
TUGboat, Volume 44 (2023), No. 1 117

ConTEXt in TEX Live 2023

Hans Hagen

Starting with TEX Live 2023 the default ConTEXt
distribution is LMTX, a follow up on MkIV, running
on top of the LuaMetaTEX engine instead of Lua-
TEX. Already for a long time the MkII version used
with pdfTEX, X ETEX and Aleph has been frozen and
most users moved on from MkIV to LMTX (a more
distinctive tag for what internally is version MkXL).

In principle one can argue that we now have
three versions of ConTEXt and there can be the
impression that they are very different. However,
although MkXL can do more than MkIV which can
do more than MkII, the user interface hasn’t changed
that much and old functionality is available in newer
versions. Of course some old features make no sense
in newer variants, like eight-bit font encodings in an
OpenType font realm and input encodings when one
uses UTF, although we still support input encodings
a.k.a. regimes. When we started using the Mk* suf-
fixes the main reason was that we had to distinguish
files and the official TEX distribution doesn’t permit
duplicate file names. Using a distinctive suffix also
makes it possible to treat files differently.

Table 1 shows major aspects of the different Con-
TEXt versions. The ‘template’ files listed in the table
are a mix of TEX and Lua and originate in the early
days of MkIV; basically, they are a wink to active
server pages. With ‘arguments’, we refer to files that
accept named macro arguments which means that
they need to be preprocessed. That started as a
proof of concept but some core files are defined that
way. Users will normally just use a .tex file.

The Lua files in the code base have the suffix
lua, or when meant for LuaMetaTEX that uses a
newer Lua engine they can have the suffix lmt. There
can also be lfg (font goodies) and llg (language
goodies) plus byte-compiled files with various suffixes
but these are normally not seen by users. We leave
it at that.

So, while TEX Live 2022 installed MkII and
MkIV, TEX Live 2023 installs MkIV and LMTX.
Therefore the most significant upgrade is in the en-
gine that is used by default: LuaMetaTEX instead
of LuaTEX. The MkII files are no longer installed so
we don’t need pdfTEX.

So how did we end up here? Initially the idea
was that, because LuaTEX is basically frozen, Lua-
MetaTEX would be the engine that we conduct ex-
periments with and from which occasionally we could
backport code to LuaTEX. However it soon became
clear that this would not work out well so backport-
ing is off the table now. Just for the record: the
project started years ago so we’re not talking about
something experimental here. There have been arti-
cles in TUGboat about what we’ve been doing over
the years.

One of the first decisions I made when starting
with LuaMetaTEX was to remove the built-in back-
end, which then meant also removing the bitmap
image inclusion code. That made us get rid of de-
pendencies on external libraries. In fact, a proof-of-
concept experimental variant didn’t use the built-
in backend at all. The font loading code could be
removed as well because that was not used in MkIV
either. In MkIV we also don’t use the kpse library
for managing files so that code could be dropped
from the engine tool; it can be loaded as so-called
optional library if needed but I’ll not discuss that
here. If you look at what happens with the LuaTEX
code base, you’ll notice that updating libraries hap-
pens frequently and that is not a burden that we
want to impose on users, especially because it also
can involve updating build-related files. Another
advantage of not using them is that the code base
remains small.

A direct consequence of all this was that the
build process became much more efficient and less
complex. A fast compilation (seconds instead of min-
utes) meant that more drastic experiments became
possible, like most recently an upgrade of the math
subsystem. All this, combined with an overhaul of

suffix engine template arguments main file

MkII pdfTEX, X ETEX, Aleph context.mkii

MkIV LuaTEX, LuaJITTEX, LuaMetaTEX context.mkiv

MkVI idem yes
MkIX idem yes
MkXI idem yes yes

MkXL LuaMetaTEX context.mkxl

MkLX idem yes

Table 1: Major ConTEXt versions.

doi.org/10.47397/tb/44-1/tb136hagen-texlive

https://doi.org/10.47397/tb/44-1/tb136hagen-texlive


118 TUGboat, Volume 44 (2023), No. 1

the code base, both the TEX and MetaPost part,
meant that backporting was no longer reasonable.
Being freed from the constraint that other macro
packages might use LuaMetaTEX in turn resulted in
more drastic experiments and adding features that
had been on our wish list for decades. Another side
effect was that we could easily compile native Win-
dows binaries and immediately support transitions
to ARM-based hardware.

Instead of “backporting after experimenting”,
a leading motive became “fundamentally move for-
ward” while at the same time tightening the relation
between ConTEXt and the engine: the engine code
became part of the distribution so that users can
compile themselves, which fits perfectly in the par-
adigm (and demands) of distributing all the source
code, even that of the engine. There is also less
danger that patches on behalf of other usage inter-
feres with stable support for ConTEXt. A specific
installation is now more or less long-term stable by
design because it no longer depends on binaries and/
or libraries being provided for a specific platform
and operating system version. Of course installers
and TEX Live do provide the binaries, so users aren’t
forced to worry about it, but they can move along
with a system update by recompiling an old, and for
their purpose, frozen ConTEXt code base.

An unofficial objective (or challenge) became
that the accumulated source stays around 12 MB

uncompressed, (compressed a bit over 2 MB) and the
binary around 3 MB so that we could use the engine
as an efficient Lua runner as well as a launcher stub,
thereby removing yet another dependency. That
way the official ConTEXt distribution didn’t grow
much in size. A bonus is that we now use the same
setup for all operating systems. It also opened up
the possibility of a exceptionally small installation
with all bells and whistles included. Another nice
side effect, combined with automatic compilation
on the compile farm, makes that we can provide
installations that reflect the latest state of affairs: a
recent binary combined with the latest ConTEXt. As
a result, most users quickly went for LMTX instead
of MkIV.

In the code base we avoid dependencies on spe-
cific platforms but there are a few cases where the
code for Windows and UNIX differs. However, the
functionality should be the same. A good test is
that for Windows we can compile with mingw (cross-
compilation), MSVC (native) and clang (native); that
order is also the order of runtime performance. The
native MSVC binary is the smallest but users prob-
ably don’t care. In any case, it is nice to have a
fallback plan in place. The code is all in C; the

MetaPost code is converted from CWEB into C using
a Lua script but we also ship the resulting C code.
The code base provides a couple of CMake files and
comes with a trivial build script.

When I say that there are no libraries used,
I mean external libraries. We do use code from
elsewhere: adapted avl as well as decnumber (for
the MetaPost library), adapted hjn (hyphenation),
miniz (zip compression), pplib (for loading PDF

files), libcerf (to complement other math library
support, but it might be dropped), and mimalloc

for memory management. However all the code is in
the LuaMetaTEX code base and only updated after
checking what changed. The most important library
originating elsewhere is of course Lua: we use the lat-
est and greatest (currently) 5.4 release. We kept the
socket library but it might be dropped or replaced
at some point. In addition there is a subsystem for
dynamically loading libraries; the main reason for
that being that I needed zint for barcodes, interfaces
to sql databases, a bunch of compression libraries,
etc. But all that is tagged optional and ConTEXt will
never depend on it. There are no consequences for
compilation either because we don’t need the header
files. The glue code is very minimalistic and most
work gets delegated to Lua.

Initially, because the backend is written in Lua,
there was a drop in performance of some 15% but that
was stepwise compensated by gains in performance
in the engine and additional or improved function-
ality. The ConTEXt code base is rather optimized
so there was little to gain there, apart from using
new features. Existing primitive support could also
be done a bit more efficiently; it helps if one knows
where potential bottlenecks are. Therefore, in the
meantime an LMTX run can be quite a bit faster than
a MkIV run and it can even outperform a LuaJITTEX
run. In practice, the difference between an eight-bit
MkII run using the eight-bit pdfTEX engine and a 32-
bit LuaMetaTEX run with LMTX can be neglected,
definitely on more complex documents. I never get
complaints about performance from ConTEXt users,
so it might be a minor concern.

So what are the main differences in the installa-
tion? If you really want to experience it you should
use the standard installation. Currently the small
installer is the engine that synchronizes the installa-
tion over the net and, assuming a reasonable internet
connection, that takes little time. The installation is
relatively small, and many of the bytes used are for
the documentation. Updates are done by transferring
only the changed files. The TEX Live installation is
a bit larger because it shares for instance fonts with
the main installation and these come with resources



TUGboat, Volume 44 (2023), No. 1 119

used by other macro packages. Both installations
bring MkIV as well as LMTX and therefore provide
LuaTEX as well as LuaMetaTEX. However, a MkIV
run is now managed by LuaMetaTEX because we
use that engine for the runner. The MkII code is no
longer in TEX Live but is in the repositories and used
to test and compare with pdfTEX. It just works.

The number of binaries and stubs is reduced to
a minimum:
luametatex combined TEX, MetaPost, Lua engines
mtxrun script runner, binary
context ConTEXt runner, binary
mtxrun.lua script runner, Lua code
context.lua loader for ConTEXt runner
luatex the good old ancestor

All of these programs are in the ConTEXt distribu-
tion directory tex/texmf-⟨platform⟩/. In addition,
context and mtxrun are symlinks to the luametatex
binary, where possible.

So, the context command runs luametatex,
but loads the Lua file with the same name which
in turn will locate the ConTEXt management script
(mtx-context) in the TEX tree and run it. The same
is true for mtxrun: it is a binary (link) that loads
the script in (this time) the same path and then can
perform numerous tasks. For instance, identifying
the installed fonts so that they can be accessed by
name is done with:

mtxrun --script font --reload

Where in MkII we had stubs for various utility
scripts, already in MkIV we went for a generic runner
and a bit more keying. It’s not like these scripts are
used a lot and by avoiding shortcuts there is also
little danger for a mixup with the ever-growing list
of other scripts in TEX Live or commands that the
operating system provides.

The LuaTEX binary is optional and only needed
if a user also wants to process MkIV files. There are
no shell scripts used for launching. The two main
calls used by users are:

context foo.tex

context --luatex foo.tex

A user has only to make sure that the binaries
are in the path specification. When you run from an
editor, the next command does the work:

mtxrun --autogenerate --script context ⟨filename⟩
with ⟨filename⟩ being an editor-specific placeholder.
Like other engines, LuaMetaTEX (and ConTEXt)
needs a file database and format file, and although
it should generate these automatically you can make
them with:

mtxrun --generate

context --make

The rest of the installation is similar to what we
always had and is TDS compliant. The source code
of LuaMetaTEX is included in the distribution itself
(which nicely fulfills the requirements) but can also be
found at github.com/contextgarden/luametatex.

There are also some optional libraries there but
ConTEXt works fine without them. The official latest
distribution of ConTEXt itself is:
github.com/contextgarden/context

github.com/contextgarden/context-distribution-fonts

We see users grab fonts from the Internet and
play with them. They can install additional fonts in
tex/texmf-fonts/data/⟨vendor⟩. Project-specific
files can be collected in tex/texmf-project/tex/

context/user/⟨project⟩. These directories are not
touched by installations and can easily be copied or
shared between different installations. After adding
files to the tree mtxrun --generate will update the
file database.

In the distribution there are plenty of documents
that describe how LuaMetaTEX with LMTX differs
from MkIV with LuaTEX: new primitives, macro
extensions, more granular math rendering, improved
memory management, new (or extended) (rendering)
concepts, more MetaPost features; most is covered
in one way or another, and much is already applied
in the ConTEXt source code. After all, it took a
few years before we arrived here so you can expect
substantial refactoring of the engine as well as the
code base, and therefore eventually there is (and will
be) more than in MkIV.

When you compare a ConTEXt installation with
what is needed for other macro packages you will
notice a few differences. One concerns the way TEX
is launched. An engine starts with a blank slate but
can be populated with a so-called format file that is
basically a memory dump of a preloaded macro pack-
age. So, the original way to process a file is to pass a
format filename to the engine. In order to avoid that
a trick is used: when an engine (or symlink/stub
to it) is launched by its format name, the loading
happens automatically. So, for instance pdflatex

is actually an equivalent for starting pdfTEX with
the format file pdflatex.fmt while latex is pdfTEX
with another format file (latex.fmt) starting up in
DVI mode. And, as there are many engines, a specific
macro package can have many such combinations of
its name and engine.

In ConTEXt we don’t do it that way. One rea-
son is that we never distinguished between backends:
MkII uses an abstract backend layer and load driver
files at runtime (it was one of the reasons why we
could support Acrobat as soon as it showed up, be-
cause we already supported the now obsolete but

https://github.com/contextgarden/luametatex
https://github.com/contextgarden/context
https://github.com/contextgarden/context-distribution-fonts


120 TUGboat, Volume 44 (2023), No. 1

quite nice DVIWINDO viewer). And that model
hasn’t changed much as we moved on. Because we
use a runner, we also don’t need to distinguish be-
tween engines: all formats have the same name but
sit on an engine subpath in the TEX tree. Any-
way, this already removes quite some formats. On
the other hand, ConTEXt can be run with different
language specific user interfaces which means that
instead of just context.fmt we have cont-en.fmt

and possibly more, like cont-nl.fmt. So that can
increase the number again but by default only the
English interface is installed. As a side note: where
with MkII we needed to generate MetaPost mem
files, with its descendants having MPlib we load the
(actually quite a bit of) MetaPost code at runtime.1

In addition to a format file, for the LuaTEX
and LuaMetaTEX engine we also have a (small) Lua
loader alongside the format file. All this is handled
by the runner, also because we provide extensive
command line features, and therefore of no concern
to users and package maintainers. However, it does
make integrating ConTEXt in for instance TEX Live
different from other macro packages and thereby puts
an extra burden on the TEX Live team. Here I want
to thank the team for making it possible to move
forward this way, in spite of this rather different
approach. Hopefully a LuaMetaTEX integration is
a bit easier in the long run because we no longer
have different stubs per platform and at least the
binary part now has no dependencies and only has a
handful of files.

For those new to ConTEXt or those who want to
try it in TEX Live 2023 there is not much difference
between the versions. However, MkIV is now frozen
and new functionality only gets added to LMTX. Of
course we could backport some but with most users
already having moved on, it makes no sense. Just as
we keep MkII around for testing with pdfTEX, we also
keep MkIV alive for testing with LuaTEX. Maybe
in a couple of years MkIV will go the same route
as MkII: ending up in the archives as an optional
installation.

⋄ Hans Hagen
Pragma ADE

1 Occasionally I do experiments with loading the TEX
format code at runtime, but at this moment the difference in
startup time of about one second (assuming files are cached)
is too large and running over networks will be less fun, so the
format file will stay. The time involved in loading MetaPost
can be brought down but for now I leave it as it is.

TUGboat, Volume 44 (2023), No. 1 133

Preserving the math class of variables

Hans Hagen

If there is one thing that OpenType math has made
clear, it’s that we have lots of alphabets. It is cus-
tomary in a TEX document to key in regular (ASCII)
letters and expect them to become for instance math
italic, bold upright, script or whatever.

One way to do this is to relate a character (di-
rectly or by name) to a specific slot in a font assigned
to a so-called math family, which groups text, script
and scriptscript sizes. Here are a couple ways to do
this, using the Unicode \Umathcode primitive:

\Umathcode‘a = "0 "9 ‘a

\Umathcode‘a = "0 "5 "1D44E

In the first line we map the input character a
(the first ‘a) to the glyph slot of ‘a (the second one;
that is, 97) in family 9. In the second line, the input
a is mapped to the Unicode math italic alphabet’s
a, using family 5. The "0 in both lines is the math
class, in this case specifying an “ordinary” character.

Switching families can be done directly, although
more usually it is wrapped in a command:

$ a + {\fam"9 a} + {\fam"5 a} $

For our next example, we take a colon from fam-
ily zero ("0) and assign it class 6 ("6) which means
that it will get punctuation spacing (like \Colon):

\Umathchardef\foo "6 "0 ‘: % punct

In the following line we do the same but with
class 7, which is “variable”, meaning TEX uses the
current family, as stored in the \fam primitive pa-
rameter.

\Umathchardef\foo "7 "0 ‘: % ord

Doing this, we lose the prior class value (3), so we
end up with ordinary (which normally means no)
spacing. In LuaTEX (>1.15.1) we can now preserve
the class by declaring and using a special “variable”
family instead:

\variablefam"24

\Umathchardef\foo "6 "24 123 % punct

When a character has family \variablefam as-
signed, it will get the current \fam value and the
class can remain 3, as specified.

This is a relatively cheap extension which we
prototyped in LuaMetaTEX and backported to Lua-
TEX. We don’t use this in ConTEXt (just to warn
its users) but it might be handy in other macro
packages.

⋄ Hans Hagen
Pragma ADE

doi.org/10.47397/tb/44-1/tb136hagen-classes


