
TUGboat, Volume 44 (2023), No. 2 203

The LATEX template generator:
How micro-templates reduce template
maintenance effort

Oliver Kopp

Abstract

Scientific findings are published by different pub-
lishers. These provide different templates. These
differ in the documentation and packages provided.
For example, hyperref or microtype are mostly not
included or not configured properly. Furthermore,
there is a demand for minimal examples in the body
of the paper. For instance, how to typeset a listing
with line numbers and hyperlink to that line num-
ber. These minimal examples should appear in any
paper template. If the minimal example is updated,
how can various paper templates be updated auto-
matically? The “LATEX Template Generator” is one
answer to this question. It uses “micro-templates”
to create full-fledged paper templates containing the
same configurations for popular packages. Thus, it
reduces the maintenance effort of LATEX templates.

1 Introduction

In scientific research, starting a new paper often in-
volves using a previous publication as a template.
Researchers adapt this base structure to meet their
current requirements. However, this practice intro-
duces the potential for inconsistencies, particularly
with respect to the usage and configuration of LATEX
packages. Although publishers offer templates for
their publication venues, these templates are rather
minimal and often omit configuration for hyperref,
microtype, listings, etc.

One solution is to offer “extended” templates for
each venue, including best practices for each LATEX
package. However, when the package is updated with
new features or when new insights about the package
emerge, all these templates must be manually up-
dated—a process prone to errors. The “LATEX Tem-
plate Generator” (LTG) addresses these challenges.
It introduces the concept of “micro templates”, each
providing a preamble and an example for a specific
LATEX package. These micro templates are then au-
tomatically consolidated into templates for various
outputs, such as journals, conferences, and student
theses. This strategy reduces the risk of errors and
simplifies the process of updating LATEX templates.

Figure 1 presents the roles when working with
the LTG:

• The role package expert is filled by an individual
with extensive knowledge about a specific pack-
age. For instance, one expert might specialize

microtype

hyperref IEEE main.tex

README.md

.latexmkrc

.gitignore

tooling expert content expert

combination

paper.tex

mindflow
…

… …

class expert

ACM

…

…

package expert

Figure 1: Roles in the process of template generation

in the hyperref package, while another might
be well-versed in the microtype package. These
experts contribute not only by configuring the
packages, but also by providing minimal exam-
ples for each package. This guidance ensures
proper usage and assists newcomers in under-
standing the package functionalities.

• The role class expert is held by an individual
who understands the necessities of each class.
They know which packages are required for each
template based on the class and which ones
might be unnecessary or counterproductive.

• The role tooling expert is held by someone profi-
cient in the respective tooling, such as latexmk
or git. They provide configurations for these
tools for templates generated by the LTG.

• The role content expert provides guidance on
how to write the scientific content of a paper.
They may offer advice on structuring arguments,
referencing sources, or other aspects of academic
writing.

• Finally, the role template user describes the
ultimate user of the template crafting scientific
work.

The task of combining the different inputs into
a template file (“combination” in Figure 1) is done
by the LATEX Template Generator.

The basic idea of the LTG is to offer configu-
ration possibilities where required and to assume
sensible defaults where possible. For instance, the
template user is offered a choice for the overall tem-
plate to target (e.g., IEEE or a master’s thesis), the
language to be used (e.g., English or German), but
does not need to choose anything for packages such as
microtype, because sensible defaults are provided.

In the following, details of the LTG are provided.
First, Section 2 presents reasoning on the chosen
prompting and generation framework. Section 3 out-
lines the general concept. Section 4 presents the
usage of the LATEX template generator. Finally, Sec-
tion 5 provides a discussion and presents an outlook
on future work.

doi.org/10.47397/tb/44-2/tb137kopp-microtemplates

The LATEX template generator: How micro-templates reduce template maintenance effort

https://doi.org/10.47397/tb/44-2/tb137kopp-microtemplates

204 TUGboat, Volume 44 (2023), No. 2

2 The choice of yeoman as the basis for
the generator

To guide the template user through different options
and to generate the final template, an existing frame-
work should be used. The basic requirements are:
i) being able to mix multiple micro-templates into
larger templates (e.g., the hyperref configuration
should be stored once in the repository and used
by multiple templates) and ii) offering dependent
prompts. For instance, if “Overleaf compatibility” is
chosen, the choices of the TEX Live variants should
be constrained to versions before 2023.

In 2019, the following frameworks were eval-
uated: Yeoman,1 Cookiecutter,2 copier,3 Jinja2,4

Cheetah,5 Apache Velocity,6 and LuaLATEX. Some
of these options are templating engines only (Jinja2,
Cheetah, Apache Velocity). Thus, the prompting
would have been required to be hardwired. Lua-
LATEX is a very general “framework”, which is not
commonly used for templating. Since I was not pro-
ficient enough to use it, the final choice was between
Python-based tooling (Cookiecutter and copier) and
JavaScript-based tooling Yeoman. Since both Cookie-
cutter and copier require the choices to be made avail-
able in text-based configuration files and it seemed to
be impossible to craft choices dependent on previous
choices, I opted for Yeoman.

In 2020, TEXplate was released on CTAN.7 The
current version has a different structure than the
LTG. TEXplate relies on TOML8 files to define the
LATEX file to be generated. LTG builds upon .tex

files which are “enriched” by templating commands.
The claim of LTG is that it is easier for contributors
to edit .tex files with their editor of choice than to
edit TOML files.

All in all, Yeoman has been chosen as the gen-
erator framework. It is based on JavaScript and
fulfills both requirements: The package preambles
and examples are stored in different files (details in
Section 3) and offers built-in prompting. Prompt
choices can be modified on the fly to enable depen-
dent prompts.

To make the knowledge about the decision sus-
tainable, Markdown Any Decision Records [4] have
been written. All the aforementioned options as well
as their pros and cons are included as Markdown

1 https://yeoman.io/
2 https://github.com/cookiecutter/cookiecutter
3 https://github.com/copier-org/copier
4 http://jinja.pocoo.org/
5 http://cheetahtemplate.org/
6 http://velocity.apache.org/
7 https://ctan.org/pkg/texplate
8 https://toml.io/en/

/

generators/

app/

templates/

...

Dockerfile.iot

Texlivefile

...

main.en.tex

mindflow.example.en.tex

mindflow.preamble.en.tex

...

index.js

options.js

Figure 2: Directory tree of the generator

files inside the path docs/decisions/9 inside the
repository.

3 The concept of the LTG

This section presents the concept of LTG. Thereby,
the file structure of LTG’s source repository10 is used.
The most important files are presented in Figure 2.

The pair of files mindflow.example.en.tex and
mindflow.preamble.en.tex show the basic concept
of LTG’s micro templates using the mindflow pack-
age. The mindflow package11 is a basic LATEX pack-
age enabling a) quickly noting down thoughts and
b) having LATEX marking these thoughts visually.

A micro template consists of i) a preamble file
and ii) optionally an example file. The content of
the preamble file is put into the preamble and the
example is put as LATEX example in the document
body. The filename is always the package name,
followed by either preamble or example and then en

for English or de for German.
mindflow.preamble.en.tex looks as follows:

<% switch (documentclass) { case "acmart":

case "ieee": -%>

\usepackage[incolumn]{mindflow}

<% break; default: -%>

\usepackage{mindflow}

<% break; } -%>

On the first line, one sees the templating lan-
guage “Embedded JavaScript templating” (EJS12) in
use. In general, template commands are enclosed in

9 https://github.com/latextemplates/

generator-latex-template/tree/main/docs/decisions
10 https://github.com/latextemplates/

generator-latex-template
11 https://ctan.org/pkg/mindflow
12 https://ejs.co/

Oliver Kopp

https://yeoman.io/
https://github.com/cookiecutter/cookiecutter
https://github.com/copier-org/copier
http://jinja.pocoo.org/
http://cheetahtemplate.org/
http://velocity.apache.org/
https://ctan.org/pkg/texplate
https://toml.io/en/
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.example.en.tex
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.preamble.en.tex
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.preamble.en.tex
https://github.com/latextemplates/generator-latex-template/tree/main/docs/decisions
https://github.com/latextemplates/generator-latex-template/tree/main/docs/decisions
https://github.com/latextemplates/generator-latex-template
https://github.com/latextemplates/generator-latex-template
https://ctan.org/pkg/mindflow
https://ejs.co/

TUGboat, Volume 44 (2023), No. 2 205

<% ... %>. The minus sign before the closing %> indi-
cates that the following newline should be removed.
The intention of the EJS code is that in the case of
the document class being a two-column document
class (as it is for ACM and IEEE), the mindflow

package is passed the option incolumn. In all other
cases, just \usepackage{mindflow} is written out.

mindflow.example.en.tex looks as follows:

<%= heading2 %>{Notes separated from

the text}

The package mindflow enables writing down

notes and annotations in a way so that they

are separated from the main text.

<%- bexample %>

\begin{mindflow}

This is a small note.

\end{mindflow}

<%- eexample %>

The template command <%= heading2 %> instructs
Yeoman to put the content of the heading2 vari-
able at that place. In the case of an IEEE tem-
plate, this is \subsection; in the case of, for instance,
the provided scientific-thesis template, this is
\section, because the latter’s main structuring ele-
ment is \chapter.

The markers bexample and eexample are markers
for LATEX commands for beginning and ending an
example. The LTG defines its own environment for
examples to output both rendered LATEX code as well
as the source code. It makes use of the capabilities
of the tcolorbox package.13

The preamble is included as follows in the file
main.en.tex:

<% if (texlive >= 2021) { %><%- include

('mindflow.preamble.en.tex', this); } -%>

The reason for the guard with the TEX Live
version is that mindflow was released in 2021, and
a template may require support of earlier TEX Live
versions.

The file options.js contains all options offered
to the user. The following excerpt presents the option
for TEX Live:

{

type: "list",

name: "texlive",

message: "Which TeXLive compatibility?",

choices(state) {

const res = [

{

name: "TeXLive 2021",

value: 2021,

13 https://ctan.org/pkg/tcolorbox

VII. LATEX HINTS

This section contains hints on writing LaTeX. It focuses
on minimal examples, which can be directly adapted to the
content

A. Handling of paragraphs

One sentence per line. This rule is important for the usage
of version control systems. A new line is generated with a
blank line. As you would do in Word: New paragraphs are
generated by pressing enter. In LaTeX, this does not lead to a
new paragraph as LaTeX joins subsequent lines. In case you
want a new paragraph, just press enter twice (!). This leads
to an empty line. In word, there is the functionality to press
shift and enter. This leads to a hard line break. The text starts
at the beginning of a new line. In LaTeX, you can do that by
using two backslashes (\\).
This is rarely used.

Please do not use two backslashes for new paragraphs. For
instance, this sentence belongs to the same paragraph, whereas
the last one started a new one. A long motivation for that is
provided at http://loopspace.mathforge.org/HowDidIDoThat/
TeX/VCS/#section.3.

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

676 One sentence per line.

677 This rule is important for the usage of version control systems.

678 A new line is generated with a blank line.

679 As you would do in Word:

680 New paragraphs are generated by pressing enter.

681 In LaTeX, this does not lead to a new paragraph as LaTeX joins

subsequent lines.

682 In case you want a new paragraph, just press enter twice (!).

683 This leads to an empty line.

684 In word, there is the functionality to press shift and enter.

685 This leads to a hard line break.

686 The text starts at the beginning of a new line.

687 In LaTeX, you can do that by using two backslashes

(\textbackslash\textbackslash).\\

688 This is rarely used.

689

690 Please do \textit{not} use two backslashes for new paragraphs.

691 For instance, this sentence belongs to the same paragraph,

whereas the last one started a new one.

692 A long motivation for that is provided at

\url{http://loopspace.mathforge.org/HowDidIDoThat/TeX/VCS/#section.3}.

B. Notes separated from the text

The package mindflow enables writing down notes and
annotations in a way so that they are separated from the main
text.

This is a small note.

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

700 \begin{mindflow}

701 This is a small note.

702 \end{mindflow}

C. Hyphenation

LATEX automatically hyphenates words. When using mi-
crotype, there should be less hypnetations than in other settings.
It might be necessary to tweak the hyphenations nevertheless.
Here are some hints:

In case you write “application-specific”, then the word
will only be hyphenated at the dash. You can also write
applica\allowbreak{}tion-specific (result: application-specific),
but this is much more effort.

You can now write words containing hyphens which
are hyphenated at other places in the word. For instance,
application"=specific gets application-specific. This is enabled
by an additional configuration of the babel package.

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

713 In case you write \enquote{application-specific}, then the word

will only be hyphenated at the dash.

714 You can also write \verb1applica\allowbreak{}tion-specific1

(result: applica\allowbreak{}tion-specific), but this is

much more effort.

715

716 You can now write words containing hyphens which are hyphenated

at other places in the word.

717 For instance, \verb1application"=specific1 gets

application"=specific.

718 This is enabled by an additional configuration of the babel

package.

D. Typesetting Units

Numbers can be written plain text (such as 100), by using
the siunitx package as follows: 100 km

h , or by using plain LATEX
(and math mode): 100 km

h .

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

724 Numbers can be written plain text (such as 100), by using the

siunitx package as follows:

725 \SI{100}{\km\per\hour},

726 or by using plain \LaTeX{} (and math mode):

727 $100 \frac{\mathit{km}}{h}$.

5% of 10 kg

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

731 \SI{5}{\percent} of \SI{10}{kg}

Numbers are automatically grouped: 123 456.

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

735 Numbers are automatically grouped: \num{123456}.

E. Surrounding Text by Quotes

Please use the “enquote command” to quote something.
Quoting with “quote” or “quote” also works.

Figure 3: Mindflow example section in the rendered
IEEE template

},

{

name: "TeXLive 2022",

value: 2022,

},

];

if (!state.overleaf) {

res.push({

name: "TeXLive 2023",

value: 2023,

});

}

return res;

}

},

It starts by defining the option to be a list and
instructs that the answer should end up in a JSON

object property named texlive. The message used
for prompting is given in message. The choices are
created dynamically, based on previous choices. As
an example, the user can choose whether the tem-
plate should be usable on Overleaf. If they opted
for “yes”, the option to choose TEX Live 2023 is not
included, since (at the time of release of the LTG),
version 2023 is not supported by Overleaf. (Overleaf
typically adds support for new TEX Live releases in
the fall [2].) Coming back to the options, there are
in total 18 possible options to choose from. Some are
dependent on the chosen document class and thus
not all are shown to the user.

The file index.js calls the prompting, derives
internal variables based on the result, and finally
creates the resulting files. One internal variable
is the final file name. In the case of journals and
conferences, this is paper.tex. In case of a scientific
thesis, it is main.tex.

Figure 3 shows the rendered output of this
mindflow example, when the IEEE template is se-
lected.

The LATEX template generator: How micro-templates reduce template maintenance effort

https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.example.en.tex
https://ctan.org/pkg/tcolorbox

206 TUGboat, Volume 44 (2023), No. 2

4 Usage

The LTG requires a recent Node.js installation. There,
the command
npm install -g generator-latex-template

installs the generator and makes it globally accessible
on the target machine. Then, the user can invoke
the generator using yo latex-template. After issuing
that command, LTG outputs following:

$ yo latex-template

? Which template should be generated?

(Use arrow keys)

> Scientic Thesis

Association for Computing Machinery (ACM)

Institute of Electrical and Electronics

Engineers (IEEE)

Springer's Lecture Notes in Computer

Science (LNCS)

The user is first asked which template they want
to create. Currently, a scientific thesis template,
ACM, IEEE, and LNCS are supported. More tem-
plates are part of future work.

The user navigates through the options using
arrow keys. Once a choice is made, the system pro-
ceeds to the next question, continuing this iterative
process until all questions have been answered.

The following presents the result of an example
complete process of selections:

? Which template should be generated? IEEE

? Which variant of IEEE paper? conference paper

? Which paper size to use? A4

? Overleaf compatibility? yes

? Which TeXLive compatibility? TeXLive 2022

? Should a Dockerfile be generated?

yes (Island of TeX)

? Which language should the document be?

English

? Which package to typeset listings? listings

? Which package to use to "enquote" text?

csquotes (\enquote{...} command)

? Which package to mark TODOs? pdfcomment

? Include hints on text

(e.g., how to write an abstract)? Yes

? Include minimal LaTeX examples? Yes

After all questions have been answered, Yeoman
outputs the files it creates:

create .gitignore

create .editorconfig

create paper.bib

create _latexmkrc

create localSettings.yaml

create LICENSE

create Makefile

create paper.tex

create README.md

create .dockerignore

create Dockerfile

create Texlivefile

create .github\workflows\check.yml

Note that the file latexmkrc is prefixed by an
underscore. This enables uploading the whole reposi-
tory to Overleaf without any error shown in the user
interface. A Dockerfile is also generated. In this ex-
ample, the file is generated based on Dockerfile.iot

and uses a minimal Island of TEX Docker image
[3]. The image installs all LATEX packages listed in
Texlivefile into the image. This way, the image size
is kept to a minimum.

Finally, a GitHub workflow14 file is generated.
When publishing the repository on GitHub, GitHub’s
CI will build a docker image based on the Dockerfile

and build the LATEX file using latexmk.

5 Discussion and outlook

This paper presented the LATEX Template Genera-
tor as one solution to collect knowledge about best
practices of packages and a way to include them in
rich templates for authors. To add support for a
new class, the class expert has to adapt main.en.tex
and options.js to include the class and add proper
conditions for packages which should be included or
excluded. Then, a new template file is generated.
No work for the package experts is caused: Their
templates can (most probably) just be used by the
class expert. Vice versa, if an update on the package
examples are made, the class expert (most probably)
does not need to do anything, because the contents
are directly available in their template.

For end users, installing Node.js can be tedious.
Therefore, for each supported template, a separate
GitHub repository is offered. In that repository, de-
fault paper-*.tex files are offered. For the LNCS

template,15 paper.tex uses the Computer Modern
font, microtype configuration, listings configura-
tion (including JSON support), pdfcomment16 for
TODO marking, and LATEX examples. To reduce the
size of the .tex file, no hints on writing a paper are
included.

The repository also offers other paper-*.tex

files. For instance, paper-en-times-minted.tex

provides a template where Times New Roman is
used for the font and minted17 as the package for
listings. A template user can just download the ZIP

14 https://github.com/features/actions
15 https://github.com/latextemplates/LNCS
16 https://ctan.org/pkg/pdfcomment
17 https://ctan.org/pkg/minted

Oliver Kopp

https://github.com/latextemplates/LNCS/blob/main/paper.tex
https://github.com/latextemplates/LNCS/blob/main/paper-en-times-minted.tex
https://github.com/features/actions
https://github.com/latextemplates/LNCS
https://ctan.org/pkg/pdfcomment
https://ctan.org/pkg/minted

TUGboat, Volume 44 (2023), No. 2 207

archive of the repository or even use GitHub’s tem-
plate feature18 to create a new git repository hosted
on GitHub containing the latest template files as
single commit.

The most impactful design decision is to have
the choices encoded in the templating language. For
instance, if LuaLATEX is chosen by the user, the font
configuration is generated for LuaLATEX. In case the
author wants to switch to pdfLATEX, they must re-
generate the whole template: There is no “dynamic”
LATEX if/else construct for a pdfLATEX fallback. Fu-
ture work will investigate this further and possibly
add an additional user option to generate a more
flexible template.

The LTG project itself is a true open source
project and calls for contributions of examples of
common classes, packages and practices. Currently,
around 20 packages and examples are offered. A good
start are the hints given by Beeton [1]. As the new
The LATEX Companion, third edition, discusses more
than 500 examples [5], there is lots of room to include
examples. Certainly, a careful selection of discussed
packages needs to be made. The LTG focuses on
providing only one example per topic. Thus, these
examples will surely be enriched by references to
TLC3 for the interested readers.

References

[1] B. Beeton. What every (LA)TEX newbie should
know. TUGboat 44(2):164–169, 2023.

[2] T. Hejda. TEX Live and Overleaf revisited.
TUGboat 44(2):256–256, 2023.

[3] Island of TEX. Living in containers—on TEX
live in a docker setting. TUGboat 44(2):249–252,
2023.

[4] O. Kopp, A. Armbruster, O. Zimmermann.
Markdown architectural decision records:
Format and tool support. In ZEUS, vol. 2072 of
CEUR Workshop Proceedings, pp. 55–62, 2018.
https://ceur-ws.org/Vol-2072/paper9.pdf

[5] F. Mittelbach, U. Fischer. The LATEX
Companion: Parts I & II. Addison-Wesley,
third ed., 2023.

⋄ Oliver Kopp
Sindelfingen, Germany
https://github.com/koppor

ORCID 0000-0001-6962-4290

18 https://docs.github.com/en/repositories/

creating-and-managing-repositories/

creating-a-repository-from-a-template

https://ceur-ws.org/Vol-2072/paper9.pdf
https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-repository-from-a-template
https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-repository-from-a-template
https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-repository-from-a-template

	Introduction
	The choice of yeoman as the basis for the generator
	The concept of the LTG
	Usage
	Discussion and outlook

