
TUGboat, Volume 43 (2022), No. 3 317

Ventrella’s terdragon in METAPOST

Linus Romer

Abstract

This article shows how to create a vector graphic
similar to the terdragon described by Ventrella (2019)
in METAPOST.

1 Generating the fractal path

The fractal used for the terdragon is based on the
following recursive replacement pattern on a triangu-
lar grid. Reverse arrows indicate segments that are
rotated by 180◦:

a

b

1

c

2

3

d

4

e 5

6

f

g

7

This pattern can be implemented as a recursive
macro with recursion depth n:

vardef dragon(expr a,g,n) =

save p,b,c,d,e,f; path p;

if n > 0:

pair b,c,d,e,f;

e = 1/3[a,g]; c = 2/3[a,g];

b = .5[a,g]+sqrt(3)/2*((c-e) rotated 90);

d = c+e-b; f = g+e-b;

p = dragon(a,b,n-1)

& reverse dragon(c,b,n-1)

& dragon(c,d,n-1) & dragon(d,e,n-1)

& dragon(e,c,n-1) & dragon(c,f,n-1)

& reverse dragon(g,f,n-1);

else:

p = a -- g;

fi

p % the returned path

enddef;

Using draw dragon((0,0),(300,0),4); you will
get the following figure:

2 Rounding the vertices to curves

In the previous picture many of the vertices are
revisited at different travel times on the path. This
self-contacting behaviour can be avoided in different
ways. In order to keep the number of path points
small, weighted averages between neighbour vertices
are used to draw smooth Bézier curves through them:

def roundcorners expr p =

point 0 of p

for i = 1 upto length(p)-1:

.. tension 1.2

.. (.64*(point i of p)

+ .18*(point i-1 of p)

+ .18*(point i+1 of p))

endfor

.. tension 1.2 .. point length(p) of p

enddef;

The tension 1.2 and the weights 0.64 and 0.18 are
somewhat arbitrary. The following figure is produced
by:

draw roundcorners dragon((0,0),(300,0),4);

It can now be observed that this terdragon variation
is self-crossing.

3 Stroking the path dynamically

A dynamic stroking of the path is achieved by making
the stroke width proportional to the distance between
the points:

vardef dynamicdraw expr p =

save n,l,r,s;

pair l[],r[];

numeric n; n = length(p);

for i = 0 upto n:

l[i] - r[i]

= unitvector(direction i of p rotated 90)

* (length(point max(1,i) of p

- point max(i-1,0) of p)

+ length(point min(n,i+1) of p

- point min(i,n-1) of p))

* .08;

r[i] + l[i] = 2*point i of p;

doi.org/10.47397/tb/43-3/tb135romer-terdragon

Ventrella’s terdragon in METAPOST

https://doi.org/10.47397/tb/43-3/tb135romer-terdragon

318 TUGboat, Volume 43 (2022), No. 3

endfor

fill l[0]{direction 0 of p}

for i=1 upto n:

.. tension 1.2 .. l[i]{direction i of p}

endfor

for i=n downto 0:

.. tension 1.2 .. r[i]{-direction i of p}

endfor .. tension 1.2 .. cycle;

enddef;

The width scale 0.08 may be changed according to
one’s personal taste.

Replacing draw by dynamicdraw changes the
last figure to the following:

If desired, a vector drawing program like Inkscape
may be used to fill the enclosed areas with colour.
After rotating a coloured (though grayscaled for the
printed TUGboat) terdragon with recursion depth 3
six times, with respect to its left end, you will get
the following figure:

For more information about the terdragon, please
see the references, among numerous other books and
articles.

References

Ventrella, Jeffrey. Brainfilling Curves—A Fractal
Bestiary. Eyebrain Books, 2012.

Ventrella, Jeffrey. “Portraits from the Family
Tree of Plane-filling Curves”. In Proceedings
of Bridges 2019: Mathematics, Art, Music,
Architecture, Education, Culture, edited by
S. Goldstine, D. McKenna, and K. Fenyvesi,
pages 123–130, Phoenix, Arizona. Tessellations
Publishing, 2019. Available online at
archive.bridgesmathart.org/2019/

bridges2019-123.pdf.

⋄ Linus Romer
Ahornstrasse 8
Uznach, 8730
Switzerland

Linus Romer

https://archive.bridgesmathart.org/2019/bridges2019-123.pdf
https://archive.bridgesmathart.org/2019/bridges2019-123.pdf

	Generating the fractal path
	Rounding the vertices to curves
	Stroking the path dynamically

