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Abstract

We consider the problem of finding a discrete set of pixels that approximates
the envelope of a convex brush shape with respect to a given trajectory. Let the
digitization of a planar region be the set of pixels whose centers lie inside of it.
We develop mathematical models for the width of digitized brush strokes, and
we give a class of polygonal brush shapes such that the width of their envelope
with respect to a given trajectory is accurately reflected by the digitization of
the envelope. Polygonal brush shapes also have the advantage that it is usually
much easier to compute the digitization of the envelope with respect to a given
trajectory.

We present fast algorithms for approximating a given brush shape with an
appropriate polygon so that the digitization of the envelope of the modified brush
will have more accurate and uniform width than the digitization of the exact
envelope would. We also present an algorithm for finding a set of pixels that
represents the envelope of a dynamically changing brush while preserving accurate
and uniform stroke width. This algorithm finds a polygonal path with simple
rational slopes that is digitally equivalent to the given trajectory. Other possible
applications of this polygonal representation include smoothing digitized curves,
data compression, and curve fitting.
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Chapter 1

Introduction

In computer graphics and other applications it is often useful to describe
shapes as the product of moving a brush along a trajectory. The final output
is usually produced by some kind of raster device such as a CRT screen or a
laser printer, so that the desired shape must be approximated by a set of discrete
pixels. We shall investigate ways to take advantage of the special features of
brush-trajectory descriptions in order to deal with the discreteness.

In the simplest applications, the trajectory represents a line to be drawn and
the brush determines the desired thickness. Of course the discrete raster limits
the set of achievable line thicknesses; e.g., horizontal and vertical lines must be at
least one pixel wide. There are many applications where this minimum possible
width is desirable, and some important work has been done on the problem of
drawing thin lines on raster devices.

Perhaps the most important single work on line drawing is J. E. Bresenham’s
algorithm for drawing thin straight lines {3]. In addition to its speed and sim-
plicity, this algorithm has the advantage that the set of pixels it selects has a
simple mathematical description that leads to superior aesthetic qualities. A gen-
eralization of this idea is Knuth’s “diamond rule” which he used in his original
METAFONT system [13]. The effect of the diamond rule is to ensure that straight
or curved lines with slopes between 1 and —1 contain one pixel from each column
of the raster, and similarly that lines with steeper slopes contain one pixel in each
row. A general treatment of line drawing algorithms that are “optimal” in this
way is given by Sproull in [27].

Other line drawing algorithms include the digital differential analyzer de-
scribed by Armstrong in [1]. A general overview of this and related algorithms
can be found in Newman/Sproull [19]. Generalizations to curved lines include
Lindgard/Moss [17] and Jordan et al. [12]. (See also Belsner [2] and Ramot [23].)
These algorithms have been used successfully in many applications, especially
where speed and simplicity are important, but they do not obey the diamond rule;
hence the thickness of lines produced depends to some degree on parameters other
than the slope. There are other algorithms for drawing curved lines that are much
easier to analyze because they do obey rules similar to the diamond rule. Such
algorithms are given by Bresenham in [4] and by Horn in [11].

For lines of more than the minimum thickness, the approach depends on the
type of output device being used. Some printing devices with limited graphics
capabilities can draw lines of various thicknesses by using fonts containing short
line segments. This technique may have other applications including color CRT
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2 INTRODUCTION

displays. (See Lucas [16].)

When color and gray scales are available, it is possible achieve complex ef-
fects such as partially transparent brushes Fishkin [6], but the most important
application for gray scales is the technique of “antialiasing” which involves using
gray pixels at the boundaries of lines so as to make them appear smoother. Some
fast antialiasing algorithms are given by Field in [5] and a brief general summary
is given by Foley and Van Dam in [7]. Antialiasing can greatly improve the ap-
pearance of lines, but the technique is applicable only to certain output devices.
Many CRT displays are not capable of displaying gray pixels, and very few printing
devices have this capability.

This leaves the important question of how to cope with raster devices that
cannot display gray pixels. The basic algorithms for doing this are much the same
as the line drawing algorithms given so far. One way to find a discrete version of
a brush-trajectory specification is to determine its boundary, and the process of
finding such boundaries is essentially equivalent to line drawing. Our goal will be
to obtain a description of the desired set of pixels that is sufficient to drive such a
line drawing algorithm. A general purpose plotting algorithm that is well suited
to this application is described by Knuth in [15].

The shape represented by a brush stroke is the envelope of the trajectory T
with respect to the brush B, i.e., the set of all z + z' where z is a point on T
and 2z’ is a point in B. For simple line drawing applications B is usually a circle
or perhaps a rectangle or an ellipse, and the trajectory is a straight line or some
spline curve. In general the brush shape might also be described by spline curves.

Although the definition of envelope makes sense in general, we shall require
T and the boundary of B to be piecewise real analytic. That is, they must be
decomposable into a finite number of sets, each of which is the range of a real
analytic function from a closed interval of R into R?. This ensures that the envelope
of T with respect to B will also have a piecewise real analytic boundary. Some
of our results will also be valid under weaker restrictions, but all commonly used
spline curves are piecewise real analytic. This work is based on the concept of
convolution defined by Guibas, Ramshaw, and Stolfi in [8] and their generalization
to curved tracings [24]. This in turn depends on the restriction to piecewise real
analytic curves.

Since the theory of tracings is not yet widely known, the main body of this
work will be devoted to results that can be understood without that theory. The
appendix gives a brief introduction to the theory of tracings and convolutions,
followed by a variety of interesting results that depend on the theory. Some con-
cepts introduced in the main body are generalized and treated more formally in
the appendix.

1.1. The Digitization of a Region

If a brush stroke or any other shape is to be represented on a raster device
such as a CRT display, a laser printer, or a digital typesetter, it is necessary to
approximate the shape with a set of discrete pixels. This can be done by merely
taking those pixels whose centers lie inside of the shape. We shall refer to this set




























































































































































































































































































































































