char n
∆
= a string consisting of the character with ASCII code n

decimal n
∆
= a string representing the decimal representation of the number n

str s
∆
= the string representation of the suffix s

s & t
∆
= the concatenation of strings s and t

The indexing convention for strings is the same as C: the first character has index 0 and the second
argument of substring indexes the first character following the selection:

substring (2,4) of "abcde" ≡ "cd".

The expression

s infont f

yields a picture (§3.8 : 19) consisting of the string s typeset in the font f . (Figure 3 on page 29
shows common LATEX fonts.) There is a defaultfont (usually cmtex10) with a size defaultscale

(usually 1).

draw "MetaPost" infont "cmsl12" scaled 2 rotated 30;

Meta
Po

st
#74

Calling scantokens invokes MetaPost’s input routine. It can be used as a general conversion
function. For example, this call gives pi the numerical value 3.14159:

pi := scantokens("3.14159");

scantokens is one of the few MetaPost operations that creates a list (§3.9 : 21). See also
(§9.10 : 61) for a more interesting application of scantokens.

LATEX code is placed in btex ... etex (§5.1.1 : 28). MetaPost does not invoke functions in these
environments, but strings containing functions can be converted to pictures with the TEX macro
package (§7.4 : 46).

11

3 Types

3.3 Colors

A value of type color has three components, corresponding to the red, green, and blue compo-
nents of a colour. Each component is clamped to the range [0, 1]. Colours are written (r,g,b).
MetaPost can solve linear equations involving colours. Two colours may be added or subtracted;
a colours may be multiplied and divided by numerics; colours may be used in linear equations.

show white/4;

show 0.2green + 0.6blue;

>> (0.25,0.25,0.25)

>> (0,0.2,0.6))

Constants and functions for colours include:

color c
∆
= true if c is a RGB colour

black
∆
= (0, 0, 0)

white
∆
= (1, 1, 1)

red
∆
= (1, 0, 0)

green
∆
= (0, 1, 0)

blue
∆
= (0, 0, 1)

redpart(r, g, b)
∆
= r

greenpart(r, g, b)
∆
= g

bluepart(r, g, b)
∆
= b

background
∆
= the background colour (default = white)

To change the foreground colour (i.e., the drawing colour), use drawoptions (§5.2.1 : 33).

Later versions MetaPost support the CMYK colour model as well as RGB. A CMYK colour is
represented as a four-tuple (c,m,y,k) with (1,1,1,1) representing black and (0,0,0,0) repre-
senting white. The following constants and functions are provided:

rgbcolor
∆
= a synonym for color

cmykcolor c
∆
= true if c is a CMYK colour

cyanpart(c, y,m, k)
∆
= c

magentapart(c, y,m, k)
∆
= y

yellowpart(c, y,m, k)
∆
= m

blackpart(c, y,m, k)
∆
= k

Colour expressions usually appear in withcolor clauses in conjunction with commands such as
draw (§5.1.3 : 30), drawoptions (§5.2.1 : 33), fill and filldraw (§5.1.5 : 31). withcolor works for
both RGB and CMYK colours, but the two systems should not be mixed within a single picture.

12

3 Types

3.4 Numerics

MetaPost uses fixed-point arithmetic with 2−16 = 1/65536 as the unit for the numeric type. The
largest number that can be represented is about 4096.

The lengths that MetaPostcan represent range from 1/65536 bp ≈ 5.38 nanometres to 4096 bp ≈
1.4 metres. For comparison, the wavelength of blue light is about 400 nanometres and the length
of standard paper is about 0.29 metres, depending on where you live.

The arithmetic operators +, -, *, and / can be used with numerics. The binary comparison operators
=, <>, <, <=, =>, and > accept numeric operands and provide the conventional ordering.

It is sometimes necessary to use a numerical expression as part of a picture. This can be done with
the TEX package (§7.4 : 46). For example, to label (§5.1.6 : 32) the point p with the value of the
numeric i, write:

label.bot(TEX(decimal(i)), p);

Numeric constants and expressions include:

epsilon
∆
= 1/65536 (the smallest value that MetaPost can represent)

infinity ≈ 4095.99998 (the largest value that MetaPost can represent)

day
∆
= current day (of the month)

month
∆
= current month

year
∆
= current year

time
∆
= job start time (minutes since midnight)

Numeric functions include:

decimal n
∆
= the decimal string corresponding to n

numeric n
∆
= true if n is numeric

odd n
∆
= true if the closest integer to n is odd

m div n
∆
= bm/nc (integer division)

m mod n
∆
= m− nbm/nc (integer remainder)

absx
∆
= |x|, the absolute value of x

sqrt x
∆
=
√
x

sind x
∆
= sinx (x in degrees)

cosd x
∆
= cosx (x in degrees)

mexp x
∆
= ex/256

mlog x
∆
= 256 lnx

floor x
∆
= the greatest integer less than or equal to x

ceiling x
∆
= the least integer greater than or equal to x

13

3 Types

round x
∆
= the integer closest to x

x++y
∆
=

√
x2 + y2

x+-+y
∆
=

√
x2 − y2

uniformdeviate x
∆
= a random number uniformly distributed in [0, x]

normaldeviate
∆
= a random number with normal distribution, µ = 0, σ = 1

3.5 Pairs

A pair is a tuple of two numerics that is most often used to represent a position in the two-
dimensional plane of the picture but can also be used to represent a direction. Literal pairs are
written as (m,n) in which m and n are numerics.

Pairs can be added and subtracted (like vectors), multiplied or divided by numerics, and used in
linear equations. Mediation abbreviates a common operation:

r[p,q]
∆
= p + r ∗ (q− p).

If 0 ≤ r ≤ 1, the result is a point between the points p and q, with r = 0 corresponding to p and
r = 1 corresponding to q. All values of r are legal:

z1 = (0,0);

z2 = (0,50);

draw z1 -- z2;

dotlabel.rt(btex $4 \over 3$ etex, 4/3[z1,z2]);

dotlabel.rt(btex $2 \over 3$ etex, 2/3[z1,z2]);

dotlabel.rt(btex $1 \over 3$ etex, 1/3[z1,z2]);

1
3

2
3

4
3

#23

As mentioned previously, the names x, y, and z play a special role:

• They are undefined by beginfig (§2.2 : 2).

• z〈suffix〉 is defined to be equal to (x〈suffix〉, y〈suffix〉), where 〈suffix〉 is a number, index,
or name (§2.8 : 5). Thus z[3].t can be abbreviated to z3t and is equivalent to the pair
(x3t,y3t).

The pair (x,y) can be used to represent the direction θ = tan−1(y/x). Angles in MetaPost are
measured in degrees. For example, dir 90 ≡ pair(0,1).

smallRad = 30;

bigRad = 40;

for angle = 0 step 30 until 330:

s := sind angle;

c := cosd angle;

drawarrow origin -- (smallRad*c, smallRad*s);

label(decimal angle, (bigRad*c, bigRad*s));

endfor;

0

30

60
90

120

150

180

210

240
270

300

330
#13

14

3 Types

The difference between two points can be used directly as the direction of the line joining them. In
the example below, the arrows are tangent to the curve at its endpoints.

drawarrow z0 -- z1;

draw z1{z1-z0} .. {z3-z2}z2;

drawarrow z2 -- z3;

#92

Constant pairs include:

origin
∆
= (0, 0)

up
∆
= (0,1)

down
∆
= (0,-1)

left
∆
= (-1,0)

right
∆
= (1,0)

Functions for pairs include:

xpart(x, y)
∆
= x

ypart(x, y)
∆
= y

abs z
∆
=

√
x2 + y2 (hypotenuse)

unitvector z
∆
= z/abs z (normalize)

angle z
∆
= tan−1(y/x) (in degrees)

round z
∆
= (round x, round y)

z1 dotprod z2
∆
= x1y1 + x2y2 (inner product)

r[z1, z2]
∆
= z1 + r(z2 − z1) (mediation)

dir θ
∆
= (cosd θ, sind θ) (direction)

The function dir can be used to position points:

z0 = origin;

z1 = z0 + 40 dir 30;

z2 = z1 + 20 dir 120;

dotlabels.top(0,1,2); 0

1

2

#91

3.6 Pens

All objects are drawn with a pen. The command

pickup 〈pen expression〉

selects a pen with characteristics defined by 〈pen expression〉 with syntax

pencircle

pensquare

}
〈transform〉

15

3 Types

where 〈transform〉 is an affine transformation (§3.7 : 17). Naturally, pencircle gives a round nib
and pensquare gives a square nib. The operator pensquare is actually a macro defined by

pensquare
∆
= makepen((-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle)

and, in general, makepen will construct a pen nib from any closed path (§4 : 22). The operator
makepath is the inverse of makepen: if p is a pen, then makepath p is the polygon that it uses as a
nib. Thus:

makepath pencircle ≡ fullcircle.

It is best to use a round nib (pencircle) when drawing dotted and dashed lines (§4.2 : 22); square
or polygonal pens may yield strange results.

The constant nullpen is a pen with no useful properties. A function that is supposed to return a
pen but cannot do so should return nullpen.

The default pen is quite thin:

defaultpen
∆
= pencircle scaled 0.5 bp.

Thick pens are defined by simple scaling:

pencircle scaled 5pt

Transforms xscaled and yscaled provide elliptical or rectangular nibs:

path p;

drawoptions(withpen pencircle

xscaled 2bp yscaled 0.1bp);

p = (0,0) for i = 1 upto 100:

.. (0.6i*cosd(36i),0.6i*sind(36i)) endfor;

draw p;

drawoptions();

#68

The shape of the end of each line is determined by the internal variable linecap. When lines
change direction, the shape of the corner is determined by linejoin. Figure 1 illustrates both.

linecap :=


rounded (default)
squared

butt

linejoin :=


rounded (default)
beveled

mitered

A long spike may be produced when mitered lines meet at an acute angle. MetaPost changes
the join shape to beveled if

miter length

line width
> miterlimit.

The default value of the internal variable miterlimit is 10.0; it can be changed by assignment.

For a sequence of draw (§5.1.3 : 30) and fill (§5.1.5 : 31) commands with a particular kind of pen,
use

16

3 Types

linecap → rounded squared butt

linejoin

↓

rounded

beveled

mitered

Figure 1: The effect of linecap and linejoin, drawn withpen pensquare scaled 8

drawoptions (〈text〉)

to set the pen characteristics and

drawoptions ()

to restore the defaults. The argument 〈text〉 can specify dashed (§4.2 : 22), withcolor (§3.3 : 12),
and withpen (§3.6 : 15) values.

drawoptions(

withcolor 0.8 green

withpen pensquare scaled 4);

d = 10;

draw unitsquare scaled 2d shifted (-d,-d);

draw fullcircle scaled 4d;

drawoptions();

#26

3.7 Transforms

A variety of affine transformations can be applied to pictures. These are transform expressions (all
angles are measured in in degrees):

(x, y) rotated θ
∆
= (x cos θ − y sin θ, x sin θ + y cos θ)

(x, y) slanted a
∆
= (x+ ay, y)

(x, y) scaled a
∆
= (ax, ay)

(x, y) xscaled a
∆
= (ax, y)

(x, y) yscaled a
∆
= (x, ay)

(x, y) shifted (a, b)
∆
= (x+ a, y + b)

(x, y) zscaled (a, b)
∆
= (ax− by, bx+ ay)

(x, y) reflectedabout (p, q)
∆
= The reflection of (x, y) in the line (p, q).

(x, y) rotatedaround (p, θ)
∆
= (x, y) rotated about point p through angle θ.

17

3 Types

Transforms are applied by writing a transform expression after a picture expression. Transform
expressions can be combined by concatenating them.

dotlabel.bot(btex (0, 0) etex, origin);

path bx;

bx = unitsquare scaled 10;

draw bx shifted (0,36);

draw bx xscaled 1.6 shifted (0,24);

draw bx slanted 0.5 shifted (0,12);

draw bx rotated 30;

(0, 0)

#8

Here are some operators associated with transforms:

transform t;
∆
= declares t to be a transform

transform t
∆
= used in an expression, returns true if t is a transform

identity
∆
= the identity transform: p transformed identity ≡ p

inverse t
∆
= the inverse of transform t

p transformed t
∆
= picture p transformed by transform t

The following example defines and applies a transform called reflect.

transform reflect;

reflect = identity xscaled -1;

draw btex Mirror, mirror, on the wall etex

transformed reflect;

Mirror,mirror,onthewall

#27

A transform has six parameters. The mapping from (x, y) to (x′, y′) is given, in homogeneous
coordinates, by  x′

y′

1

 =

 txx txy tx
tyx tyy ty
0 0 1


 x
y
1


The values of the parameters for a transform t are referred to in MetaPost as

tx = xpart t ty = ypart t
txx = xxpart t tyx = yxpart t
txy = xypart t tyy = yypart t

Transforms may be defined by equations. Each equation says that a point p is mapped to a point
p′ and determines two of the transform parameters; consequently, three equations are needed. In
the following example, the transform t is defined by its effect on three points.

18

3 Types

z1 = (-20,0); z2 = (-40,15);

z3 = (0,20); z4 = (0,30);

z5 = (20,0); z6 = (35,-20);

draw fullcircle scaled 40;

drawarrow z1--z2;

drawarrow z3--z4;

drawarrow z5--z6;

transform t;

z1 transformed t = z2;

z3 transformed t = z4;

z5 transformed t = z6;

draw fullcircle scaled 40 transformed t;

#28

The parameters themselves can be used to define the transformation. For example, the equations

xxpart t = yypart t;

xypart t = -yxpart t;

specify that transform t preserves shapes. Two additional equations, defining the effect of t on
two points, are required to define t completely.

The following example combines several features of MetaPost: the command direction (§4.5 : 25)
gives the direction of the tangent vector at a point on the curve; the command angle (§3.4 : 13)
converts this direction to an angle θ; rotating by θ+ 90◦ gives a direction normal to the curve; and
the command point (§4.5 : 25) gives the position of a point on the curve.

path p;

p := fullcircle xscaled 100 yscaled 40;

draw p;

for i = 0 upto 40:

t := i/5;

draw ((0,0)--(3,0))

rotated (angle direction t of p - 90)

shifted (point t of p);

endfor;

#47

3.8 Pictures

Anything that can be drawn by MetaPost can be stored in a picture variable. Several primitives,
including draw (§4 : 22), store their results in the internal variable currentpicture. Pictures can
be transformed (§3.7 : 17).

The following expressions yield a picture:

s infont f : string s set in font f (§3.2 : 10)

btex ... etex : raw TEX strings (§5.1.1 : 28)

TEX(...) : processed TEX strings(§7.4 : 46)

nullpicture : an empty picture

currentpicture : the “current” picture, destination of draw, etc.

19

3 Types

These operators return a value associated with a picture p:

center p
∆
= the centre of p.

length p
∆
= the number of components of p.

llcorner p
∆
= the lower left corner of p.

lrcorner p
∆
= the lower right corner of p.

ulcorner p
∆
= the upper left corner of p.

urcorner p
∆
= the upper right corner of p.

After defining the picture p with the commands

picture p;

p = btex $\displaystyle\int_0^\infty e^{-x} \, \sin x \, dx $ etex;

we can draw the picture and its corner points:

draw p;

dotlabel.ulft("UL", ulcorner p);

dotlabel.urt ("UR", urcorner p);

dotlabel.llft("LL", llcorner p);

dotlabel.lrt ("LR", lrcorner p);

∫ ∞
0

e−x sinx dx

UL UR

LL LR

#2

The operators llcorner, lrcorner, ulcorner, and urcorner define the bounding box of a picture.
They can be used to measure the size of a box. Following on from the above example,

pair dim;

dim := (urcorner p) - (llcorner p);

width := xpart dim;

height = ypart dim;

gives width = 71.3919 and height = 23.1722.

If the bounding box is not what you want, you can change it. The command

setbounds v to p

makes the picture variable v behave as if its bounding box is the path p.

picture p;

p = btex $\displaystyle\sum_{n=1}^{\infty} {1 \over n}$ etex;

path q;

q = bbox p shifted (20,20);

setbounds p to q;

draw p;

draw q;

∞∑
n=1

1

n
#67

Recent versions of MetaPost include a macro image that can be used in places that would
otherwise require currentpicture. The expression

image(〈seq〉)

20

3 Types

yields the picture object constructed by the sequence 〈seq〉 of drawing commands.

picture smiley;

smiley := image(

draw fullcircle scaled 40;

draw halfcircle scaled 20 rotated 180;

filldraw fullcircle scaled 3 shifted (-10,10);

filldraw fullcircle scaled 3 shifted (10,10);

);

draw smiley; #70

The following predicates can be applied to any object, but are most meaningful for parts of a
picture. A “stroked picture component” is a part of a picture that was drawn by moving a pen (as
opposed to setting text, etc.). These predicates can be used to analyze the structure of a picture
(§5.2.3 : 34).

bounded x
∆
= x is a picture with a bounding box

clipped x
∆
= x is a picture that has been clipped

dashpart x
∆
= x is the dash pattern of a path in a stroked picture

filled x
∆
= x is a filled outline

pathpart x
∆
= x is the path of a stroked picture component

penpart x
∆
= x is the pen of a stroked picture component

stroked x
∆
= x is a stroked line

textual x
∆
= x is typeset text

3.9 Lists

Lists have a rather ghostly existence in MetaPost: there is no type list, but there are a few
constructions that create and consume lists.

The function scantokens converts a string to a list of tokens. The expression x step d until y
generates the list x, x+d, x+2d, . . ., stopping when x+nd ≥ y. For the common case d = 1, there
are macros upto and downto:

upto
∆
= step 1 until

and downto
∆
= step -1 until

The for statement (§5.2.3 : 34) has a form

for 〈var〉 = 〈list〉: 〈seq〉 endfor

which assigns the variable 〈var〉 to each item in 〈list〉. The list can be an actual list of tokens
separated by commas, as in

for i = 1, 2, 4, 8, 16: ... endfor

or a list generated by scantokens, as in

for i = scantokens("1, 2, 4, 8, 16"): ... endfor

21

4 Paths

4 Paths

Paths are piecewise straight lines, curves, and any combination of these. Path variables of type
path may be declared and there are various kinds of path expressions. The following examples use
the command draw (§5.1.3 : 30) to draw paths.

4.1 Straight lines

The binary infix operator ‘ -- ’ constructs a straight line between its point operands.

draw

(0,0) -- (20,0) -- (20,20) --

(40,20) -- (40,0) -- (60,0);

#93

If the last point is the internal name cycle, the last line segment returns to the starting point.
The keyword cycle can also be used as a predicate:

cycle p
∆
= true if path p is a cycle

The expression p & q yields the concatenation of the paths p and q, provided that the last point
of p is identical to the first point of q.

4.2 Dots and Dashes

The general syntax for a dashed line is:

draw 〈path〉 dashed 〈pattern〉

The basic patterns are:

evenly : evenly-spaced dashes, 3 bp long,

and withdots : dots 5 bp apart.

Patterns may be transformed (§3.7 : 17):

shifted 〈pair〉 : each dash is displaced by 〈pair〉,
and scaled 〈numeric〉 : each dash is scaled by 〈numeric〉.

draw (0,30)--(120,30) dashed withdots;

draw (0,20)--(120,20) dashed evenly;

draw (0,10)--(120,10) dashed evenly shifted (3,3);

draw (0, 0)--(120, 0) dashed evenly scaled 1.5;

#3

Dashed and dotted lines are best drawn using a pen with a circular nib (§3.6 : 15).

22

4 Paths

4.3 Circles, Disks, and Arcs

The command fullcircle draws a circle with unit diameter at the origin. Apply transformations
(§3.7 : 17) to the circle to modify the size and position. The command halfcircle is similar to
fullcircle but draws only the part of the circle above the X axis. The command quartercircle

draws only the first quadrant of the circle.

draw fullcircle scaled 50;

draw halfcircle scaled 40;

draw quartercircle scaled 30;

filldraw fullcircle scaled 20 withcolor 0.3white;

#14

General arcs can be drawn using the subpath command (§4.5 : 25). The path length of a full circle
is 8, and so one unit corresponds to 45◦. Thus the arcs in the picture below have lengths of 135◦,
225◦, and 315◦.

draw subpath (0, 3) of fullcircle scaled 20;

draw subpath (0, 5) of fullcircle scaled 30;

draw subpath (0, 7) of fullcircle scaled 40;

#38

Curved arrows can be drawn in the same way. The normal direction of an arc is counterclockwise,
but you can use reverse (§4.5 : 25) to get a clockwise arc.

drawarrow subpath (0, 4) of fullcircle scaled 20;

drawarrow reverse (subpath (2, 6) of fullcircle scaled 40);
#81

4.4 Curves

The binary operator ‘ . . ’ is used like ‘ -- ’, but it draws cubic Bézier curve instead of straight lines.
The command

draw

(0,0) .. (20,0) .. (20,20) ..

(40,20) .. (40,0) .. (60,0);

#94

The binary operator ‘ . . . ’ is similar to ‘ . . ’ but tries to avoid inflection points. The difference
between ‘ . . ’ and ‘ . . . ’ is generally small, but can be seen in the following example, in which the
lower curve uses ‘ . . . ’.

z0 = (0,0); z1 = (50,25); z2 = (150,50);

draw z0{dir -20} .. z1 .. {dir 30}z2;

draw (z0{dir -20} ... z1 ... {dir 30}z2) shifted (0,-10);

#53

23

4 Paths

The binary operator ‘ --- ’ is similar to ‘ -- ’ but ensures a smooth transition between straight and
curved sections of a path, as illustrated in the two examples below.

draw (0,0) -- (25,0) .. (50,25); #51

draw (0,0) --- (25,0) .. (50,25); #52

The direction of the curve may be specified at a point by a qualifier {p}, in which p is a pair
representing a direction (§3.5 : 14). The qualifier may be placed either before or after the point.

for i = 0 step 30 until 120:

draw (0,0){dir i} . . (100,0);
endfor;

#12

The curvature of the curve can be specified at its end points using curl. The argument of curl
can have any positive value; smaller values give smaller curvature.

draw (0,0){curl 1} .. (50,30) .. {curl 1}(100,0);
draw (0,0){curl 5} .. (50,-30) .. {curl 5}(100,0);

#44

The tension of a curve may be changed between any pair of points. The minimum value of tension
is 3

4 ; the default value is 1; higher values give straighter curves.

for i = 1 upto 5:

draw (0,0){dir 90} .. tension i .. {dir 270}(100,0);
endfor;

#43

Control points are points that are not on the curve but which “attract” the curve. They can be
specified between points with syntax “controls p and q”, where p and q are points.

z1 = (10,25);

z2 = (90,25);

dotlabel("", z1);

dotlabel("", z2);

draw (0,0) .. controls z1 and z2 .. (100,0);

#24

24

4 Paths

4.5 Parametric Paths

A path may be considered as a set of points {(X(t), Y (t)}, where t is the path parameter. Given
a value of t, we can find the corresponding point (X(t), Y (t)) on the path and the direction of the
path. Conversely, given a point or a direction on the path, we can find the value of t. We can use
t to find where curves intersect and to extract parts of curves.

z1

z2

z3

z4

z5

z6 z7

z8

z9

z10

Figure 2: Parametric curves

We illustrate concepts related to parametric curves using Figure 2. First we define four key points
and draw the path, a, through them.

z1 = (0,0);

z2 = (75,75);

z3 = (150,0);

z4 = (225,75);

path a;

a = z1 .. z2 .. z3 .. z4;

draw a;

The path has a length associated with it:

show length a; >> 3

It is convenient to think of the path being drawn by a point which moves along it, starting at time
0 and ending at time 3. The “times” of the control points are: 0 for z1; 1 for z2; 2 for z3; and 3
for z2. The expression “point t of p” gives the point on path p corresponding to the time t (note
the position of z5 in the diagram):

z5 = point 2.5 of a;

We can find the direction of the path, expressed as a tangent vector, at any time.

show direction 0 of a; >> (-19.5705,47.24738)

If we prefer, we can work with the arclength instead of the time:

lena = arclength a;

show lena;

t1 = arctime lena/5 of a;

show t1;

z6 = point t1 of a;

>> 378.67822

>> 0.56165

25

4 Paths

The expression subpath (t1, t2) of p returns the part of the path p between times t1 and t2.
The effect of

draw subpath (0,t1) of a shifted (-10,0);

can be seen in Figure 2 as the short arc on the left of the curve a.

We can find the time on a path when the direction first achieves a particular value:

t2 = directiontime (1,-1) of a;

z7 = point t2 of a;

show t2;

>> 1.21132

The straight line in Figure 2 is drawn as path b with the commands:

z8 = (25,0);

z9 = (200,75);

path b;

b = z8 -- z9;

draw b;

The point of intersection of paths a and b is given by:

z10 = a intersectionpoint b;

and the command

show a intersectiontimes b; >> (1.5,0.5)

shows that the intersection occurs at time 1.5 for path a and at time 0.5 for path b. If the paths a
and b do not intersect, the result is (-1,-1).

The expression

a cutbefore b

yields the part of path a from z1 to z10 and the expression

a cutafter b

yields the part of path a from z10 to z4.

A circle drawn by MetaPost has eight control points (§4.3 : 23):

diam =100;

rad = 0.5*diam+8;

path circ;

circ = fullcircle scaled diam;

draw circ;

for i = 0 upto 7:

dotlabel("", point i of circ);

ang := 45 * i;

label(decimal i, (rad*cosd(ang), rad*sind(ang)));

endfor;

0

1

2

3

4

5

6

7

#77

26

4 Paths

Summary of path expressions:

Path expressions yielding boolean:

path p
∆
= p is a path

cycle p
∆
= p is a cycle (closed path)

Path expressions yielding numerics:

length a
∆
= the value of t at the end of a

arctime ` of a
∆
= the value of t at which the length of a is `

directiontime d of a
∆
= the value of t at which a first has the direction d

arclength a
∆
= the total arc length of a

Path expressions yielding pairs:

point t of a
∆
= the position of a at time t

direction t of a
∆
= the direction of a at time t

directionpoint d of a
∆
= the first point at which the direction of a is d

a intersectionpoint b
∆
= the point at which a intersects b

a intersectiontimes b
∆
= the pair (ta, tb) of intersection times

Path expressions yielding paths:

fullcircle
∆
= the unit circle (origin at centre)

unitsquare
∆
= the unit square (size 1× 1, origin at lower left corner)

bbox a
∆
= the bounding box of path a

reverse a
∆
= the path a drawn backwards

subpath (t1, t2) of a
∆
= the part of a for which t1 ≤ t ≤ t2

a & b
∆
= the concatenation of paths a and b

a cutbefore b
∆
= the part of a before its intersection with b

a cutafter b
∆
= the part of a after its intersection with b

4.6 Path Constructors

The following functions and macros construct paths:

reverse p
∆
= the path p with its direction reversed

unitsquare
∆
= (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle

bbox p
∆
= llcorner p -- lrcorner p -- urcorner p -- ulcorner p -- cycle

The effect of reverse is defined by

point t of reverse p ≡ point (length p− t) of p

27

5 Commands

The unitsquare can be transformed (§3.7 : 17) to produce an arbitrary parallelogram. The macro
bbox, applied to a picture p, returns the bounding box of p.

picture p;

p = btex $\spadesuit \heartsuit \diamondsuit \clubsuit$ etex;

draw p;

draw bbox p;

♠♥♦♣ #19

The command buildcycle is especially useful for boundaries of shaded areas (§5.1.5 : 31). Given
several paths, buildcycle tries to piece them together to form an enclosed figure, which is returned
as the result of the expression. Draw the bounding path, if required, after shading the interior area
with filldraw.

path p[];

p1 = (10,-5) -- (10,50);

p2 = (-5,0) -- (90,0);

p3 = (80,-5) -- (80,10);

p4 = (10,40) for i = 2 upto 9:

.. (10*i, 40/i) endfor;

p5 = buildcycle(p1, p2, p3, p4);

filldraw p5 withcolor 0.7 white;

draw p1; draw p2; draw p3; draw p4;

#41

5 Commands

MetaPost has two kinds of command: those that draw something and those that do not. We
discuss commands that draw first.

5.1 Drawing Commands

Execution of any of the commands described in this section adds something to the currentpicture.

5.1.1 btex and verbatimtex

The command btex 〈text〉 etex invokes TEX to process 〈text〉 and returns the result as a picture:

draw btex $\sqrt{x^2+y^2}$ etex;
√
x2 + y2 #17

Commands between btex and etex are written in TEX, not LATEX, and the text is set in HR mode.
For example, $$... $$ does not work, but $\displaystyle ... $ has the same effect. For more
elaborate effects, use the TEX package (§7.4 : 46).

TEX boxes can be used to format multiple lines between btex and etex.

28

5 Commands

Font Name Sizes: s =

Bold cmb〈s〉 10
Bold extended cmbx〈s〉 5, 6, 7, 8, 9, 10, 12
Italic cmti〈s〉 7, 8, 9, 10, 12
Roman cmr〈s〉 5, 6, 7, 8, 9, 10, 12, 17
Sans serif cmss〈s〉 8, 9, 10, 12, 17
Sans serif italic cmssi〈s〉 8, 9, 10, 12, 17
Slanted cmsl〈s〉 8, 9, 10, 12
Small caps cmcsc〈s〉 10
Typewriter cmtt〈s〉 8, 9, 10, 12
Typewriter italic cmitt〈s〉 10
Typewriter slanted cmsltt〈s〉 10

Figure 3: LATEX fonts

boxit.a(btex

\vbox{\hbox{Above}\hbox{Below}}

etex);

drawboxed(a);

Above
Below

#83

Text is set in the default font, which is usually cmr10. The default font can be changed by assigning
to the internal variable defaultfont. The size of the text is determined by the default scale, which
is 1. The scale can be changed by assigning to the variable defaultscale. Figure 3 shows some
other fonts.

The command verbatimtex 〈text〉 etex is similar, but does not produce a picture. It is used to
configure TEX for subsequent processing. For example, the following commands define the font
commands \bkm to be 11pt Bookman and lit to be 10pt Typewriter:

verbatimtex

\font\bkm = pbkli scaled 1100

\font\lit = cmtex10 scaled 1000

etex

These fonts can then be used in a btex command:

dotlabel.top(btex\bkm server etex, origin); server #96

The command verbatimtex can be used to create an environment in which LATEX can be used
in btex commands. Figure 4 shows how a LATEX table can be drawn in MetaPost. The LATEX
command \end{document} is supplied automatically.

5.1.2 clip

The command

29

5 Commands

verbatimtex

%&latex

\documentclass{article}

\begin{document}

etex

beginfig(1);

draw btex

\begin{tabular}{|c|} \hline

First \\ \hline

Second \\ \hline

Third \\ \hline

\end{tabular}

etex;

endfig;

First
Second
Third

Figure 4: Drawing a LATEX table

clip p to b

draws all parts of the picture p that lie within the boundary b. The picture p must be given as a
picture variable, not a picture expression. The argument b is a path.

for i = -50 step 5 until 50:

draw (i,-50) -- (i+100,50);

endfor;

path c;

c = fullcircle scaled 70 shifted (50,0);

clip currentpicture to c;

draw c;

#54

5.1.3 draw

The command

draw p

draws the path or picture defined by the picture expression p. A picture can be erased by drawing
it with the background colour:

undraw p
∆
= draw p withcolor background

5.1.4 drawarrow

The following commands draw paths with arrows. The argument of each of these commands is a
path, not a picture.

drawarrow p : draw path p with an arrow at the end

30

5 Commands

drawarrow reverse p : draw path p with an arrow at the start

drawdblarrow p : draw path p with an arrow at both ends

The size of the arrow head is determined by ahlength and ahangle. These internal variables have
default values ahlength = 4 and ahangle = 45◦, respectively. The code in the following example
draws an arrow with default values and another arrow with length 10 and angle 30◦.

begingroup;

drawarrow (0,30) -- (60,30);

interim ahlength := 10;

interim ahangle := 30;

drawarrow reverse ((0,0) -- (60,0));

endgroup;

#65

5.1.5 fill

The following commands “paint” areas of the figure. The path must be a cycle (§4.1 : 22), otherwise
the paint may leak out.

fill p : paint the area enclosed by path p with black

fill p withcolor c : paint the area enclosed by path p with colour c

There are some useful macros that use fill:

filldraw p
∆
= draw (fill p)

filldraw p withcolor c
∆
= draw (fill p withcolor c)

unfill p
∆
= fill p withcolor background

Filling provides an alternative to cutbefore and cutafter. In this example, filldraw erases the
part of the line that would be inside the circle at z2.

z1 = (0,20); z2 = (0,-20);

draw z1--z2;

filldraw fullcircle scaled 20 shifted z2 withcolor white;

draw fullcircle scaled 20 shifted z1;

draw fullcircle scaled 20 shifted z2;

#37

31

5 Commands

5.1.6 label

The command

label 〈suffix〉 (〈picture expression〉 , 〈pair〉)

writes a label. 〈picture〉 describes the label to be written. It is usually a string (§3.2 : 10) or
btex ... etex (§5.1.1 : 28). The 〈pair〉 determines the position of the label. The 〈suffix〉 may be
omitted; if it is present, it must be one of

.lft .rt .top .bot .ulft .urt .llft .lrt

and it defines the position of the label with respect to 〈pair〉.

The command thelabel is also similar to label but returns the result as a picture without drawing
it. Thus:

label(p, z)
∆
= draw thelabel(p, z)

The command dotlabel is similar to label but draws a large dot at the labelled point.

draw (0,0) -- (30,20) -- (-30,20) -- cycle;

label.ulft(btex (−30, 20) etex, (-30,20));

label.urt(btex (30, 20) etex, (30,20));

dotlabel.bot(btex (0, 0) etex, (0,0));
(0, 0)

(30, 20)(−30, 20)

#1

The command dotlabels provides an abbreviation that can be used when all of the points to be
labelled have the form z〈suffix〉 and the suffixes are suitable for use as labels.

z.alpha = (0,0);

z.beta = (20,20);

z.gamma = (40,0);

dotlabels.top(alpha, beta, gamma);
alpha

beta

gamma
#18

The size of the dots is determined by the internal variable dotlabeldiam. The default value is 3bp.
The following assignment makes the dots smaller:

dotlabeldiam := 1bp;

5.2 Non-drawing Commands

The commands in this section may change MetaPost’s internal state but do not add anything to
the currentpicture.

32

5 Commands

5.2.1 drawoptions

The command drawoptions(〈text〉) adds the options specified by 〈text〉 to all drawing commends
until it is cancelled by the command drawoptions(). The options allowed in 〈text〉 include dashed
(§4.2 : 22), withcolor (§3.3 : 12), and withpen (§3.6 : 15). For example:

drawoptions(withcolor blue);

drawboxed(fred);

drawoptions();

The options in the scope of drawoptions affect only the commands for which they “make sense”.
For example, if a picture is drawn with drawoptions(dashed evenly), all of its paths will be
drawn with dashes, but its labels will not be affected.

5.2.2 filenametemplate

By default, MetaPost reads from a file called 〈jobname〉.mp and writes the output created by
beginfig(n) ... endfig to jobname.n. The name of the output file can be changed by including
a command of this form near the beginning of the input file:

filenametemplate 〈format string〉 ;

The resulting file name is the 〈format string〉 after escape sequences have been processed. Figure 5
lists the escape codes that MetaPost recognizes.

%% Percent sign
%j Job name
% δ c The argument of beginfig
% δ y Year
% δ m Month
% δ d Day
% δ H Hour
% δ M Minute

Figure 5: Escape sequences for filenametemplate. The symbol δ stands for an optional decimal
digit (0, 1, 2, . . . , 9) that sets the size of the string.

Suppose that the input file is doc.mp. By default, MetaPost behaves as if

filenametemplate "%j.%c";

has been executed and generates figure files called doc.1, doc.2, etc. If the MetaPost program
included the command

filenametemplate "doc-%4y-%3c.mps";

then the output file names would be doc-2007-001.mps, doc-2007-002.mps, etc. This is useful
for versions of LATEX that do not recognize numbers as file extensions.

33

5 Commands

5.2.3 for

The MetaPost loop has the general form:

for 〈name〉 = 〈list〉:
〈seq〉

endfor

Although list is not a type of MetaPost, there are expressions that generate lists (§3.9 : 21). For
example:

for n = 1 upto 10:

show x;

endfor

in which upto is an abbreviation, as is downto:

upto
∆
= step 1 until

and downto
∆
= step -1 until

The numerical values do not have to be integers:

for x = 0.5 step 0.1 until 1.5:

show x;

endfor;

>> 0

>> 0.1

>> 0.20001

>> 0.30002

....

>> 0.90005

A list of expressions is accepted:

for e = 1, 256.1, "done":

show e;

endfor;

>> 1

>> 256.1

>> "done"

MetaPost commands can be nested in fairly arbitrary ways. In the following example, the first
point of a path is drawn in the usual way, but the remaining points are generated by a for loop.
Note that there is no semicolon at the end of the loop body: a semicolon at this position would
violate the syntax of draw. The semicolon after endfor serves to terminate the draw command.

draw (1,0)

for i := 0 upto 180:

.. (mexp(5i)*cosd(10i), mexp(5i)*sind(10i))

endfor;

#79

There are not many MetaPost expressions that yield lists of tokens: one of them is scantokens

(§3.9 : 21). Consequently, for and scantokens are often used together (§9.10 : 61).

If there are no natural loop variables, use

forever: 〈seq〉 exitif 〈pred〉; 〈seq〉 endfor

or

34

5 Commands

draw (0,0) -- (100,0);

filldraw fullcircle scaled 50;

label.bot("line", (50,0));

picture p;

p = currentpicture;

show "p has " & decimal(length(p))

& c̈omponents.";

n = 0;

string msg;

for i within p:

n := n + 1;

msg := "Component " &

decimal n & " is";

if stroked i:

msg := msg & " stroked";

fi;

if filled i:

msg := msg & " filled";

fi;

if textual i:

msg := msg & " textual";

fi;

show msg;

endfor;

>> "p has 3 components."

>> "Component 1 is stroked"

>> "Component 2 is filled"

>> "Component 3 is textual"

Figure 6: Using for...within to obtain a partial analysis of a picture.

forever: 〈seq〉 exitunless 〈pred〉; 〈seq〉 endfor

A for loop can be used to obtain the parts of a picture. The effect of

for c within 〈picture expression〉 : 〈loop〉 endfor

is to bind each component of the picture in turn to c and then execute the text in 〈loop〉. Various
predicates and selectors may be used in 〈loop〉, including stroked, filled, textual, clipped,
bounded, pathpart, penpart, and dashpart. Figure 6 provides a simple example.

Like its relatives TEX and metafont, MetaPost is more like a macroprocessor than a formal
language. This means that it is often possible to arbitrary chunks of text in a for loop, not just
complete expressions. The shading example on page 28 illustrates this kind of usage.

5.2.4 if

Tests can be used in conditional statements which have the general form

if 〈pred〉: 〈seq〉
else: 〈seq〉
fi

35

5 Commands

Compound conditional statements use elseif:

if 〈pred〉: 〈seq〉
elseif 〈pred〉: 〈seq〉
else: 〈seq〉
fi

There are small inconsistencies in MetaPost’s naming: after getting used to for. . . endfor, it is
easy to write if. . . endif, giving mysterious error messages.

for. . . endfor but if. . . fi.

In this example, an if command labels points on a curve according to their signs:

save k, p;

path k;

k = (0,0)dir 35 .. dir 45(80,0);

draw k;

for t := 0 step 0.1 until 1:

pair p;

p := point t of k;

if ypart p > 0:

label.top(btex + etex, p);

elseif ypart p < 0:

label.bot(btex − etex, p);

fi;

endfor;

++++

−−−−− #97

5.2.5 message

The command message takes a string expression as its argument and displays the string on the
console when MetaPost executes.

5.2.6 readfrom

The effect of

readfrom 〈file name〉

is to read one line from the named file and return the line as a string. If the file cannot be read,
or if end of file has been reached, the string returned is EOF, which contains just the null character
(i.e., EOF = "\0").

If readfrom 〈file name〉 is executed again after it has returned EOF, the file is read again from the
beginning.

See (§9.10 : 61) for an example of the use of readfrom. It is also possible to write to a file (§5.2.9 : 37).

36

5 Commands

5.2.7 save

The command save, followed by a list of variable names, saves the values of these variables and
restores them again at the end of the scope, effectively making these variables local to the current
scope. See also (§2.11 : 7) and (§6 : 38).

5.2.8 show and friends

The command

show e

writes >> followed by the value of the expression e to standard output. If the expression cannot be
expressed in a simple textual form, MetaPost writes the type instead.

show (0,0) -- (10,0); >> path

There are variants of show that are used less often but can be handy for debugging:

showdependencies
∆
= the known dependencies for a set of equations

showtoken
∆
= the parameters and replacement text of a macro

showvariable
∆
= the properties associated with a name

For example,

def hyp(expr a, b) = sqrt(a*a + b*b) enddef;

showtoken hyp;

produces

> hyp=macro:

(EXPR0)(EXPR1)->sqrt((EXPR0)*(EXPR0)+(EXPR1)*(EXPR1)))

The variable showstopping controls the behaviour of MetaPost after it has executed a show

command. If showstopping > 0, MetaPost pauses after each show command.

5.2.9 write

The effect of the command

write 〈string expression〉 to 〈file name〉

is to write one line to the named file. If the file is not already open, MetaPost opens it before
writing. The file is closed when the MetaPost program terminates, or explicitly by executing

write EOF to 〈file name〉

It is also possible to read from a file: (§5.2.6 : 36).

37

6 Macros

6 Macros

MetaPost provides many ways of defining macros. Here we describe just the most basic and
useful techniques.

6.1 def macros

Simple macros have the form

def 〈name〉 = 〈seq〉 enddef

Simple macros with parameters have the form

def 〈name〉 (〈parameters〉) = 〈seq〉 enddef

Following the macro definition, each occurrence of 〈name〉 is replaced by 〈seq〉, with parameters
replaced by arguments when applicable. If the sequence 〈seq〉 ends with an expression, the value
of that expression becomes the value of the macro. Note that there is no semicolon after the
expression:

def hyp(expr a, b) =

sqrt(a*a + b*b)

enddef;

show hyp(3,4);
>> 5

We can obtain a simple three-dimensional effect by adding a shadow to an outline. If the light
source is above and to the left, the shadow should be below and to the right. The macro shadow

gives a shadow to any path that can be filled — that is, to any closed path.

def shadow(expr p) =

filldraw p shifted (3,-3) withcolor 0.7 white;

filldraw p withcolor white;

draw p;

enddef;

shadow(unitsquare scaled 20);

shadow(fullcircle scaled 20 shifted (40,0));

path p;

p = (0,0)--(0,20)--(20,40)--(50,40)--

(30,20)--(30,0)--cycle;

shadow(p shifted (70,-20)); #46

There are three kinds of macro parameter, distinguished by writing one of the keywords expr,
suffix, or text before the parameter list.

38

6 Macros

• An expr parameter can be used as a variable in the body of the macro. Its value can be
constrained by equations but cannot be re-assigned. The following macro says that the points
a, b, c, and d are symmetrically placed around the origin but their separation is not known
until at least one point has been positioned:

def vx(expr a, b, c, d) =

a + c = (0,0);

b + d = (0,0);

xpart a = xpart d;

ypart a = ypart b;

enddef;

vx(z1,z2,z3,z4);

z1 = (1,1);

show z1; show z2; show z3; show z4;

>> (1,1)

>> (-1,1)

>> (-1,-1)

>> (1,-1)

• A suffix parameter is bound to an initializing expression but may also be used as a variable
name. The macro showfirst would be illegal with an expr parameter, but is allowed with a
suffix parameter:

def showfirst(suffix a) = show a[0]; enddef;

• A text parameter is bound to an arbitrary sequence of tokens. When its name is encountered
in the body, MetaPost simply substitutes the corresponding argument and parses the result.
For example, if we define

def doIt(text cmd) = cmd (0,0)--(5,5); enddef;

then doIt(draw) draws the path but doIt(show) simply displays it.

If a macro has two or more different kinds of parameters, there must be a separate parameter list
for each kind:

def tricky(expr a, b)(suffix p) = ... enddef;

However, the corresponding invocation has just a single list of arguments:

tricky(2.3, xpart q, z);

MetaPost supports recursion in macros:

def nest(expr hor, ver) =

draw fullcircle xscaled hor yscaled ver;

if (hor > 5) and (ver > 5):

nest(0.8 hor, 0.7 ver);

fi;

enddef;

nest(60, 100);

#98

39

6 Macros

6.2 vardef and other macro forms

A macro definition may be introduced by vardef instead of def. The most useful difference is that
the body of a vardef macro is a group. A macro such as area can be used in the same way as a
function in other languages:

vardef area(expr a, b, c) =

save s;

s := 0.5*(a+b+c);

sqrt(s*(s-a)*(s-b)*(s-c))

enddef;

show area(3,4,5); >> 6

The name of a vardef macro may be a compound containing suffixes. Within the macro, @ is the
last token of the macro call and #@ is everything that comes before the last token. Macros defined
with vardef can be used to define special behaviour for particular variable names. For example,
the special relationship between x, y, and z is a consequence of the macro definition

vardef z@# = (x@#, y@#) enddef;

There are other forms of macro definition for which a full description goes beyond the scope of this
manual. For example, macros can be used to define unary and binary operators. After defining

vardef neg primary x = -x enddef;

we can use neg to negate numeric values and pairs. For example,

neg((3,4)) >> (-3,-4)

Similarly, after defining a midpoint operator

primarydef p mp q = 0.5[p,q] enddef;

we can write

z1 = (0,0);

z2 = (0,40);

draw z1 -- z2;

label.rt("mp", z1 mp z2);

mp

#42

The “suffix” form of parameter can be used for a number of purposes. For example, this macro
takes the position of a label as a parameter:

vardef cutla(suffix pos)(expr lab)(suffix a, b) =

drawarrow a.c -- b.c cutbefore bpath a cutafter bpath b;

label.pos(lab, 0.5[a.c,b.c]);

enddef;

This macro is called with four arguments, of which the first specifies the position of the label:

40

7 Macro Packages

boxit.a("A"); boxit.b("B");

b.c = a.c + (60,0);

drawunboxed(a, b);

cutla(top, "x", a, b);

A B
x

#86

7 Macro Packages

Many MetaPost macro packages have been written, by Hobby and others. In this section, we
describe a few of them. To use a package, include this command at the beginning of your MetaPost
program:

input 〈package name〉

7.1 Boxes

There is a standard macro package, called boxes, for drawing boxes. To use it, include this
statement at the beginning of your MetaPost program:

input boxes

The boxes produced by boxes have square corners. To get boxes with both square and rounded
corners, use

input rboxes

7.1.1 Creating and Drawing Boxes

To create a box, write

boxit . 〈box name〉 (〈picture expression〉)

The package rboxes provides the command rboxit as well. It works in the same way as boxit,
but produces boxes with rounded corners.

To draw boxes, write

drawboxed (b1, b2, . . . , bn)

where b1, b2, . . . , bn is a list of box names. The result of drawing a box is shown in Figure 7, in
which the shaded inner rectangle corresponds to the picture and the outer rectangle is the box that
is drawn. The box can be sized and positioned by applying the suffixes in Figure 7 to the box
name. For example, if the box name is bx, then bx.c is its centre, bx.ne is its top right corner,
and so on.

The values of c, dx, and dy are left unspecified. If MetaPost can infer their values from constraints
on the positioning points, it does so. If not, it gives them the default values

c = (0, 0)

dx = defaultdx

dy = defaultdy

41

7 Macro Packages

The values of defaultdx and defaultdy can be changed by assignment. For example:

defaultdx := 20;

defaultdy := 15;

sw s se

e

nennw

w
c

dx dx

dy

dy

Figure 7: Box variables

The command drawboxed actually draws the boxes. Consequently, the best way to use boxes is to
follow this sequence:

1. Use boxit to create the boxes

2. Write equations that specify positional relations between boxes

3. Use drawboxed to draw the boxes

boxit.bl("left");

boxit.bm("middle");

boxit.br("right");

bm.sw - bl.ne = (20,0);

br.nw - bm.se = (20,0);

drawboxed(bl,bm,br);

left

middle

right #30

This example is similar, but illustrates the use of the package rboxes. The macro cuta is defined
later (§7.2 : 43).

boxit.sb("box with square corners");

rboxit.rb("box with rounded corners");

rb.c = sb.c + (100,0);

drawboxed(sb, rb);

cuta(sb,rb);

box with square corners

box with rounded corners
#75

42

7 Macro Packages

7.1.2 Joining Boxes

MetaPost provides a simple and effective way to position boxes relative to one another. The
macro boxjoin takes as argument a list of equations, separated by semicolons, describing the
relationship between boxes a and b. The equations can be used to constrain both the positions and
the sizes of boxes.

boxjoin(a.sw = b.nw; a.se = b.ne);

boxit.bt("top");

bt.ne - bt.nw = (50,0);

boxit.bm("middle");

boxit.bb("bottom");

drawboxed(bt,bm,bb);

top

middle

bottom #31

The equation bt.ne - bt.nw = (50,0) sets the width for the first box and boxjoin ensures that
the other boxes have the same width. If it is omitted, the default size of the top box is used as the
width:

top

middle

bottom

The constraints imposed by boxjoin can be removed either by calling boxjoin with different
equations or an empty argument.

boxjoin(a.e = b.w);

boxit.b1(btex b_1 etex); boxit.b2(btex b_2 etex);

boxit.b3(btex b_3 etex); boxit.b4(btex b_4 etex);

boxit.b5(btex b_5 etex);

boxjoin();

boxit.b6(btex b_6 etex); b6.n = b1.s - (whatever,10);

drawboxed(b1,b2,b3,b4,b5,b6);

b1 b2 b3 b4 b5

b6 #36

7.2 Linking Boxes

The path surrounding the box named b is bpath b. This provides and simple way of joining boxes
with lines or arrows.

boxjoin(a.e = b.w - (20,30));

boxit.scan("scan");

boxit.parse("parse");

drawboxed(scan, parse);

drawarrow scan.c{dir 0} .. {dir 90}parse.c

cutbefore bpath scan

cutafter bpath parse;

scan

parse

#33

Here are some macros that make use of bpath.

43

7 Macro Packages

• Join two boxes with an arrow:

vardef cuta(suffix a, b) =

drawarrow a.c -- b.c cutbefore bpath.a cutafter bpath.b;

enddef;

• Join two boxes with an arrow that follows a given path:

vardef cutpa(suffix a, b)(expr p) =

drawarrow p cutbefore bpath a cutafter bpath b;

enddef;

• Join two boxes with a line labelled at the midpoint:

vardef cutll(suffix pos)(expr lab)(suffix a, b) =

draw a.c -- b.c cutbefore bpath a cutafter bpath b;

label.pos(lab, 0.5[a.c,b.c]);

enddef;

Here are these macros in action:

boxit.a("A");

boxit.b("B");

boxit.c("C");

b.c - a.c = c.c - b.c = (50,0);

drawunboxed(a, b, c);

cuta(a, b);

cutll(bot, btex Φ etex, b, c);

cutpa(a, c, a.c .. 0.5[a.c,c.c]+(0,20) .. c.c);

A B C
Φ #90

7.2.1 Oval Boxes

The macro circleit is similar to boxit except that the picture argument is enclosed in an oval
rather than a rectangle. The corner points are not defined, but the other points correspond to
boxit, as shown in Figure 8. Use drawboxed to draw the picture produced by circleit (not
“drawcircled”).

The path bpath c created by circleit is a circle unless at least one c.dx, c.dy, or c.dx − c.dy is
known. If any of these values are known, the path is an oval that contains the picture with a safety
margin defined by circmargin, a length with default value 2 bp.

Assigning to defaultdx and defaultdy, as explained above, does not work for circleit. However,
their values can be assigned explicitly, as in this example:

circleit.wd("establishment");

wd.dy = 20;

drawboxed(wd);

establishment
#35

44

7 Macro Packages

s

e

n

w
cdx dx

dy

dy

Figure 8: Oval variables

Other commands associated with boxes include:

drawboxes(. . .) : draw the outlines of the listed boxes but not their contents

drawunboxed(. . .) : draw the contents of the listed boxes but not their outlines

pic b : return the contents of the box b without its outline

Thus drawunboxed(b1,b2) is an abbreviation for

draw pic b1;

draw pic b2;

7.2.2 Text in Boxes

MetaPost uses TEX to process text in boxes and elsewhere. TEX commands must therefore be
used to obtain effects such as multiple lines in a box. For example:

boxit.two(btex

\vbox{

\hbox{First line}

\hbox{Second line}} etex);

drawboxed(two);

First line
Second line #84

7.3 Graphs

John Hobby has written a graph package for MetaPost. A complete description of this package is
beyond our scope, but we have space for a simple example. The file hist.txt contains the results
of a simulated experiment in which a coin is tossed 50 times and the number of ‘heads’ are recorded.
Each line of the file consists of two integers, as in the following extract:

45

7 Macro Packages

....

23 96237

24 107870

25 112401

26 107747

27 96453

28 78692

....

Before drawing graphs, the graph macros must be read from graph.mp. The following MetaPost
code is all that is needed to obtain Figure 9.

input graph

beginfig(1);

draw begingraph(4in,3in);

gdraw("hist.txt");

endgraph;

endfig;

0 10 20 30 40 50

0

2×104

4×104

6×104

8×104

105

1.2×105

Figure 9: Simulated coin tossing

7.4 TEX

MetaPost does not process text between btex and etex. For example, if you write btex n etex,
MetaPost will typeset the character “n”, not the value of the variable n. The package TEX.mp

provides an operator TEX that overcomes this problem. The expression

46

8 Debugging

Artist

draw()
paint()

Cowboy

draw()
shoot()

<<interface>>
Draw

draw()

Figure 10: The UML diagram generated from the code in Figure 11

TEX("$X_{" & decimal(n) & "}$")

returns a picture that can be used, for example, in a label command. For n = 0, 1, 2, . . ., the
pictures will be X0, X1, X2, The & in this commend is the MetaPost concatenation operator,
not TEX’s alignment character. If the value of n is 35, for example, the command above constructs
the string X_{35} and sends it to TEX.

The package also provides two further commands:

TEXPRE(s) defines text that will be passed to TEX before each TEX command

TEXPOST(s) defines text that will be passed to TEX after each TEX command

For example, you can use LATEX in labels by including these two commands at the beginning of
your MetaPost program (char(10) generates a line break):

TEXPRE("%&latex" & char(10) & "\documentclass{article}\begin{document}");

TEXPOST("\end{document}");

7.5 MetaUML

The package MetaUML.mp extends MetaPost so that it can draw UML diagrams. This package is
included with MIKTEX and is easy to find at SourceForge.

The good news is that MetaUML draws very nice UML diagrams when given correct input. The
bad news is that rather small errors in the input tend to produce numerous error messages and
may even cause MetaPost to loop.

Figure 10 shows a diagram drawn by MetaUML and Figure 11 shows the code used to produce it.
Note that the package TEX.mp must be loaded, as well as metauml.mp.

8 Debugging

It may seem odd to talk about “debugging” diagrams, but MetaPost is a programming language.
The advantages of the programming language approach should be obvious from earlier parts of this
manual; the disadvantages become clear when you actually try to use MetaPost.

47

8 Debugging

input metauml;

input TEX;

beginfig(82);

save art,cow,ifa;

Class.art("Artist")()("+draw()", "+paint()");

Class.cow("Cowboy")()("+draw()", "+shoot()");

Class.ifa("Draw")()("+draw()");

classStereotype.ifa("<<interface>>");

cow.w = art.e + (100,0);

z0 = 0.5[art.e,cow.w];

ifa.s = z0 + (0,40);

drawObjects(art,cow,ifa);

draw art.e -- cow.w dashed evenly;

z1 = ifa.s - (0,10);

draw z0 -- z1 dashed evenly;

link(inheritance)(z1--ifa.s);

endfig;

Figure 11: Using MetaUML

As a simple illustration, suppose that you accidentally write “btext” instead of “btex”. If you
have written a few hundred lines of code, MetaPost’s response may be quite worrying:

D:\Pubs\MetaPost>mp figs

(figs.mpCreating figs.mpx...

makempx: mpto failed on D:\Pubs\MetaPost\figs.mp.

mp: The operation failed for some reason.

As with other kinds of programming, the best approach to MetaPost is to proceed slowly and
carefully with frequent tests. When MetaPost does fail, there is a good chance that the error is
in the last few lines that you have written.

Here are a few additional tips for getting errant MetaPost programs to work:

• Use show and its friends (§5.2.8 : 37) to check that variables have the values that you expect.

• Use commands like dotlabel("z5", z5) to check that points are where you think they are.
Sometimes, it is even quicker to use dotlabels (§5.1.6 : 32).

• When MetaPost fails, it often generates hundreds of lines of diagnostics. Sometimes, it
is easy to see what went wrong. If not, it is often quicker to identify the line of code that
MetaPost is complaining about, and to examine that line very carefully, than it is to try
and understand the diagnostic.

48

9 Examples

• Errors such as “inconsistent equation” may occur if you use the same variable names in
different figures. You can avoid this problem by using save (§5.2.7 : 37) for the variables of
each figure.

9 Examples

In the last section of this manual, we give some complete examples that illustrate the practical use
of MetaPost.

9.1 Euler Integration

The goal of this example is to obtain a figure like Figure 12 illustrating the error, e, of first-order
Euler integration. If f ′ is the derivative of f :

f(x+ ∆x) ≈ f(x) + f ′(x) ∆x

P1

P2

P3

∆x

∆y

e

Figure 12: Euler Integration

The first step is to draw a suitable path. A Bézier curve is the simplest to generate with Meta-
Post:

path c;

c = (0,0)dir 0 .. (150,100);

draw c;

Next, we choose a point on the path, P1:

t := 0.4;

pair P[];

P1 = point t of c;

The value of ∆x is arbitrary, but we should choose a value large enough to make the diagram
readable. We can then compute ∆y using the direction (i.e., slope) of the path at t.

dx := 60;

(dx, dy) = whatever * direction t of c;

With ∆x and ∆y known, we can locate the other points that we need. P4 is not labelled in
Figure 12; it is the third vertex of the triangle with hypotenuse P1P3.

49

9 Examples

P4 = P1 + (dx, 0);

P3 = P4 + (0, dy);

P2 = c intersectionpoint (P4 -- P4+(0,100));

All that remains is to draw the lines and label the points and lengths:

draw P1--P4--P2;

draw P1--P3;

dotlabel.ulft(btex P_1 etex, P1);

dotlabel.ulft(btex P_2 etex, P2);

dotlabel.rt(btex P_3 etex, P3);

label.bot(btex Δx etex, 0.5[P1,P4]);

label.rt(btex Δy etex, 0.5[P4,P3]);

label.rt(btex e etex, 0.5[P3,P2]);

9.2 The Lorentz Transformation

The Lorentz transformation for inertial frames with relative velocity v is

x′ = γx+ γβct

ct′ = γβx+ γct

where c is the velocity of light, β = v/c, and γ = 1/
√

1− v2/c2. Assuming c = 1, v = 0.5, writing
b for β, g for γ, and including a translation of 200 units, we can express the transformation in
MetaPost as:

b = 0.5;

g = sqrt(1 - b * b);

transform t;

xpart t = 200; ypart t = 0;

xxpart t = g; yxpart t = g * b;

xypart t = g * b; yypart t = g;

We illustrate the scenario shown on the left of Figure 13): a light flashes at a, is reflected by mirrors
at b and b′, and returns to the original point, displaced in time, at a′. We need eleven points for
the diagram; Figure 14 shows the numbering scheme. The scale is determined by two constants, s
and d:

s = 10;

d = 80;

It is easiest to define the x coordinates and the y coordinates separately:

x1 = x2 = x3 = 0;

x4 = x5 = x6 = x7 = x1 + d;

x8 = x9 = x10 = x4 + d;

x11 = x8 + s;

y1 = y4 = y8 = y11 = 0;

y5 = s;

y2 = y9 = y5 + d;

y6 = y2 + d;

50

9 Examples

O
X

T

a

b b′

a′

O

X

T

a

b

b′

a′

Figure 13: The Lorentz Transformation

1

2

3

4
5

6
7

8

9

10

11

Figure 14: Point numbering used in Figure 13

y3 = y7 = y10 = y6 + s;

We draw arrows for the axes:

drawarrow z1 -- z11;

drawarrow z1 -- z3;

solid lines for the time lines:

draw z1 -- z3;

draw z4 -- z7;

draw z8 -- z10;

and dashed lines for the light rays:

51

9 Examples

draw z5 -- z2 dashed evenly;

draw z2 -- z6 dashed evenly;

draw z5 -- z9 dashed evenly;

draw z9 -- z6 dashed evenly;

These commands have drawn into currentpicture. We store them in the picture variable pic and
clear the current picture using the internal constant nullpicture:

picture pic;

pic := currentpicture;

currentpicture := nullpicture;

We next draw p twice, once as above, and once transformed:

draw pic;

draw pic transformed t;

We then label the original diagram:

label.llft(btex O etex, z1);

label.rt(btex X etex, z11);

label.top(btex T etex, z3);

label.rt(btex a etex, z5);

label.lft(btex b etex, z2);

label.rt(btex $b’$ etex, z9);

label.rt(btex c etex, z6);

and the transformed diagram:

label.llft(btex O etex, z1 transformed t);

label.rt(btex X etex, z11 transformed t);

label.top(btex T etex, z3 transformed t);

label.rt(btex a etex, z5 transformed t);

label.lft(btex b etex, z2 transformed t);

label.rt(btex $b’$ etex, z9 transformed t);

label.rt(btex c etex, z6 transformed t);

The result is Figure 13. Note that the events b and b′ are simultaneous in the original diagram but
not in the transformed diagram, and that the light rays (dashed lines) have the same slope (±1) in
both diagrams.

This example would be slightly simpler if we included the labels in the first diagram. Then we
would not have to write them out twice. Since MetaPost transforms everything, however, the
labels would be distorted.

52

9 Examples

Figure 15: Area reduction in a dissipative system

9.3 Dissipation

Figure 15 shows how the area between two trajectories of a dissipative system diminishes when
measured at constant time intervals. The code for drawing it uses point...of to obtain points on
the upper and lower curves, and buildcycle to construct the areas for shading.

Pick four points as end points for the curves:

z1 = (0,100); z2 = (160,0);

z3 = (0,60); z4 = (150,0);

Draw two curves, converging towards each other:

path p[];

p1 = z1{dir 0} .. {dir 270}z2;

p2 = z3{dir 0} .. {dir 270}z4;

Construct pairs of lines joining corresponding points on the curves. The lines are not drawn, but
are used as arguments of buildcycle to create closed areas, which are shaded with filldraw.

for i = 0 step 2 until 11:

p3 := point i/11 of p1 -- point i/11 of p2;

p4 := point (i+1)/11 of p1 -- point (i+1)/11 of p2;

filldraw buildcycle(p3, p1, p4, p2) withcolor 0.7 white;

endfor;

Finally draw the curves p1 and p2, and a couple of lines, to bound the figure.

draw p1; draw p2;

draw z1 -- z3; draw z2 -- z4;

9.4 Sunflower

Figure 16 shows a pattern of dots arranged in the way that sunflower florets develop. The model
for sunflower development was proposed in 1979 by H. Vogel1. The position of the nth floret is
given in polar coordinates by

r = k
√
n, θ =

2π

φ2
n

1http://en.wikipedia.org/wiki/Fibonacci_numbers

53

http://en.wikipedia.org/wiki/Fibonacci_numbers

9 Examples

where k determines the scale and φ = 1
2(1 +

√
5) is the Golden Ratio.

Figure 16: Position of florets in the head of a sunflower

Programming Vogel’s formula in MetaPost is straightforward but for one small problem. Since
MetaPost uses degrees, we actually need θ = 360◦

φ2
and, as n gets large, the numerical values

exceed MetaPost’s limit of 4096. Consequently, we compute θ using “whole turns” (multiples
of 360◦) as the unit, and use mod 1 to bring the result into the interval [0, 1). We can then safely
multiply this value by 360 to obtain the desired angle.

phisq = (0.5 * (1 + sqrt(5))) * (0.5 * (1 + sqrt(5)));

for n = 1 upto 1000:

r := 3 * sqrt(n);

theta := (n / phisq) mod 1;

filldraw fullcircle

shifted (r * cosd(360*theta), r * sind(360*theta));

endfor;

9.5 The Hanging Chain

Figure 17(a) is intended to accompany an explanation of the forces that determine the shape of
a hanging chain. The chain itself is shown as a heavy curve with forces T and T + ∆T acting in
the direction of the tangents at each end. The angle between the chain and the horizon is θ at
the lower end and θ + ∆θ at the upper end. The mass of the chain, ρg∆s, pulls downwards at the
centre of the segment.

Figure 18 shows the MetaPost code for the hanging chain diagram. Figure 17(b) shows the
relative locations of the eight reference points, z0, . . . , z7, used in its construction.

54

9 Examples

T

θ

θ + ∆θ

T + ∆T

ρg∆s

∆x

∆y∆s

0

1

2

3

4

5

6

7

(a) (b)

Figure 17: The Hanging Chain: (a) diagram; (b) reference points.

numeric a[]; a1 = 30; a2 = 50; a3 = 70;

z0 = origin; label.llft(btex T etex, z0);

z1 = z0 + 50 dir a1; label(btex θ etex, z1 + (20,5));

z3 = z1 + 150 dir a2; label(btex $\theta+\Delta\theta$ etex, z3 + (20,5));

path c; c = z1{dir a1} .. {dir a3}z3;

drawoptions(withpen pencircle scaled 2bp); draw c; drawoptions();

z2 = point 0.5 of c;

z4 = z3 + 50 dir a3; label.urt(btex $T+\Delta T$ etex, z4);

z5 = (xpart z3, ypart z1); z6 = z3 + (30,0);

z7 = z2 - (0,30); label.bot(btex $\rho g \Delta s$ etex, z7);

drawarrow z1--z0; drawarrow z3--z4; drawarrow z2--z7;

draw z3--z6 dashed evenly;

draw z1--z3--z5--cycle;

label.bot(btex Δx etex, 0.5[z1,z5]);

label.rt(btex Δy etex, 0.5[z3,z5]);

label.ulft(btex Δs etex, 0.5[z1,z3]);

Figure 18: Programming the Hanging Chain

55

9 Examples

9.6 Histogram

The MetaPost graph package provides facilities for drawing histograms. Figure 19 shows a
customized histogram.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Average = 73.2

Figure 19: Histogram of Marks

We begin by defining a macro to draw a bar of the histogram. The bottom left corner is at (x, y)
and the bar has width w and height h.

def shadedbox(expr x, y, w, h) =

path p;

p = (x,y) -- (x,y+h) -- (x+w,y+h) -- (x+w,y) -- cycle;

fill p withcolor blue;

enddef;

Next, we introduce the figure and save some temporary variables.

beginfig(1);

save maxfreq, freqscale, height, colnum, colmarks, colwidth, width;

The idea is to introduce as few independent variables as possible and to compute the others from
then. We need: the largest frequency, maxfreq; the scale for frequencies (points per occurrence),
freqscale; the number of columns, numcol; and the width of a column, colwidth.

maxfreq = 15;

freqscale = 12;

height = maxfreq * freqscale + 10;

colnum = 20;

56

9 Examples

colmarks = 100 / colnum;

colwidth = 15;

width = colnum * colwidth + 10;

Draw the vertical axis and its scale:

draw (0,0) -- (0,height);

for n = 0 upto maxfreq:

label.lft(decimal n, (0, freqscale*n));

endfor;

Draw the horizontal axis and its scale:

draw (0,0) -- (width,0);

for n = 0 upto colnum:

label.bot(decimal(colmarks * n), (colwidth * n, 0));

endfor;

Draw the histogram bars:

x := 0;

for h = 0,0,0,0,0,0,0,0,1,1,2,4,6,9,5,10,15,6,3,0:

shadedbox(x, 1, colwidth - 2, freqscale * h);

x := x + colwidth;

endfor;

Show the average:

avg = 3 * 73.2;

z0 = (avg, height);

draw (avg,0) -- z0 withcolor green;

label.top(btex Average = 73.2 etex, z0);

endfig;

9.7 Desargues’ Theorem

Figure 20 is obtained by the following construction.

• Choose a centre of projection, O.

• Draw a triangle, A1B1C1.

• Draw the lines OA1, OA2, and OA3.

• Draw another triangle, A2B2C2, with the same centre of projection. That is A2 lies on OA1,
etc.

In MetaPost, this step is done by mediation. E.g., a2 = 0.35[a1,o].

57

9 Examples

• Find the points of intersection of corresponding sides of the triangles. For example, B1C1

and B2C2 intersect at P1.

In MetaPost, this step is also done by mediation. E.g.:

p1 = whatever[b1,c1] = whatever[b2,c2];

• Desargues’ Theorem states that the three points of intersection, P1, P2, and P3, are collinear.

Figure 21 shows the MetaPost code used the draw Figure 20. The label commands have been
put at the end to ensure that the black dots are drawn after the coloured lines that go through
them.

O
A1

B1

C1

A2

B2

C2

P1

P2

P3

Figure 20: Desargue’s Theorem

9.8 Cobweb Plots

Cobweb plots are used to illustrate the behaviour of dynamic systems. Figure 22 shows the result
of computing 100 iterations of x→ kx(1−x). Figure 23 shows the code used to create the diagram.
The main points of interest is that the first for loop computes two points at each iteration, and
that it is simpler to separate the computation of points from their display in the second for loop.

58

9 Examples

pair a[],b[],c[],p[], o;

o = (300,0);

a1 = (0,0); b1 = (60,135); c1 = (95,20);

draw a1 -- b1 -- c1 -- cycle withcolor red;

draw a1 -- o withcolor blue;

draw b1 -- o withcolor blue;

draw c1 -- o withcolor blue;

a2 = 0.35[a1,o]; b2 = 0.2[b1,o]; c2 = 0.5[c1,o];

draw a2 -- b2 -- c2 -- cycle withcolor green;

p1 = whatever[b1,c1] = whatever[b2,c2];

p2 = whatever[c1,a1] = whatever[c2,a2];

p3 = whatever[a1,b1] = whatever[a2,b2];

draw b1 -- p1 -- b2;

draw a1 -- p2 -- a2;

draw b1 -- p3 -- b2;

draw p1 -- p2 -- p3 dashed evenly;

dotlabel.rt(btex O etex, o);

dotlabel.ulft(btex A_1 etex, a1);

dotlabel.lft(btex B_1 etex, b1);

dotlabel.bot(btex C_1 etex, c1);

dotlabel.bot(btex A_2 etex, a2);

dotlabel.llft(btex B_2 etex, b2);

dotlabel.urt(btex C_2 etex, c2);

dotlabel.lft(btex P_1 etex, p1);

dotlabel.bot(btex P_2 etex, p2);

dotlabel.top(btex P_3 etex, p3);

Figure 21: Programming Desargues’ Theorem

9.9 Three Dimensions

Although MetaPost is basically two-dimensional, it can be tricked into drawing perspective dia-
grams, giving the illusion of three dimensions. Many packages have been written for 3D MetaPost
pictures (§10 : 62). One technique is to use the three components of the type color as XY Z coor-
dinates. We give a simple example to illustrate the idea.

59

9 Examples

k = 3.70 (chaos)

Figure 22: Cobweb plot for the logistic map

save scale, k, seed, xmax;

scale = 200; k = 3.70; seed = 0.3; iters = 100;

label.rt(btex $k=3.70$ (chaos) etex, (10, scale));

draw (0,0) -- (scale,0);

draw (0,0) -- (0,scale);

draw (0,0) -- (scale, scale);

draw (0,0) for x := 0.0 step 1/iters until 1.0:

.. (scale * x, scale * k * x * (1-x))

endfor;

x0 = seed; y0 = 0;

for i := 1 step 2 until iters:

x[i] := x[i-1];

y[i] := k * x[i] * (1 - x[i]);

y[i+1] := y[i];

x[i+1] := y[i+1];

endfor;

draw scale * z0

for i := 1 upto iters: -- scale * z[i]

endfor;

Figure 23: Coding the cobweb plot in Figure 22

60

9 Examples

Assume that the viewpoint in 3D space is at (0, 0,−d) and that we project onto the plane z = 0.
This projection maps the 3D point (x, y, z) to the 2D point (tx, ty) where t = d/(z+d). The macro
perspective implements this transformation by converting a colour c = (r, g, b) to a pair (tr, tg):

vardef perspective(expr c) =

t := dist/(bluepart c + dist);

(t * redpart c, t * greenpart c)

enddef;

We use the colour array tp[] to represent the vertexes of a cube with side 2 centered at the origin:

color tp[];

tp0 = (-1,-1,-1); tp4 = tp0 + (0,0,2);

tp1 = (1,-1,-1); tp5 = tp1 + (0,0,2);

tp2 = (1, 1,-1); tp6 = tp2 + (0,0,2);

tp3 = (-1, 1,-1); tp7 = tp3 + (0,0,2);

Since MetaPost supports linear operations on colours, we can scale and translate the cube before
using perspective with dist = 200 to transform the vertexes to the pair array p[]:

dist := 200;

pair p[];

for i = 0 upto 7:

p[i] := perspective(40*tp[i]+(80,-70,30));

endfor;

Drawing the edges of the cube gives Figure 24:

draw p0--p1--p2--p3--cycle;

draw p4--p5--p6--p7--cycle;

draw p0--p4;

draw p1--p5;

draw p2--p6;

draw p3--p7;

Figure 24: Perspective view of a cube

9.10 Reading a File

This example illustrates the use of readfrom and scantokens. Suppose that the file "data.txt"

contains these two lines:

61

10 Links

1, 2, x, "Go!"

"pi = ", 3.14159263

The code on the left produces the figure on the right:

boxjoin(a.sw = b.nw; a.se = b.ne);

picture b[];

i = 0;

x = 99;

forever:

string line;

line := readfrom "data.txt";

exitif line = EOF;

string token, desc;

for token = scantokens line:

if numeric token:

desc := "Numeric: " &

decimal token;

elseif string token:

desc := "String: " & token;

fi;

boxit.b[i](desc);

b[i].e = b[i].w + (100,0);

drawboxed(b[i]);

i := i + 1;

endfor;

endfor;

Numeric: 1

Numeric: 2

Numeric: 99

String: Go!

String: pi =

Numeric: 3.14159 #72

The outer forever loop reads each line of the file, checking for end of file. The inner for loop uses
scantokens to split the line into tokens. The type of each token is checked, using type names as
predicates, and put into a descriptor, desc. Finally, each descriptor is drawn in a box.

Note that the third token in the file is x and it is displayed as 99, the value of x in the program.
Tokens in a file are considered to be strings only if they are quoted, like "Go!".

10 Links

John Hobby’s MetaPost page: http://cm.bell-labs.com/who//hobby/MetaPost.html

The TEX User’s Group — probably all that you will need: http://www.tug.org/metapost.html

A FAQ from the UK: http://www.tex.ac.uk/cgi-bin/texfaq2html?label=MP

Urs Oswald’s Very Brief Tutorial : http://www.ursoswald.ch/metapost/tutorial.html

Marc van Dongen’s contributions to MetaPost: http://www.cs.ucc.ie/~dongen/mpost/mpost.
html

MetaFun by Hans Hagen: http://wiki.contextgarden.net/MetaFun

A WYSIWYG interface for MetaPost: http://w3.mecanica.upm.es/metapost/metagraf.php

62

http://cm.bell-labs.com/who//hobby/MetaPost.html
http://www.tug.org/metapost.html
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=MP
http://www.ursoswald.ch/metapost/tutorial.html
http://www.cs.ucc.ie/~dongen/mpost/mpost.html
http://www.cs.ucc.ie/~dongen/mpost/mpost.html
http://wiki.contextgarden.net/MetaFun
http://w3.mecanica.upm.es/metapost/metagraf.php

10 Links

A MetaPost generator for 3D: http://www.gnu.org/software/3dldf/LDF.html

63

http://www.gnu.org/software/3dldf/LDF.html

Index

&, 11, 22, 27
**, 8
++, 8, 14
+-+, 8, 14

-- , 22

--- , 24
. . , 23
. . . , 23
:=, 9
=, 9
[], 15
3D, 59

abs, 13, 15
affine transform, 17
ahangle, 31
ahlength, 31
and, 10
angle, 14
angle, 15, 19
anonymous variable, 9
arc, 23
arclength, 27
arctime, 8, 27
area

shaded, 28
argument, 38
arithmetic, 13
array, 6
arrow, 30
assignment, 9

background, 12
bbox, 27
beginfig, 14, 33
beginfig, 2
beginfig(15), 1
begingroup, 7
beveled, 16
big points, 4
binary operator, 8
black, 12
blackpart, 12
blue, 12
bluepart, 12

boolean, 10
bot, 32
bounded, 21, 35
bounding box, 20
boxes

joining, 43
linking, 43
outlines, 45
oval, 44
text in, 45

boxes, 41
boxit, 41
boxjoin, 43
bp (big point), 4
bpath, 43
btex, 28, 46
buildcycle, 28, 53
butt, 16

c, 41
ceiling, 13
center, 20
char, 11
circle, 23
circleit, 44
circmargin, 44
clip, 30
clipped, 21, 35
cm, 4
cmykcolor, 10, 12
color, 10, 12, 59
comments, 4
comparison, 10
concatenation

of paths, 22
of strings, 11

constants
colours, 12
numerics, 13
pairs, 15
strings, 11

control points, 24
conversion

abs (pair to numeric), 15
angle (pair to numeric), 15

64

Index

ceiling (numeric to integer), 13
char (ASCII to string), 11
decimal (numeric to string), 11
dir (numeric to pair), 15
floor (numeric to integer), 13
round (numeric to integer), 14
str (suffix to string), 11

cosd, 13
curl, 24
currentpicture, 5, 19, 52
curve, 23
cuta, 42, 44
cutafter, 27
cutbefore, 27
cutll, 44
cutpa, 44
cyanpart, 12
cycle, 10, 22, 27

dashed, 22
dashed line, 22
dashpart, 21, 35
day, 13
decimal, 11, 13
decimal

in LATEX, 46
declaration, 6
def, 38
defaultdx, 41
defaultdy, 41
defaultfont, 11, 29
defaultpen, 16
defaultscale, 11, 29
difference of squares, 8, 14
dir, 15
direction, 15

of curve, 24
represented by pair, 14

direction, 8, 19, 27
directionpoint, 8, 27
directiontime, 8, 27
ditto, 11
div, 13
division, 13
dotlabel, 32
dotlabeldiam, 32
dotlabels, 32, 48
dotprod, 15

dotted line, 22
down, 15
downto, 21, 34
draw, 12, 30
drawarrow, 30
drawboxed, 41
drawboxes, 45
drawdblarrow, 31
drawoptions, 12, 17, 33
drawunboxed, 45
dx, 41
dy, 41

else, 35
elseif, 36
endfig, 1, 2
endgroup, 7
EOF, 36, 37
epsilon, 13
equality, 9, 10
equation, 9
erase, 30
etex, 46
evenly, 22
exitif, 34
exitunless, 35
explicit declaration, 6
expr

macro parameter, 39
expression, 8

path, 27

false, 10
fi, 35
file, 2

name, 33
read, 36, 61
write, 37

filenametemplate, 2, 33
fill, 12, 31
filldraw, 12, 28, 31
filled, 21, 35
floor, 13
font, 29
for, 21, 34, 62
forever, 34, 62
fullcircle, 23, 27
functions

65

Index

colours, 12
numerics, 13
pairs, 15
pictures, 20
strings, 11

graphicx, 3
green, 12
greenpart, 12
group, 7

halfcircle, 23
hanging chain, 54
hyperref, 3
hypotenuse, 8, 15

identity, 18
if, 35
image, 20
in, 4
infinity, 13
inflection points, 23
infont, 11
inner product, 15
input, 41
input file, 2
interim, 7
internal variable, 6
intersection, 26
intersectionpoint, 27
intersectiontimes, 27
inverse, 18

known, 10

label, 13
position (as parameter), 40

label, 32, 47
LATEX, 28
left, 15
length, 13
length, 11, 20, 27
lft, 32
line

corner, 16
end, 16
multiple, 28
straight, 22

linecap, 16

linejoin, 16
list, 21
llcorner, 20
llft, 32
local

variable, 7
loop, 34
lrcorner, 20
lrt, 32

macro, 38
recursive, 39

magentapart, 12
makepath, 16
makepen, 16
mediation, 14, 15
message, 36
MetaUML, 47
mexp, 13
mitered, 16
miterlimit, 16
mlog, 13
mm, 4
mod, 13
month, 13
mpref.mp, 1
mproof, 4
mpversion, 2, 11
multidimensional array, 6
multiple lines, 28

name, 5
local, 7
of output file, 33
of type, 6
of variable, 5

negative coordinates, 5
nest, 39
newinternal, 6
nib, 16
normal, 19

random number, 14
normaldeviate, 14
normalize, 15
not, 10
nullpen, 16
nullpicture, 19, 52
numeric, 10, 13

66

Index

odd, 10, 13
of, 8
operator, 8

assignment, 9
comparison, 10
difference of squares, 8
equality, 9
path, 22, 23
sum of squares, 8

or, 10
origin, 15
output

file name, 33
to console, 36, 37
to file, 2

painting, 31
pair, 10, 14
parameter, 38

of macro, 38
path

circle, 23
dots and dashes, 22
expression, 27
of box, 43
parametric, 25
straight, 22

path, 10, 22, 27
pathpart, 21, 35
pc, 4
pen, 15
pen, 10
pencircle, 15
penoffset, 8
penpart, 21, 35
pensquare, 15
pic, 45
pickup, 15
picture, 19
picture, 10
point

control, 24
Postscript, 4
printer’s, 4

point, 8, 19, 27, 53
postcontrol, 8
precedence, 8
precontrol, 8

predicates, 10
primary, 8
pt (printer’s point), 4

quartercircle, 23

random number, 14
rboxes, 41, 42
rboxit, 41
read file, 36, 61
readfrom, 36, 61
recursion, 39
red, 12
redpart, 12
reflectedabout, 17
remainder, 13
reverse, 23, 27
rgbcolor, 10, 12
right, 15
rotated, 17
rotatedaround, 17
round, 14, 15
rounded, 16
rt, 32

save, 7, 37
scaled, 17, 22
scaling, 4, 5
scantokens, 11, 21, 34, 61
scope, 7
secondary, 8
semicircle, 23
setbounds, 20
shading, 28, 31
shadow, 38
shifted, 17, 22
show, 37
showdependencies, 9, 37
showstopping, 37
showtoken, 37
showvariable, 37
sind, 13
size

of arrow head, 31
of box, 20
of circle, 23
of dots, 32
of text, 29

slanted, 17

67

Index

sqrt, 13
squared, 16
step, 21
str, 11
string, 10
string, 10, 11
stroked, 21, 35
subpath, 8, 23, 27
substring, 8, 11
suffix, 5
suffix

macro parameter, 39
sum of squares, 8, 14
sunflower florets, 53

tag, 5
tangent, 15, 19
tension, 24
tertiary, 8
TEX, 11, 13, 46
TEX, 28
text

macro parameter, 39
textual, 21, 35
thelabel, 32
three dimensions, 59
time, 13
top, 32
transform, 17
transform, 10, 18
transformed, 18
true, 10

ulcorner, 20
ulft, 32
UML diagrams, 47
umm, 1
unary operator, 8
undefine, 6
undraw, 30
unfill, 31
uniform random number, 14
uniformdeviate, 14
units, 4
unitsquare, 27
unitvector, 15
unknown, 10
until, 21

up, 15
upto, 21, 34
urcorner, 20
urt, 32

value
colour, 12
decimal, 11
global, 7
group, 7
known, 10
largest, 13
smallest, 13
unknown, 6, 10

vardef, 40
variable

anonymous, 9
declaration, 6
internal, 6, 7
local, 7
name, 5

verbatimtex, 28
version, 2
Vogel’s formula, 54

whatever, 9
white, 12
withcolor, 12, 31
withdots, 22
within, 35
withpen, 17
write

expression, 37
string, 36
to file, 37

write, 37

x, 6, 14, 40
xpart, 15, 18
xscaled, 16, 17
xxpart, 18
xypart, 18

y, 6, 14, 40
year, 13
yellowpart, 12
ypart, 15, 18
yscaled, 16, 17
yxpart, 18

68

Index

yypart, 18

z, 6, 14, 40
zscaled, 17

69

	Introduction
	Basic Concepts
	Version
	Input format
	The LaTeX File
	Comments
	Units
	Scaling a Picture
	Coordinates
	Variables
	Internal Variables
	Declarations
	Scope
	Expressions
	Assignment
	Equations

	Types
	Booleans
	Strings
	Colors
	Numerics
	Pairs
	Pens
	Transforms
	Pictures
	Lists

	Paths
	Straight lines
	Dots and Dashes
	Circles, Disks, and Arcs
	Curves
	Parametric Paths
	Path Constructors

	Commands
	Drawing Commands
	btex and verbatimtex
	clip
	draw
	drawarrow
	fill
	label

	Non-drawing Commands
	drawoptions
	filenametemplate
	for
	if
	message
	readfrom
	save
	show and friends
	write

	Macros
	def macros
	vardef and other macro forms

	Macro Packages
	Boxes
	Creating and Drawing Boxes
	Joining Boxes

	Linking Boxes
	Oval Boxes
	Text in Boxes

	Graphs
	TEX
	MetaUML

	Debugging
	Examples
	Euler Integration
	The Lorentz Transformation
	Dissipation
	Sunflower
	The Hanging Chain
	Histogram
	Desargues' Theorem
	Cobweb Plots
	Three Dimensions
	Reading a File

	Links
	Index

