TUGBoAT
Volume 43, Number 3 / 2022

General Delivery 223 From the president / Boris Veytsman

225 Editorial comments / Barbara Beeton
New from Don Knuth; More memories of Dave Walden;
Update on arXiv and HTML; Chuck Bigelow on fonts;
A remarkable collection of printing blocks: the Tripitaka Koreana;
Food and fonts; Interlude: Overfull \hboxes; Errata, TUGboat 43:1

226 Regarding TUG and UK-TUG / Jonathan Fine
228 Rebuttal / Arthur Rosendahl
229 The TEX Hour / Jonathan Fine
Resources 230 DANTE project funding of TEX servers / Stefan Kottwitz
Publishing 232 The residual concepts of production vs. the emergent cultures of distribution
in publishing / David Blakesley
Typography 240 Typographers’ Inn / Peter Flynn
243 Formatting mesostic poems a la John Cage / David Bellows
Philology 247 Representing Parkosz’s alphabet in the Junicode font / Janusz Bieri
Software & Tools 252 TeXShop, Version 5: HTML previews / Richard Koch
Electronic 254 Interactive content using TEX4ht / Richard Koch
Documents 261 What’s new in TEX4ht: 2022 / Michal Hoftich
263 Adding XMP metadata in WNTEX / Ulrike Fischer, Frank Mittelbach
268 The IATEX Tagged PDF project— A status and progress report /
Frank Mittelbach, Ulrike Fischer
IATEX 273 TATEX news, issue 36, November 2022 / IATEX Project Team
276 Markdown 2.17.1: What’s new, what’s next? / Vit Novotny
279 Mapping to individual characters in expl3 / Joseph Wright
280 Typesetting external program code and its output: hvextern / Herbert Vof3
293 The luamodulartables and luaset IATEX packages / Chetan Shirore, Ajit Kumar
Fonts 295 Using OpenType and TrueType fonts with XgIATEX and LualATEX / Herbert Vof§
300 New directions in math fonts / Hans Hagen, Mikael Sundqvist
311 Patching Lucida Bright Math / Hans Hagen, Mikael Sundqvist
Graphics 317 Ventrella’s terdragon in MetaPost / Linus Romer
319 An introduction to GNU 3DLDF / Laurence Finston
333 A graphical ellipse envelope construction with GNU 3DLDF / Laurence Finston
Methods 340 Updates to “Automatically removing widows and orphans with lua-widow-control”,
TUGboat 43:1 / Max Chernoff
343 Can “\parfillskip=0pt” shorten a short paragraph in plain TEX by two lines? /
Udo Wermuth
Accessibility 351 LaTeX2Nemeth and the amsmath package / Andreas Papasalouros, Antonis Tsolomitis
Hints & Tricks 363 The treasure chest / Karl Berry
Abstracts 364 Die TEXnische Komédie: Contents of issue 3/2022
364 La Lettre GUTenberg: Contents of issue 46 (2022)
TUG Business 222 TUGboat editorial information
222 TUG institutional members
365 2023 TEX Users Group election
Advertisements 366 TEX consulting and production services
367 'TgXnology Inc.
News 368 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2023 dues for individual members are as follows:

= Trial rate for new members: $30.

= Regular members: $105.

= Special rate: $75.
The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2023 is $115.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGDboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: November 2022]
Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TgX-arcana®
Boris Veytsman, President*
Arthur Rosendahl*, Vice President
Karl Berry*, Treasurer
Klaus Hoppner*, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937-2019),
Founding Ezecutive Director
Hermann Zapf (1918-2015), Wizard of Fonts
*member of executive committee
thonorary
See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses Electronic mail
TEX Users Group General correspondence,
P.O. Box 2311 membership, subscriptions:
Portland, OR 97208-2311 office@tug.org

.S AL
Us Submissions to TUGboat,
Telephone letters to the Editor:

+1 503 223-9994 TUGboat@tug.org

Fax TrEXnical support,
+1 815 301-3568 public mailing list:

Web support@tug.org

tug.org
tug.org/TUGboat

Contact the
Board of Directors:
board@tug.org

Copyright (© 2022 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included. An information notice to the TUGboat editors
regarding such redistribution is appreciated.

For a printer is quintessentially a “worker intellectual
or an intellectual worker”, the very ideal of that human
type who would become the pivot of socialism: “the
conscious proletarian”.

Régis Debray
“Socialism: A Life-Cycle”,
New Left Review 46 (2007)

UGBOAT

COMMUNICATIONS OF THE TEX USERS GROUP
EpiITOR BARBARA BEETON

VOLUME 43, NUMBER 3, 2022
PortLAND, OREGON, U.S.A.

222

TUGboat editorial information

This regular issue (Vol. 43, No. 3) is the last issue of the
2022 volume year. The deadline for the first issue of next
year is March 24, 2023. Contributions are requested.

TUGDboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGDboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html
tug.org/consultants.html

CSTUG, Praha, Czech Republic,

TUGDboat, Volume 43 (2022), No. 3

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and IATEX, are available from CTAN and the TUGboat
web site, and are included in TEX distributions. We
also accept submissions using ConTEXt. For deadlines,
templates, author tips, and more, see tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications
TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic, £i.muni.cz

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html
Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island, ams.org

Association for Computing
Machinery, New York, New York,
acm.org

Aware Software,
Newark, Delaware, awaresw.com

Center for Computing Sciences,
Bowie, Maryland

Duke University Press, Durham,
North Carolina, dukeupress.edu

TUG cstug.cz
Institutional CTAN, ctan.org
Members

Hindawi Foundation, London, UK,
hindawi.org

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

L3Harris, Melbourne, Florida,
13harris.com

IATEX Project, latex-project.org
MacTgX, tug.org/mactex

Maluhy & Co., Sdo Paulo, Brazil,
maluhy.com.br

Marquette University,
Milwaukee, Wisconsin,
marquette.edu

Nagwa Limited, Windsor, UK,
nagwa.com

Overleaf, London, UK,
overleaf.com

StackExchange,
New York City, New York,
tex.stackexchange.com

TEXFolio, Trivandrum, India,
texfolio.org

Université Laval, Ste-Foy, Québec,
Canada, bibl.ulaval.ca

University of Ontario, Institute
of Technology, Oshawa, Ontario,
Canada, ontariotechu.ca

University of Oslo,

Institute of Informatics,
Blindern, Oslo, Norway, uio.no
VTEX UAB, Vilnius, Lithuania,
vtex.1lt

TUGboat, Volume 43 (2022), No. 3

From the president

Boris Veytsman

Something there is that doesn’t love a wall

Robert Frost

Attentive readers of TUGboat might have noticed a
change over the last few issues: articles are now ac-
companied by unique strings of letters and numbers,
their Digital Object Identifiers, or DOIs for short.
This would be impossible without hard work done by
the TUGboat team, and especially Karl Berry, who
made many updates to our styles and scripts. Some
of these updates may help other publishers. They
are released to CTAN and CPAN.

This is an important change. Science and tech-
nology are collective endeavors rather than the heroic
product of inspiration of singular geniuses. We all
build the edifice started by our predecessors, and
our papers or programs contain acknowledgments of
them. Historically formatting of citations is defined
by the “house style” of the publisher, and it took
much manual effort to find the canonical citation of
the referenced work (my colleagues and I published
some research about this on these pages). Exact
citation data are useful for the funders (is my money
doing good work?), for the practitioners (is my work
visible?) and for those studying the science of science
(how is knowledge generated and spread?). However,
it is very difficult to work with the data without asso-
ciating a unique identifier with each entity — and this
is what DOIs are for. Each paper gets a unique DOI,
and it makes it much easier to study the citation re-
lationships between the different papers —especially
when authors’ own unique identifiers (called ORCIDs)
are used.

Assigning DOIs requires some important deci-
sions. The first is, what should get a DOI, and what
should not? Every technical paper, sure. Editorials
and columns like this one, yes. What about tables
of contents? Indices? Advertisements? We made
the decision not to assign DOIs to these ephemera,
which have no assigned author. This decision might
be controversial, but any choice can be criticized.
Note that Crossref, the authority controlling the reg-
istration of scientific DOISs, elegantly sidestepped this
choice: member organizations like TUG must make
it themselves for their publications. The entities that
get DOIs are not just papers: any “digital object”
can obtain one, including programs, datasets, etc.
This is a smart decision: if DOIs were assigned to
papers only, then we would have a hard question:
what is a paper? In a recent work my colleagues

doi.org/10.47397/tb/43-3/tb136pres

223

and I catalogued the use of scientific software, and
found that the question, what is software?, is rather
difficult to answer: the differences between software
packages, algorithms, Web services, etc., are not ev-
ident. Are Google spreadsheets software or a Web
service? What about LAPACK with its multiple
implementations: is it an algorithm or software?

Another hard question is whether the entity to
be given a DOI is one, or many. We do not assign
DOIs to separate sections of the same paper. What if
the paper is split into parts and published in several
consecutive issues? Yet another question is raised
when a paper is updated. TUGboat, being a physical
journal (even if many readers get it in the digital
form), has a reference version of each paper. Not so
for some other publishers like preprint servers, which
allow posting new version of the same paper. Do
these versions deserve a separate DOI each? What if
between updates the title or the abstract changed?
Or if the team of authors changed (strangely, this
happens too)?

These questions remind me of the famous prob-
lem of the ship of Theseus in philosophy. If we change
a rotten plank on this ship, it is still the same ship.
What if we change two planks? Three? What if in
several centuries we have changed all planks —is it
still the ship of Theseus?

There are several ways to treat this paradox.
My favorite one is to recognize that the world is
infinitely complex, and our labels, like “scientific
paper”, “ship”, etc., are just approximations of it.
These labels are useful, but they are not the reality.
Thus they are bound to break in some cases.

A similar problem occurs in a field better known
to TEXnicians. As many of us know, TEX itself is
a program that puts letters on paper. Formats like
KETEX or ConTEXt consider the structure of the text,
so \section{Introduction} in IATEX means that
(a) we start a new unit of text, called “Introduction”,
and (b) tell TEX to typeset it in a certain way (bold,
or in small caps, or maybe in larger size, etc.), possi-
bly starting the next paragraph without indentation,
update the table of contents, etc. Ideally a docu-
ment in these systems should not have any visual
TEX commands, as they relate to how the text is
shown rather than what is it.

However, as anybody using these systems knows,
more often than not this is not true. Even if the
authors do not abuse visual commands, adding un-
necessary spaces or decorations, they often need some
presentation effects that are simply not expressible
by the high-level commands. It looks like our ideas of
what constitutes text structure are as approximate as
any other ideas—like the ideas of “scientific paper’

)

From the president

https://doi.org/10.47397/tb/43-3/tb135pres

224

or “ship”. It is not a coincidence that our colleagues
who represent text in XML format use “extensibility”
in the name of their approach (XML stands for eX-
tensible Markup Language). They implicitly admit
that any specification is not complete and may need
to be extended.

Perhaps nowhere is this problem so evident as
in the language of mathematics. As editors of math-
ematics journals know too well, mathematicians are
fond of inventing new notation, stretching the limits
of typesetters and TEXnicians. I think it is not a
coincidence or another manifestation of the peculiar
nature of mathematicians themselves. Rather, the
existing notation reflects our existing knowledge, and
if we actively work on extending the knowledge, we
necessarily need to extend our notation.

As an aside, this makes Knuth’s structure of
mathematical formulae, with eight classes of math-
ematical objects, even more surprising since it has
endured several decades of heavy use. In general,
TEX mathematical typesetting is still very close to
that of the original version. A notable exception is
the \middle primitive added by ¢-TEX to \left and
\right. LuaTEX adds a number of other primitives
(and development continues there). It will be inter-
esting to see whether they will be adopted by other
engines in the future.

At the end of the day these questions, from the
ship of Theseus to DOI assignment to mathematical
notation, are questions of classification. Jorge Luis
Borges touches this problem in his famous essay
The analytical language of John Wilkins, where his
protagonist invents a meaningful language, which is
also “a secret encyclopedia”:

He divided the universe in forty categories or
classes, these being further subdivided into dif-
ferences, which was then subdivided into species.
He assigned to each class a monosyllable of two
letters; to each difference, a consonant; to each
species, a vowel. For example: de, which means
an element; deb, the first of the elements, fire;
deba, a part of the element fire, a flame. In
a similar language invented by Letellier (1850)
a means animal; ab, mammal; abo, carnivore;
aboj, feline; aboje, cat; abi, herbivore; abiv, horse;
etc. In the language of Bonifacio Sotos Ochando
(1845) 4maba means building; imaca, harem;
imafe, hospital; imafo, pesthouse; imari, house;
imaru, country house; imedo, column; imede, pil-
lar; tmego, floor; imela, ceiling; imogo, window;
bire, bookbinder; birer, bookbinding. (This last
list belongs to a book printed in Buenos Aires

Boris Veytsman

TUGhboat, Volume 43 (2022), No. 3

in 1886, the Curso de Lengua Universal, by Dr.
Pedro Mata.) [Translated from Spanish by Lilia
Graciela Vidzquez; edited by Jan Frederik Solem
with assistance from Bjorn Are Davidsen and
Rolf Andersen.]

This long quotation reveals the major problem
with any classification: it is always “a secret encyclo-
pedia”. However, an encyclopedia requires absolute
knowledge. If our understanding of nature is not
complete, the classification cannot be right. John
Wilkins in the 17th century considered fire a pri-
mary element, and his language reflected it. We
now consider fire a complex physico-chemical pro-
cess. Thus Wilkins’ language is inadequate for us. A
similar problem is with Linnaeus’ nomenclature in
botany and zoology. It reflects our knowledge of the
relationship between the species. If the knowledge
is updated, for example, due to molecular genetics
methods, the nomenclature becomes “wrong”. Since
our knowledge is never absolute, our classification is
never right.

Yet another way to express this is that stable
mathematical notation is possible only for dead math-
ematics, a dry school subject rather than living and
developing field. The latter requires constant chang-
ing of the notation.

One can compare our efforts in classification to
wall building. We constantly build walls around the
things we know, delineating our knowledge. However,
as Robert Frost noted (Mending Wall, 1914),

Something there is that doesn’t love a wall,
That sends the frozen-ground-swell under it,
And spills the upper boulders in the sun,

And makes gaps even two can pass abreast.

Does this mean that our efforts are futile? No.
This wall building is our effort of understanding the
infinitely complex world, creating better and better
models for it — while always remaining imperfect.

Some prefer to think of this work as building
roads rather than building walls. In this case another
metaphor is apt, this one by Ukrainian poet Ivan
Franko (The Stonecutters, 1878): we are but stone
cutters for the road of progress. It is interesting that
both Frost and Franko think about stone as the
hard material we are working on. For a long time
stone was used to make inscriptions for the future —
something intimately close to us TEXers.

Like Frost’s protagonist and his neighbor, “we
wear our fingers rough” creating imperfect inscrip-
tions with our imperfect tools. We are bound to do
this till the end times.

¢ Boris Veytsman
president (at) tug dot org

TUGboat, Volume 43 (2022), No. 3

Editorial comments

Barbara Beeton

New from Don Knuth

The “next” installment of The Art of Computer Pro-
gramming (TAOCP), volume 4B, Combinatorial Al-
gorithms, has been published this month (October
2022). A discount is available on all orders made
directly from the publisher; see the TUG bookstore!
for more information.

More memories of Dave Walden

Among his other pursuits, Dave was active on the
editorial board of the IEEE Annals of the History
of Computing. The story of all his exploits, “David
Corydon Walden’s Five Careers”, has been told in
that journal by Alexander A. McKenzie, and is open
to be read by anyone. Read it? —it’s fascinating.

Dave’s last article for the journal, co-authored
with McKenzie and W. Ben Barker, “Seeking high
IMP reliability in maintenance of the 1970s ARPAnet”,
appeared in the previous issue? behind a paywall,
but should be readable by IEEE members.

Update on arXiv and HTML

A note in my column in TUGboat 43:1 announced
arbiv, an HTML counterpart to arXiv. Shamsi Beers
Brinn has provided an update:

arXiv.org is working on improving the ac-
cessibility of research papers posted on the
site. We want to get the word out about this
effort as we work on building support and
securing funding. A paper about this, and
blog posts summarizing it, will be available in
November at blog.arxiv.org and will also
be announced on the usual TEX-related mail-
ing lists. One proposed next step of note that
will be discussed: arXiv’s offering of HTML
alongside existing PDF and TEX formats.
arbiv is the public name for the ETEXML
project, a long-standing independent research
effort run by Bruce Miller and Deyan Ginev
from NIST. arbiv is also under the “arXiv
Labs” umbrella, which is a structure for us to
work with outside projects that offer signifi-
cant value to arXiv’s users.

For our accessibility work, we are actively
investigating the best option for generating
HTML from TEX. ETEXML is one of the front

! tug.org/books/

2 www.computer.org/csdl/magazine/an/2022/03/
09842292/1F1M1ABQDsI

3 www. computer.org/csdl/magazine/an/2022/02

doi.org/10.47397/tb/43-3/tb135beet

225

runners so it is possible that we will have a
closer relationship with them in the future.

Chuck Bigelow on fonts

The October 2021 issue of Hour Detroit carried an
interview with Chuck Bigelow on the subject “What
Makes a Great Font”.# (Chuck grew up in Michigan,
in case you're wondering why this is in a Detroit mag-
azine.) In the interview, Chuck shares high points of
his growing up, how he became interested in fonts,
how he and Kris Holmes came to create Lucida, and
thoughts on Lucida’s acceptance and future.

This interview, in turn, was picked up by the Eu-
ropean blog typeroom® and transmogrified by some
cuts, with the addition of more history and copious
illustrations of Lucida, as well as a link to an oral
history interview with Chuck from the Computer
History Museum.

A remarkable collection of printing blocks:
the Tripitaka Koreana

I have often opined that the most durable medium
in which to record knowledge is clay blocks, which
endure fires, becoming even more durable. But clay
blocks are one-off, not meant for reproduction. For
that purpose, before movable type, wood blocks were
used.

The Tripitaka Koreana is a collection of over
80,000 wood printing blocks created in the 13th cen-
tury that contain the oldest intact version of the
Buddhist canon in the Hanja script. An exposition
of this collection with excellent illustrations appears
online on Twitter.%

Food and fonts

An important effort in the marketing of a font is
to show potential buyers how it might be used for
best effect. A traditional method is to present no-
table and recognizable quotes, often chosen for their
subject matter as well as the appearance of particu-
larly distinctive characters, along with a “showing”
of the complete alphabet and associated digits and
punctuation.

4 hourdetroit.com/art-topics/lucida-designer-
chuck-bigelow-on-what-makes-a-great-font

5 typeroom.eu/lucida-type-designer-charles-
bigelow-what-makes-a-great-font

6 twitter.com/incunabula/status/
15674546784365445136

Given current questions about the stability of Twitter, it’s

worth observing that many other sources of textual informa-
tion can be found readily via a Web search, but mostly without
the wealth of pictures.

https://blog.arxiv.org
https://tug.org/books/
https://www.computer.org/csdl/magazine/an/2022/03/09842292/1FlM1ABQDsI
https://www.computer.org/csdl/magazine/an/2022/03/09842292/1FlM1ABQDsI
https://www.computer.org/csdl/magazine/an/2022/02
https://hourdetroit.com/art-topics/lucida-designer-chuck-bigelow-on-what-makes-a-great-font
https://hourdetroit.com/art-topics/lucida-designer-chuck-bigelow-on-what-makes-a-great-font
https://typeroom.eu/lucida-type-designer-charles-bigelow-what-makes-a-great-font
https://typeroom.eu/lucida-type-designer-charles-bigelow-what-makes-a-great-font
https://twitter.com/incunabula/status/1574546784365445136
https://twitter.com/incunabula/status/1574546784365445136
https://doi.org/10.47397/tb/43-3/tb135beet

226

The type foundry Commercial Type has cho-
sen a different approach. They commissioned ar-
ticles about food, and used those texts as a plat-
form to show off their fonts. The result can be
viewed at foodissue.commercialtype.com. More
usual showings of the fonts are accessed by links in
the margin of the article text.

Interlude: Overfull \hboxes

A link (twitter.com/jamesdoesastro/status/
1541792788475420672) in the tex.stackexchange
chat led me to this delightful bit of TEX-related
doggerel.

LaTeX is strange,
It drives me to madness,
My overfull hbox
Of 10000 badness

But that “hbox of 10000 badness” would be underfull.
(Overfull boxes are reported differently.) One gets
rattled. How often has this happened to you?
Thinking this worthy of wider circulation, but
being unwilling to publish it without permission, I
sent a wild plea to the author’s adviser. In due course,
I received a message from the author, James Garland,
at the time newly graduated from Haverford College,
granting the desired permission. Thanks, James.
Other readers of the Twitter post added more
verses. You’'ll have to read those for yourself.

Errata, TUGboat 43:1

e Page 79, Zpravodaj: The author of “TEX in a
nutshell” is Petr Olsak, not Petr Sojka. (Our
apologies to them both.)

e Cover 3:

The title of the article by Jacques André
et al. (page 7) should be “The last decade at
GUTenberg”, not “Year 2020 at GUTenberg”.

The article beginning on page 10, “Markdown
2.15.0: What’s new?” has four authors: Vit
Novotny, Dominik Rehak, Michal Hoftich, and
Tereza Vrabcova.

Information on the articles themselves and in
the contents list on cover 4 is correct, and the
cover 3 web page has been corrected.

¢ Barbara Beeton
https://tug.org/TUGboat

TUGboat, Volume 43 (2022), No. 3

Regarding TUG and UK-TUG

Jonathan Fine

1 Background

About 30 years ago I joined TUG and UK-TUG, the
TEX users group in the United Kingdom. Sadly, UK-
TUG is now dissolved. Former members include Se-
bastian Rahtz (founder of TEX Live), Jonathan Kew
(author of X{TEX and TgXworks) and Robin Fair-
bairns (editor of TEX FAQ and CTAN maintainer).
Its 80 former members are now dispersed, without
an effective online forum.

At this year’s TEX conference I gave a personal
history of UK-TUG. I am most grateful to organ-
isers, speakers and audience for these online con-
ferences. They are a shining star in TUG’s recent
history.

This article is about the relationship between
TUG and UK-TUG during the process that ended
with the dissolution of UK-TUG. It was not pleasant
and shows weakness of character in several of us,
including myself. Don Knuth teaches us to learn
from our errors and failures.

My starting point is this year’s TUG AGM. Our
Secretary Klaus Hoppner wrote in his report: TUG
was not involved [in] and has no knowledge about
discussion within UK-TUG about how to distribute
the money [arising from the dissolution of UK-TUG].

2 Arthur Rosendahl, TUG and UK-TUG

The relevance and truth of Klaus’s statement de-
pends on what it means. It is true that TUG Vice
President Arthur Rosendahl (formerly Reutenauer)
has a deep knowledge of this discussion.
As a Committee Member Arthur wrote to the
UK-TUG members:
Our organisation serves no useful purpose.
The benefits of membership are already
available elsewhere:

e technical: Stack Exchange,
Learn LaTeX, ...

e social+technical: Facebook (UK TEX
Users Forum).

e TEX Live DVDs: existing channels
will continue.

It has assets that it cannot usefully spend
to support TEX in the United Kingdom,
and is almost entirely disconnected from
the UK’s TEX community. It has failed to
attract new members. Its committee lacks
the energy that would be necessary for a
renewal.

doi.org/10.47397/tb/43-3/tb135fine-uktug

TUGboat, Volume 43 (2022), No. 3

Its main agenda item for the last few
years has been disbanding. How might any
prolongation be of any benefit?

We urge you to vote for motion DS1 by
David Saunders, which offers the only way
out of the current impasse.

Signed: all but one current committee
members: Arthur Reutenauer,

Chris Rowley, Jay Hammond,
Jonathan Webley, Simon Dales.

3 Lessons for TUG

Note well that the signatories state that the Com-
mittee, of which they are members, lacks the energy
that would be necessary for a renewal. They also
state that dissolution is the only way out of the cur-
rent impasse. There are questions here for TUG,
most important of which is: How did UK-TUG get
to this situation? Will TUG share the same fate?
These are important questions. I feel a duty to
the community to share my experience, hence this
article. Although it has flaws, it is the best I can do.

4 UK-TUG negotiations with TUG

Arthur said he negotiated with TUG on behalf of
UK-TUG. He wrote to UK-TUG members:

I can also say that UK-TUG has essentially
lost all credibility with our sister organisa-
tions, as is demonstrated by the fact that I
couldn’t negotiate better conditions for TUG
to receive a donation from UK-TUG, and that
I didn’t get any official answer from DANTE
when I contacted them.

In this context ‘conditions’ meant that the do-
nation must go to TUG’s General Fund. Such funds
can be applied to office expenses, which are just over
70% of TUG’s total income.

5 The Development Fund

I expressed concern at this and stated my intent
to contact the TUG Board for clarification. The
next day Arthur wrote Any donation to TUG can, of
course, be directed according to the many categories
listed on hitps://tug.org/donate.html.

I understood this reversal to mean that any dis-
solution donation would go to the TUG Development
Fund or the like. Such donations are ring-fenced for
that purpose. Such is, I believe, required by the
UK-TUG Constitution.

I warmly welcomed Arthur’s reversal of his pre-
vious statement. I fully expected the donation to go
to the Development Fund. I now bitterly regret not
then pressing the point and obtaining assurances.

227

6 The donation to DANTE

By the way, Arthur also wrote: DANTE has finally
and officially agreed to receiving a donation from
UK-TUG upon dissolution, if it happens.

The TUG Secretary is also a Board member of
DANTE. It is likely that he knew of this offer made
on behalf of UK-TUG by a person who is also Vice
President of TUG.

7 What happened, my TUG AGM motion

That was in October 2021. In April this year, af-
ter the payment to TUG has been made, I was told
it was sent to the General Fund (and so could be
applied to the 70% of income Office Expenses).

To change this, for this year’s TUG AGM I sub-
mitted the motion:

This TUG General Meeting asks that the dis-
solution donation made by UK-TUG to TUG’s
General Fund be transferred to TUG’s TEX
Development Fund. For clarity, this motion
is advisory and is not binding on the TUG
Board.

together with a supporting statement. I took care to
avoid the difficult issues I've previously mentioned.

8 Norbert Preining’s contribution

I also sent the motion and supporting statement to
the TUG members list. In the resulting discussion
Board member Norbert Preining wrote to that list:

I consider this ill will versus the very asso-
ciation you are a member of, which in my
opinion can carry consequences for you.

If it would be my call — for example in
other associations where I am board mem-
ber — your continuous passive aggressive be-
haviour, unfounded insinuations, and spread-
ing of fud would have been a reason for taking
the membership from you.

This message was directed at me. I read it as
a threat to have me expelled as a member of TUG
if I continued my present course of action. I am
ashamed to say that this threat was successful.

9 At the TUG AGM

We have now returned to the starting point. Be-
cause of Norbert’s message, and Klaus not circulat-
ing my motion to the members, at the AGM I found
that I lacked the courage to insist that my motion
be discussed and voted upon. I feared that if I did
so then I would be expelled or otherwise punished.

228

10 Summary

Arthur had a dual role. He was a Board/Committee
member of two organisations. In the one he pro-
moted a motion that gave a substantial donation to
the other.

Klaus did not bring my motion to the attention
of members, and made a statement that obscured
Arthur’s dual role.

Norbert in so many words threatened me with
expulsion from TUG.

11 Looking forward

Although UK-TUG has slipped away, I am still a
member of TUG. Sometimes loyalty to our goals
and purpose requires dissent from the majority and
opposition to the Board. To understand better me
and my background, and the sources of my strength
of feeling, please watch my talk, A personal history
of UK-TUG: https://youtu.be/215yVb97I7A.

In that talk I took as my theme John Donne’s
poem For whom the bell tolls. The demise of UK-
TUG diminishes the whole TEX community.

To rephrase Donne: Do not ask for whom the
UK-TUG funeral bell tolls, dear TUG member. It
tolls for our organisation.

I fear for the worst. I hope for the best. I hope
that I will live long enough to see TEX (including
related software) and its users flourishing in 2042,
twenty years from today and 50 years after my first
encounters with TUG and UK-TUG.

When we sincerely work together for goals that
contribute to human welfare and happiness, inter-
personal difficulties become less important and can
dissolve. This is how TUG was when and before I
joined the organisation.

12 Added in proof

Editorial constraints prevent more from this email I
sent to Arthur being published in this issue of TUG-
boat. Therefore I will publish the whole message on
my website (see URL below), once this issue is pub-
lished. T am willing to discuss matters relating to
TUG and UK-TUG with those who are interested,
either privately or in public as is wished and ap-
propriate. From time to time I will write on these
matters on my website.

¢ Jonathan Fine
Milton Keynes, UK
jfine23580gmail.com
https://jfine2358.github.io

TUGhboat, Volume 43 (2022), No. 3

Rebuttal
Arthur Rosendahl

Tt 8¢ Prémeic 6 xdppoc T €V 16 0@ Yohudd Tob
aderpol cou, TNV 8¢ &V 16 oS 6pFahudd Soxov o
HAUTUVOELC; Matthew 7:3

Jonathan can’t have it both ways: either I didn’t
use my position as a link between TUG and UK-TUG
efficiently enough, or I abused it. Obviously, I reject
both assertions. I tried to help in a difficult debate,
I had a fine line to walk, and it’s always easy to
find aspects to criticise one year after the fact. I
never claimed to be perfect. Most important, I was
extremely clear about what Jonathan calls my “dual
role”; which he should know, since he quotes from
an email by me where I explained exactly that. He
conveniently omits the parts where I said that I was
aware that I was formally in a conflict of interest,
and how I planned to mitigate it.

Perhaps Jonathan would like to be reminded of
his own conduct and quoted out of context too; but
the predictable outcome of his actions is probably
punishment enough. His nauseating insistence that
UK-TUG never, never, never should be dissolved
gained him no supporters, and quite a few opponents.
In a way, I should be grateful.

In the end, UK-TUG was dissolved by the clearly
expressed will of its members, who passed a dissolu-
tion motion 26 to 7. Two other motions, proposed
by Jonathan and mutually contradictory, received 0
votes.

o Arthur Rosendahl
arthur (at) rosendahl dot io

doi.org/10.47397/tb/43-3/tb13brosendahl-uktug

https://youtu.be/2l5yVb97I7A

TUGboat, Volume 43 (2022), No. 3

The TEX Hour

Jonathan Fine

1 History

I write as the founder and host of The TgX Hour, a
weekly online video meeting devoted to TEX and re-
lated matters, especially access to STEM documents.
It also covers related computer technology.

About two years ago I started the TEX Hour as
a response to both the possible dissolution of UK-
TUG and also the Covid pandemic. Since then we’ve
had almost 100 meetings, most of which have been
recorded and published.

The website https://texhour.github.io has
up-to-date information about future meetings and
links to videos of previous meetings. The TEX Hour
usually meets 6:30 to 7:30pm on Thursdays, BST
(i.e. UK) time. All are welcome.

2 Gradual growth: TEX in STEM

The TEX Hour now has sturdy roots and is gradually
growing. Last month we had a Special TEX Hour,
which nicely shows how the weekly meetings fit into
the annual cycle of TEX conferences.

This special TEX Hour was on Rethinking TEX
in STEM. It was two hours. The first hour was talks
from speakers from recent TEX Conferences, namely
Peter Williams, Martin Ruckert and Dennis Miiller.
The second hour was discussion.

We are fortunate that TEXnical people at the
arXiv attended this TEX Hour. The resulting discus-
sion showed very strongly how the weekly TEX Hour
cycle complements and adds value to the presenta-
tions at the annual TEX conference. This is best
experienced by visiting the website for 29 Septem-
ber 2022 TEX Hour.

3 ETEX and Accessibility

There will be a similar special TEX Hour, devoted
to ATEX and Accessibility, on Thursday 1 December
at 6:30pm BST (i.e. UK) time. We will be fortunate
to have Jonathan Godfrey, a blind lecturer in Statis-
tics, as a special guest.

As Jonathan lives in Auckland, New Zealand
for him this TEX Hour starts at 7:30am on Friday 2
December! More details will appear on the website.

4 Open source video meeting platform

A recent TEX Hour announcement prompted some
discussion on TEX-fora hosted by TUG, about using
an open-source video meeting platform. I moved
this discussion off-list. I'm pleased that Paulo Ney
de Souza joined that discussion. Paulo is a driving
force behind the TEX conference organised by TUG.

doi.org/10.47397/tb/43-3/tb135fine-texhour

229

Paulo and I formed a rough agreement that the
most important issues for using an open source video
meeting platform were:

1. Availability of clients on all platforms, includ-
ing Chromebooks, Android and iOS.

2. Stability, including the use of servers at the Ca-
lyx Institute.

3. Bandwidth to deal with meetings of 10, 100 and
1K participants.

4. Availability of features necessary for conducting
small meetings classes, office hours, small and
large conferences.

5. Recording and YouTube streaming.

6. Accessibility, particularly to blind and visually
disabled.

7. Ability to handle mathematical content, either
directly or via a plug-in.

I welcome using the TEX Hour as a trial for
use of an open-source video meeting platform. I'm
personally very interested in the online sharing of
mathematical content.

Surely we can in 2022 do better than using
screen sharing to communicate a bitmap video of
a Beamer presentation. Such improvements would
provide a strong reason for preferring an open-source
platform.

5 Owur Zoom license

Meanwhile, we continue to use Zoom. I thank River
Valley Technologies for funding our license for the
next 12 months. I'm happy to use this license to
host other TgX-related online meetings. I'm also
very willing to open up the TEX Hour for any TEX-
related topics (loosely understood) that you’d like
to discuss or present on. All are welcome, especially
new users and other beginners. They often ask the
best questions!

6 Conclusion

To summarize. For up-to-date information about
past and future meetings visit the TEX Hour web-
site. Meetings are usually every Thursday, 6:30 to
7:30pm BST (i.e. UK) time.

¢ Jonathan Fine
Milton Keynes, UK
jfine23580@gmail . com
https://texhour.github.io

The TEX Hour

https://texhour.github.io
https://doi.org/10.47397/tb/43-3/tb135fine-texhour

230

DANTE project funding of TEX servers
Stefan Kottwitz

Abstract

For several years, DANTE e.V. has been supporting
the operation of two physical servers that provide nu-
merous TEX and IATEX related services. This article
is a report on what is provided and how the services
came about. This article originally appeared in Die
TrXnische Komodie 1/2022, and was translated to
English by the author.

1 Hardware and hosting

The DANTE-supported servers are located in two
data centers of Hetzner.com. They run a Debian
Linux with virtualization by Xen. The services men-
tioned in the following sections run on a number of
virtual machines for clean separation and maintain-
ability. The servers back up each other on the one
hand and, on the other hand, an external backup
area is also used. In the case of upgrades or migra-
tions of virtual servers, the respective other server is
used for the reinstallation.
The basic specifications of the two servers:

e Intel Xeon E5-1650V3 six-core, 2x4 terabyte hard
drives, 256 gigabytes of RAM

e Intel i7-920 quad-core, 2x2 terabyte hard drives,
48 gigabytes of RAM

Both have a 1 Gbps network connection and unlim-
ited traffic volume, as well as an off-site backup area.
This hardware, with all services in professional data
center operation, currently costs €104 and €59 per
month, plus small fees for IP addresses and DNS en-
tries. I ordered the larger server at a reverse auction,
which is a bit unusual. The provider offers used and
abandoned servers for monthly rent. Step by step,
the price goes down until someone takes the offer.
That made it relatively cheap.

One could do this with “dedicated servers” from
other providers, but as soon as you have hardware
such as 256 gigabytes of RAM, and multiple terabytes
of hard disk, it gets expensive.

DANTE supports the project by paying the
monthly server rent and fees. The costs for the
domains are not included.

And now to the content, roughly sorted by the
service type.

2 Internet forums

LaTeX.org is a classic INTEX Internet forum, in the
English language. The TeXnicCenter developer Sven
Wiegand founded it as LaTeX-Community.org in
2007. 1 joined as a moderator in 2008, took over

Stefan Kottwitz
doi.org/10.47397/tb/43-3/tb136kottwitz-servers

TUGboat, Volume 43 (2022), No. 3

the administration in 2012, and moved it to its own
server. In 2017, I was able to register the domain
LaTeX.org, and that is now what the forum is called.
To date, 17,000 users have made 99,000 posts on
25,000 topics. The classic thread discussion culture
lives on here.

goLaTeX.de was founded by Johannes Ahling in
2008 as a German-language forum for TEX. In 2015
I took over as admin for the purpose of updating
the software and relaunching the forum. To date,
8,700 users have written more than 108,000 posts on
21,000 topics.

TeXwelt.de was started by me in 2013 as a
German-language counterpart to StackExchange, for
trying out this Q&A format and offering it to German-
speaking users. So far, 1,300 users have written 3,700
questions and 4,200 answers. Here I would like to
switch to the Askbot software or another alternative;
maybe someone can help?

TeXnique.fr was created in 2016 as a joint
project by Patrick Bideault, Denis Bitouzé, and me,
with the support of the French TEX users group
GUTenberg, as a question-and-answer site for INTEX
in the French language. So far, 400 users have written
1,200 questions and 1,600 answers.

Each of those forums has a built-in online com-
piler, so you can translate code samples directly with
a tap on your smartphone and view it as PDF output.
You can also edit the code in the posts online and
test the changes directly.

3 IATEX tools

TeX1live.net is the online compiler mentioned above.
It was developed by David Carlisle and initially used
at LearnLaTeX.org on a small free AWS instance.
When that was no longer possible, we moved it to
the DANTE-sponsored servers. The basis is an up-to-
date and complete TEX Live system with all packages
and tools such as BIBTEX, Biber, and makeindex.
About 2,000 users translate around 3,000 to 4,000
documents every day, so I estimate over one million
translated documents a year. This is also because
TeXlive.net is integrated into the forums mentioned
above, as well as into the blogs, wikis, galleries, and
FAQ pages mentioned later.

TeXdoc.org is the online version of texdoc. It
was started in 2014 as TeXdoc.net with a frontend
written by Paulo Cereda, so that Overleaf users could
easily access TEX documentation online without local
documentation, or TEX users can read on the go on
their smartphones when browsing forums. It comes
with search features and with standardized links, and
an API for external calls, such as from the forums.
It now runs in a Docker container, which is being

https://Hetzner.com
https://LaTeX.org
https://LaTeX-Community.org
https://LaTeX.org
https://goLaTeX.de
https://TeXwelt.de
https://TeXnique.fr
https://TeXlive.net
https://LearnLaTeX.org
https://TeXlive.net
https://TeXdoc.org
https://TeXdoc.net
https://doi.org/10.47397/tb/43-3/tb135kottwitz-servers

TUGboat, Volume 43 (2022), No. 3

further developed by the Island of TEX project that
you can visit at Island0fTeX.org.

CTAN.net was set up by me as a CTAN mirror
in 2018 because the servers were there and had ca-
pacity. So it was straightforward to mirror CTAN
in order to further distribute content and accelerate
the installation load. And as Michael Doob said:
“Having a ... CTAN mirror will change your life.”

LaTeX2e.org is a mirror of the “I#TEX 2¢ Unof-
ficial Reference Manual” from latexref.xyz, since
the widest possible mirroring is desired.

4 Wikis and FAQs

TeXfragen.de was started by Patrick Gundlach as
a new TEX FAQ as a wiki; several supporters con-
tributed articles. In 2017, I took it over as admin and
added selected excellent answers from TeXwelt.de
to the wiki, among other things, and of course, added
online compiling as on the other pages.
goLaTeX.de/wiki is another German-language
wiki that documents IATEX commands and packages
and provides examples that can be tested online.
LaTeX.net.br is a Brazilian Portuguese version
of the classic TEX FAQ. I migrated it with a transla-
tor in 2018 on the occasion of the TUG conference in
Rio de Janeiro. Due to a lack of support, I did not
develop it further afterward, but it is still online.
TeXfaq.org was hosted here, too, until recently,
but it has now moved to Github. This was the
original www.tex.ac.uk FAQ from Robin Fairbairns
and many contributors. At some point, it could no
longer be operated in Cambridge, so I took over
hosting with Joseph Wright and David Carlisle in
2015. Later we changed the domain. www.tex.ac.uk
no longer exists as a domain due to involved costs.

5 Blogs

IATEX developers, authors, and users use blogs to oc-
casionally publish articles about their own projects,
experiences, or news from the TEX world. The follow-
ing blogs are running on DANTE-sponsored servers.

LaTeX.net began as a collection of articles in a
know-how area on LaTeX-Community.org, provides
articles from many years, and now serves primarily
as a blog for current news.

TeX-Talk.net is the TEX StackExchange com-

munity blog. It originated at tex.blogoverflow.

com and was retired by StackExchange in 2016. As
a moderator on StackExchange, I urged preserving
it, and so the content was handed over to me to
continue operating under a new name. The section
with 20 in-depth community-moderated interviews of
well-known TeX.SE users is particularly interesting.

231

TeX.my is the blog of a Malaysian IATEX user
group, started in 2009 and moved here in 2016. To-
day it is mainly written by Lian Tze Lim, whom we
know as a primary Overleaf IATEX advisor.

cnltx.de is Clemens Niederberger’s blog. Be-
cause of its focus on chemistry, it previously ran
under the name mychemistry.eu.

TeX.co is a TEX blog started by members of
TeXwelt.de, which was later separated.

TikZ.de is a blog by some TikZ friends, includ-
ing me. It’s rather quiet in there at the moment
because no one has much time. It’s not abandoned
and I have the best excuse, now writing a TikZ book.

TeXblog.net is my TEX blog from 2008, but
I’ve put it so far behind everything else that I hardly
use it at the moment.

6 Galleries

TeXample.net is a collection of TikZ examples and
was built in 2008 by Kjell Magne Fauske. When Kjell
no longer had time for it, I took over as admin in
2012. Today there are 407 submitted TikZ examples
from 190 authors. There is also a blog aggregator
at TeXample.net/community, a kind of news ticker
from the TEX blog world. There are 3,600 entries
from 50 registered blogs (including TUG’s).

TikZ.net is another TikZ gallery that I designed
as a potential successor of TeXample.net because
the latter became difficult to maintain. Most of the
approximately 1,000 examples have been written by
Izaak Neutelings, with a focus on physics.

TikZ.fr is a French-language TikZ gallery that
I'm currently building with Patrick Bideault, Denis
Bitouzé, and Alain Matthes, with a focus on “tkz”
packages such as tkz-euclide.

pgfplots.net is a gallery of selected plots that
I set up as an enthusiastic pgfplots user.

LaTeX-Cookbook.net is a gallery of examples
from my “IATEX Cookbook” from 2015. All code
examples of the book are available there, editable
and compilable online.

LaTeXguide.org is the companion page to the
“IATEX Beginner’s Guide”, started on the occasion
of the new edition in 2021 with updated code for all
examples and additional information.

7 Thanks

I would like to thank DANTE e.V. for funding the
hardware that makes possible what is described here.
It is a great motivation for working on these projects.

o Stefan Kottwitz
Hamburg, Germany
stefan (at) latex.org
https://latex.org

DANTE project funding of TEX servers

https://IslandOfTeX.org
https://CTAN.net
https://LaTeX2e.org
https://latexref.xyz
https://TeXfragen.de
https://TeXwelt.de
https://goLaTeX.de/wiki
https://LaTeX.net.br
https://TeXfaq.org
https://www.tex.ac.uk
https://www.tex.ac.uk
https://LaTeX.net
https://LaTeX-Community.org
https://TeX-Talk.net
https://tex.blogoverflow.com
https://tex.blogoverflow.com
https://TeX.my
https://cnltx.de
https://mychemistry.eu
https://TeX.co
https://TeXwelt.de
https://TikZ.de
https://TeXblog.net
https://TeXample.net
https://TeXample.net/community
https://TikZ.net
https://TeXample.net
https://TikZ.fr
https://pgfplots.net
https://LaTeX-Cookbook.net
https://LaTeXguide.org

232

The residual concepts of production
vs. the emergent cultures of distribution
in publishing

David Blakesley

Abstract

Who wins? The base or the superstructure? I'm not
a Marxist per se, but I've lived this struggle for some
time as a writer and publisher. In this essay, adapted
from my TUG’22 keynote presentation, I describe my
efforts to change or adapt the democratized tools of
production to produce new forms of writing, which
ultimately led to an ongoing battle with the dominant
cultures of production in the world of publishing.

I'll narrate two case studies. One focuses on the
writing and production of an innovative, if not dis-
ruptive, textbook in the ultra-conservative textbook
industry. The second tells the ongoing story of an
interloping publishing company (Parlor Press) that
reveals the central challenge of distribution for both
writers and publishers, from typesetting (print) to
transformation (digital).

IMTEX developers and users, take note! The
return of the nonbreaking space and soft return is
nigh!

1 Some background

I’'m the Campbell Chair in Technical Communication
and Professor of English at Clemson. I also direct
the PhD program in Rhetorics, Communication, and
Information Design. That’s my day job. My night
job is as the founder and publisher of Parlor Press,
a scholarly publishing company I launched in 2002.
Originally, Parlor Press was created to publish just
one book, a collection of letters exchanged between
Kenneth Burke and William Rueckert, two people
I've written about in my own scholarship.

One thing led to another, and now we’ve pub-
lished 350 books in a variety of formats, from print
to multimedia ebooks, and have eighteen book series,
most in the humanities. I’'m the only employee. I
do hire some freelance editors now and then to help.
Series editors help with development and acquisition,
but I'm largely responsible for production, design,
distribution, and marketing. And then there’s ship-
ping, metadata, customer relations, author support,
a Shopify website, accounting, and more. I know. It
sounds impossible, but I have learned over time to
be efficient.

2 Opening questions and definitions

Who wins in the world of publishing? The base or
the superstructure? I’'m not a Marxist per se, but

David Blakesley

doi.org/10.47397/tb/43-3/tb136blakesley-production

TUGhboat, Volume 43 (2022), No. 3

I’ve lived this struggle for some time as a writer and
publisher. In this essay, which I’ve adapted from
my presentation at TUG 2022 (available online via
tug.org/l/tug22-video), I describe my efforts to
change or adapt the democratized tools of production
to produce new forms of writing, which ultimately
led to an ongoing battle with the dominant cultures
of production in the world of publishing.

I'll narrate two case studies. One focuses on the
writing and production of an innovative, if not dis-
ruptive, textbook in the ultra-conservative textbook
industry. The second tells the ongoing story of an
interloping publishing company (Parlor Press) that
reveals the central challenge of distribution for both
writers and publishers, from typesetting (print) to
transformation (digital).

I want to begin with some terms that I've used
to try to explain what I do and understand how it
has changed over time. The struggle for me has been
with the culture of publishing. Here are some defini-
tions of these key terms that help me understand my
academic and publishing existence, with a few exam-
ples. I've always found Raymond Williams helpful,
particularly his essay from New Left Review, “Base
and Superstructure in Marxist Cultural Theory”,
from which I draw the definitions below. I provide
the definition and then a visual example.

The base “‘The base’ is the real social existence of
man. ‘The base’ is the real relations of produc-
tion corresponding to a stage of the development
of material productive forces. ‘The base’ is a
mode of production at a particular stage of its
development.” (Williams)

Eﬁmm @ .

o Quark

Figure 1: The base in publishing. These are just a
few of the means of production.

The superstructure “The superstructure consists
of the cultural and economic forces that both
reflect and maintain the material base, the mode
of production. The superstructure is of a sec-
ondary order and symbolic.” (Williams)

Hegemony “Hegemony is the expression of power,
an ideological force that dominates social, cul-
tural, and economic life and thus stabilizes the
base, the modes of production.” (Williams)

https://tug.org/l/tug22-video
https://doi.org/10.47397/tb/43-3/tb135blakesley-production

TUGDboat, Volume 43 (2022), No. 3

Example: The lingering hegemony of print.
The superstructure supports print production
and discourages challenges to the status quo.

233

Emergent culture “New meanings and values, new
practices, new significances and experiences, are
continually being created. But there is then a

Figure 2: CD-ROM ebook destroys printed books.
(Image by Chuck Savage. RF Corbis Collection.
Getty Images.)

much earlier attempt to incorporate them, just
because they are part—and yet not part — of
effective contemporary practice.” (Williams)

Emergent culture is where I prefer to live. It
is the future. The problem, said William Gibson,
is that the future is already here, but it’s just
not evenly distributed yet. Much of my work
as a writer and a publisher is to distribute the
future, which sounds rather idealistic, I suppose.

Here’s a nice example of residual and emergent
cultures in contest.

Dominant culture “The modes of incorporation

are of great social significance, and incidentally
in our kind of society have considerable eco-
nomic significance. The educational institutions
are usually the main agencies of the transmis-
sion of an effective dominant culture, and this
is now a major economic as well as cultural ac-
tivity; indeed it is both in the same moment.”
(Williams)

According to Williams, we can identify at least
three cultural forces at work in any given social
formation, such as publishing. The dominant
culture of publishing is powerful, ubiquitous,
largely impenetrable, persistent, and largely in-
visible.

Residual culture “The meanings and values which

cannot be verified or cannot be expressed in the
terms of the dominant culture, are nevertheless
lived and practised on the basis of the residue-
cultural as well as social-of some previous social
formation.” (Williams)

Residual culture is persistent, a hanger-on,
and in some cases never disappears. The sta-
tus quo has great momentum. Most academics
feel its effects daily and especially if you try to
change anything.

(:;)fl ;;“éjmn el

Figure 3: Residual and emergent cultures battle

for power and attention. Was the Segway an
invention or a cultural composition? (Image courtesy
worth1000.com.)

3 Case study 1: Writing in the digital age

My first case focuses on my work as an author. I've
written a textbook that has appeared in multiple
editions, their covers shown in Figure 4.

These covers illustrate what changed over a pe-
riod of about four years of work. The one on the
left (The Thomson Handbook) was created by the
publisher with absolutely no consultation with the

The residual concepts of production vs. the emergent cultures of distribution in publishing

234

o oo
®

THE THOMSON

® HANDBOOK
@ -

®06

The First Edition

Figure 4: The covers of the first and second editions
of the author’s writing handbook, published by
Cengage (2009 and 2012).

authors and having little, if any, visual relationship
with the content of the book. A bunch of dots with
words in them. The cover on the right, is much dif-
ferent. I chose it and persuaded the publisher to go
with it. Here’s the caption on the inside front cover:

Is a flower born digital? Macoto Murayama’s
are. Using his sketchpad, camera, microscope,
and 3D rendering software, this artist joins
technology with the craft of photography to
help us see the natural world in a brand-new
way.

Can a writing handbook help students en-
counter the digital world in a brand-new way?
Only if it joins the art of writing with the
technology for enhancing it. Blakesley and
Hoogeveen’s Writing —finally, a rhetorical
handbook for students born digital.

Of note here is that from the first to the second
edition we see a shift from the publisher at the center
of the production process in the direction of the
author, who suddenly has some say in the means of
production.

Figure 5 shows an interior spread. The visual
content is primary, with the textual content function-
ing like an illumination. The full version of the first
edition came in at 1,300 pages. Can you imagine
writing, designing, and producing that?

It was critical for me to create (invent) in the
design space, with the images and text in close prox-
imity. The images and text converse with one an-
other. MS Word doesn’t do well with images and
text together, so I composed much of the book in
InDesign (CS2, here, about fifteen years ago). Fig-
ure 6 shows a screenshot of my workspace, designing
what was called a research spread. Once composed,
I produce a PDF to share with the publisher so that
designers would see what I had in mind.

David Blakesley

TUGDboat, Volume 43 (2022), No. 3

Figure 5: The innovative design of Writing: A Manual
for the Digital Age transforms the principles of the
illuminated manuscript. Here, the (usually) primary
text has been moved to the margins, with the visual
content and illustrations occupying the center of
attention on the inside.

Figure 6: Composing in the design/production space
as an author. The image shows the Adobe InDesign
workspace.

Then I had to retrofit the document so that I
could share the content in a Word file because that’s
how the publisher’s book designers were prepared
to receive new content. Images were submitted as
separate files. The 1,300 page book translated into a
7,000 page Word document, about a three-foot tall
stack of paper (Figure 7).

Figure 8 shows what the finished version looked
like in the first edition. Pretty nice! By the time
we got to the second edition, I had persuaded the
publisher (now Cengage) to produce all of the content
in InCopy — a shared workspace version of InDesign.
Cengage did not agree overnight. The dominant and
residual cultures of textbook publishing kept authors
a long way from the means of production. This new
workflow changed that.

I’'m sure this case wasn’t a precipitating cause,
but within a couple of years, the dominant culture
of textbook publishing changed rather dramatically,

TUGDboat, Volume 43 (2022), No. 3

Figure 7: The InDesign document had to be dis-
assembled into a Word document and sent separately
with the images. A PDF file showed the layout.

Figure 8: The interior spread as reassembled by the
publisher’s contracted production designer.

mostly due to economic forces (students stopped
buying new textbooks, opting for rentals or noth-
ing). Textbook companies are largely now content
managers and distributors, with authors relegated to
the margin, working on modules that can be redis-
tributed across platforms. The textbook companies
make their money with ancillaries. The base, where
authors had a vital role in the means of production
(invention), gives way to the superstructural forces
of data management.

4 Case study 2: Publishing in the
digital age

At different moments in the emergence of publishing,
the power of different stages over the others rises and
falls. For example, it used to be the case that market-
ing drove everything. In scholarly publishing around
the turn of the twenty-first century, marketing and
marketability started to compromise the whole pro-
cess. Authors had to be well known, writing about
popular and timely topics in books that would sell

235

The
Publishing
Life Cycle

$
=
3
L
Q

Figure 9: The publishing life cycle.

to more than libraries. Outside peer review took a
back seat to evaluations by the marketing team.

With the emergence of new formats, like EPUB
and MOBI, the stress on production processes in-
creased, which in turn meant that the desire for ef-
ficiency started to compromise production values.
Amazon’s Kindle promised to make books much
cheaper to read, almost overnight, but the means of
production couldn’t keep up. Take the example of
the first publication of Allen Ginsberg’s Howl, which
Amazon touted with much fanfare. However, the
Kindle format (MOBI, a sort of simplified and propri-
etary version of EPUB) could not easily handle line
spacing, line breaks, or stanza breaks (Figure 10).
Some expertise in the conversion of print to EPUB
or MOBI was suddenly required.

What people were saying

“I tweeted my frustration. Others did too. What
does this say for eBooks if we can’t get basic things
like formatting right? Why create such hullabaloo
around this digital release if you hadn’t properly
checked formatting on every device? Why is it that
publishing sits so far outside the norms of what is
required to launch something digital?”

— Callie Miller, The Lit Life, 7 Oct 2010,
www.litlifela.com/counterbalance/2010/10/
html-ebook-formatting-nonsense.html

Some of the responses to Callie Miller’s blog
post are shown in Figure 11.

Parlor Press has published a lot of poetry, more
than seventy titles so far (Figure 12). Originally,
none of them was available in EPUB or Kindle format.
I knew that we had to eventually convert all of our
books to EPUB. So what were my options? I could

The residual concepts of production vs. the emergent cultures of distribution in publishing

https://www.litlifela.com/counterbalance/2010/10/html-ebook-formatting-nonsense.html
https://www.litlifela.com/counterbalance/2010/10/html-ebook-formatting-nonsense.html

236

HOWL

For
Carl Solomon

I saw the best minds of my generation destroyed by
madness, starving hysterical naked,

dragging themaselves through the negro streets at dawn
looking for an angry fix,

angelheaded hipsters burning for the ancient heavenly
connection to the starry dynamao in the machin-
ery of night,

who poverty and tatters and hollow-cyed and high sat
up smoking in the supernatural darkness of
cold-water flats floating across the tops of ities
contemplating jazz,

wha bared their brains to Heaven under the El and
saw Mohammedan angels staggering on tene-
ment rools illuminated,

wha passed through universities with radiant cool eyes
hallucinating Arkansas and Blake-light tragedy
among the scholars of war,

who were expelled from the academies for crazy &

TUGDboat, Volume 43 (2022), No. 3

COLLECTED POEMS 1947-1997

Howl

For Carl Solomon

1
I saw the best minds of my generation destroyed by
madness, starving hysterical naked,
dragging themselves through the negro streets at dawn
looking for an angry fix,
angelheaded hipsters burning for the ancient heavenly
connection to the starry dynamo in the machinery of night,
who poverty and tatters and hollow-eyed and high sat up
smoking in the supernatural darkness of cold-water flats
floating across the tops of
cities contemplating jazz,
who bared their brains to Heaven under the El and saw
Mohammedan angels staggering on tenement roofs
illuminated,
who passed through universities with radiant cool eyes

Figure 10: The original typed manuscript of Howl (left), the print edition (middle),
and the MOBI (Kindle) edition (right).

Jim Welke says: B
October 6, 2010 at 2:14 pm >

What a drag. Such laziness.
The problem could easily be addressed by adding line breaks and tabs. Somebody
just didn’t bother.

(I've written lots of code,

in lots of languages,

and formatting text is one of those hassles
you must deal with to please the humans
who end up reading it...and paying for it!)

(And if the above indents don’t appear, then this comment form stripped out my
line breaks and spaces, same as the Kindle!)

Cheers,
Jim

Craig Morgan Teicher says:
October 6, 2010 at 4:56 pm

Troy: Line breaks in poetry aren’t “formatting,” they're an essential part of how
the text communicates. That said, I know that may not mean much to casual
readers, but I wish it did.

Natasha, as you say, this is exactly the issue that has most poetry publishers
nervous about e-books. I wish we could devote some tech time to it and find a
solution.

I.A.M. says: Ef,
October 6, 2010 at 5:17 pm &

Enforcing indentations, tabs, hanging indents, and the like is nigh-on impossible to
accomplish in anything other than an Adobe PDF (which is best considered a
photocopy of a book, becuase the text doesn’t ‘re-flow’ to fit the screen
dimensions). As has Natasha October, I've tried to protect typographic fidelity to
original layouts and been skunked every time. Maintaining ‘centred text’
sometimes is a challenge.

Oulipo and Poetry rely heavily on a word being in a particular spot in relation to
another line or word when read, and e-readers are incapable of maintaining that
due to the text size control the user has, as well as the fact that various units’
typefaces will take up a different line space than another’s.

As much as I continue to make books available in electronic formats, the printed
editions continue to be made available along side of them due to a variety of
reasons that guarantee that printed books will continue to be created for decades
to come. Electronic books are an alternate binding, not a replacement for all
printed books.

Figure 11: Response to the original Kindle version of Howl.

Free Verse Editions
Series Editor: Jon Thompson

Free Verse Editions represents a joint venture between 7

Postics and Parlor Press. The series will publish

three to five books of poetry per year. Allsubmissions are reviewed as part of our New Measure Poetry Prize competition. Read more about Free V

Editions and the New Measure Prize here. Photo by Tengyart on Unsplash

Showing 1 - 24 of 78 products

' 'm“en/zo-s

Display: 24 per page v

A MG of Ao

North | Rock | Edge.

Sortby: Date newto old v View §

e Last Morning

Figure 12: Some sample Parlor Press poetry titles. See parlorpress.com/collections.

David Blakesley

https://parlorpress.com/collections

TUGDboat, Volume 43 (2022), No. 3

TexSoup softcover ebook-convert
tex tex .html .epub .mobi
(LaTeX) (PolyTex)
14
pdflatex - pdf
-~
L7

Figure 13: Ivan Savov’s diagram of the XTEX
conversion process to multiple platforms. From
Minireference blog: Starting a Revolution in the
Textbook Industry, minireference.com/blog/
generating-epub-from-latex.

pay Ingram, for example, to convert our backlist
(now 350 titles), but at $200 or more a pop, we’re
talking about $70,000 or more to cover the conversion
cost. Yikes. I tend to be a DIY person, know a little
bit about coding, and have worked with open source
projects like Drupal since its beginnings.

I had heard of INTEX, but it looked quite daunt-
ing (Figure 13). Michael Hartl described the process
in excruciating detail in the manual for his Softcover
system (manual.softcover.io), when the source
material includes math: The real challenge is pro-
ducing EPUB and MOBI output. The process was
to:

(1) create a self-contained HTML page with embed-
ded math,

(2) include the amazing MathJax JavaScript library,
configured to render math as SVG images,

(3) then hit the page with the headless PhantomJS
browser to force MathJax to render the math
(including any equation numbers) as SVGs,

(4) extract self-contained SVGs from the rendered
pages, and

(5) use Inkscape to convert the SVGs to PNGs for
inclusion in EPUB and MOBI books.

Easy, right? In fact, no—it was excruciating and
required excessive amounts of profanity to achieve.
But it’s done, so ha. Piece of cake! I had to think
about the conversion process in terms that were more
familiar (Figure 14).

237

Publisher’s Goal

Single Source Production for Distribution

Print, PDF, EPUB

Figure 14: The challenge from the publisher’s
perspective.

I have to work with authors, and there’s no
reason why they shouldn’t be aware that what and
how they write should not to some extent reflect the
means of production. Few writers worry about that,
however, and do what the word processor encour-
ages them to do (namely, format and design with
abandon). Publishers force the issue, however, and
ask authors to prepare manuscripts in very particu-
lar ways, most of which authors ignore. Production
changes/affects invention/authoring. This was a les-
son I learned from my textbook. Now, however, I
realized that distribution should affect/change au-
thorship as well. (Figures 15 and 16.)

PUBLISHER AUTHOR
Production Invention
Distribution Invention

Figure 15: Publishers work with authors to help them
prepare submissions for production.

The hegemony of spaces, tabs, and hard returns
preserves the status quo of production as governed
by residual and dominant cultures and embedded not
just in software but in the socialized practices of the
people. The nonbreaking space and soft return are
elements of the emergent culture. Word processors
and even keyboards encourage people to use spaces,
tabs, and returns for line and paragraph spacing,
regardless of the target format.

Authors, especially poets, need to understand
how and why distribution changes their art. We have
heard a lot lately about how much the supply chain
is vulnerable to disruptive forces. So it has been
with the emergence of new distribution lines and the
new formats they deliver, like EPUB and MOBI.

Figure 17 shows the directions I now give our
poets. They don’t like it, but poets care about how
their words are displayed. It matters, and makes a
difference, even if subtle, for what their poetry means.

The residual concepts of production vs. the emergent cultures of distribution in publishing

https://minireference.com/blog/generating-epub-from-latex
https://minireference.com/blog/generating-epub-from-latex
https://manual.softcover.io

238

The Emergent
“Publishing
Life Cycle

S
=
(2]
]
L
Q

~

g

~
IS U
R 7‘)7.777

Figure 16: The lines of influence start to reach across
the stages of the means of production.

Distribution Invention

Additional Considerations for Poets

Authars of books of poetry should follow these guidelines where applicable. Line breaks, stanza breaks, and
poem boundaries merit special care because they affect the appearance of layout across formats, from
print to ebook. All Parlor Press books are published simultaneously in multiple formats; following these
guidelines will ensure that poems display in all of them as expected.

So that you can see all formatting marks (like hard and soft returns, spaces and nonbreaking q
spaces), we recommend using Word’s Show/Hide button to reveal all formatting marks. The

Show/Hide
button is normally on the home toolbar and looks like the paragraph symbol shown here. /

Button

* Single space throughout.

s Do not use Tabs for anything, anywhere.

* Line breaks: use a hard Return (Enter key) at the end of the line. The line length in the final printed
book will normally allow for about 63 characters (with spaces). Kerning can be applied for slightly
longer lines. For lines with more than 70 characters, we will have to use an indented second line.

* Stanza breaks: use a soft return to create additional space between stanzas or sections. In Word, you
can create a soft return with the Shift+Enter keystroke (Mac or Windows).

® Poem boundaries: because poems may sometimes run over multiple pages, it is helpful for you to
include a manual page break at the end of the poem. In Word, insert a page break with the Ctrl+Enter
key bination (Windows) or C d+R
or Windows).

(Mac) or choose Insert > Break > Page Break (Mac

* Layout of the line: if you need to indent the start of a line or create extra space between words, use
“nonbreaking spaces” (not spaces or tabs) to indent. Using nonbreaking spaces is critical because all
books will be converted to ePub format for publication as ebooks. All multiple spaces, returns, or
(any) tabs are ignored in that format. To make a nonbreaking space, use CTRL-Shift-space (Mac or
Windows).

Figure 17: The directions for poets in the Parlor
Press Author’s Guide 2022.

So they are willing, much more so than authors of
monographs.

The invention process of the author and the pro-
duction process of the publisher has changed (Fig-
ure 18).

The screenshots in Figure 19 show three images
of production. Authors originally used spaces, tabs,
and multiple hard returns to manage their layout,
which could be replicated in InDesign easily. How-
ever, to produce a properly formatted EPUB, you
must use nonbreaking spaces and soft returns to
manage line layout and stanza breaks. Figure 20

David Blakesley

TUGboat, Volume 43 (2022), No. 3

Tabs
Spaces \ Multiple Hard
\ 94 / Returns

A\ 4

PUBLISHER AUTHOR

Distribution Invention

Figure 18: Distribution changes invention and
production.

shows how the single-source now manifests in print
and EPUB.

The problem was that all of our backlist titles
had not been composed with the final platform in
mind. Converting seventy poetry titles at four hours
per book meant 280 hours of work (seven weeks!).
Now, however, we produce an EPUB in ten minutes
using the version prepared for print/EPUB simulta-
neously as a single source.

The work required to convert a backlist designed
for print is substantial, particularly for a publisher
like Parlor Press, which runs on a shoestring budget
with no full-time employees. The democratization
of production and digital printing technologies that
made desktop publishing possible have led to new
challenges at new stages of the publishing cycle. For
the near future of publishing, the residual and domi-
nant cultures of production must be reimagined in
light of the emergent culture of distribution. Once
that happens, the process of single-source develop-
ment for multiple formats will be free and easy :).

5 References

Hartl, Michael. The Softcover Book: Frictionless
Self-Publishing. The Softcover Book, 2022.

manual.softcover.io

Miller, Callie. Allen Ginsberg’s Howl & eBook
Formatting Nonsense (or, HTML is Hard).
The Lit Life, 7 Oct 2010. wuw.litlifela.com/
counterbalance/2010/10/html-ebook-formatting-
nonsense.html

Savov, Ivan. Generating ePub from LaTeX.
Minireference blog: Starting a Revolution
in the Textbook Industry, 5 March 2021.
minireference.com/blog/generating-epub-from-
latex/

Williams, Raymond. Base and Superstructure in

Marxist Cultural Theory. New Left Review,
vol. 82 (Nov/Dec 1973), 319-348.

o David Blakesley
Clemson University and Parlor Press
dblakes (at) clemson dot edu

https://manual.softcover.io
https://www.litlifela.com/counterbalance/2010/10/html-ebook-formatting-nonsense.html
https://www.litlifela.com/counterbalance/2010/10/html-ebook-formatting-nonsense.html
https://www.litlifela.com/counterbalance/2010/10/html-ebook-formatting-nonsense.html
https://minireference.com/blog/generating-epub-from-latex/
https://minireference.com/blog/generating-epub-from-latex/

TUGDboat, Volume 43 (2022), No. 3

There was RETAIL"
OFFICE*
SPACE"

the sky hadn’t ordered yet"
q

If'it were possible to read the books"
being gathered in a shoebox on the desk—

but those were shells in the shoebox®
The books are stacked on the desk’

q
In-a hurry, the wind has a hole init*
q
NEW*
VIEWY
REALTY"

Author Version in Word

There was-RETAILs
- &1
OFFICEs
- SPACES

the sky-hadn’t-ordered yers
L

Ific-were possible-to read:the books®

being gathered-in a-shoebox on-the desk—

f
but-those were shells-in the-shoebox?
The books are stacked-on-the-deske
§
Ina hurry, the wind has a hole init¢
1
| <o NEWS
VIEWs
- REALTY"

Print Production in InDesign

239

There-was RETAILs

the sky hadn’t ordered yers

If it were possible to read the books?
being gathered in a shocbox on the desk—

but those-were shells in the shoeboxt
The books-are stacked-on- the desks

In-a-hurry, the wind-has-a hole-in it

EPUB Production in InDesign

Figure 19: Some examples, moving from the author through the production process,
with EPUB now a target as well as print and PDF.

There was RETAIL
&
OFFICE
SPACE

the sky hadn't ordered yet

If it were possible to read the books
being gathered in a shoebox on the desk—

but those were shells in the shoebox

The books are stacked on the desk
In a hurry, the wind has a hole in it

NEW
VIEW
REALTY

PDF / Print

‘There was RETAIL
&
OFFICE
SPACE

the sky hadn't ordered yet

If it were possible to read the books
bcing gathcred in a shoebox on the desk—

burt those were shells in the shoebox

‘The books are stacked on the desk

In a hurry, the wind has a hole in it

NEW
VIEW
REALTY

EPUB in Ebook Reader

Figure 20: Output in print and EPUB are virtually identical once the tools of composition change.

The residual concepts of production vs. the emergent cultures of distribution in publishing

240

Typographers’ Inn
Peter Flynn

Font packages: Symbats, Swashes

Like many IXTEX users, I often check the I¥TEX Font
Catalogue [5] for a suitable typeface before deciding
to buy or download one. Getting one of the listed
fonts means there is often a package to support it,
which makes life easier, especially when there are
many variants.

Just as often, though, I need a font that isn’t
in the Catalogue, so I usually buy it —I'm happy to
download fonts that the designer has explicitly made
available free of charge and free of restrictions, but
I'm not a great fan of downloading from sites that
steal the work of designers and pass the fonts off as
‘free’. Call me old-fashioned but font design is hard,
and font designers need to pay the rent like everyone
else.

Symbats. However, fonts made freely available by
their designer are an act of generosity, and I came
across one that was recently updated and released
under the SIL Open Font License. I hadn’t seen the
font before, despite its having been available for 25
years! It’s a font of religious and astrological sym-
bols, not a text font, although it does also include
Runic and Ogham alphabets (see Figure 1).

WL+ ATOM® M2
ST HVYVEXAFITC
2 &0 2R EERY ® A
5 I U ® & ¥ o= X
@B TIAN#¥IN/D

Figure 1: Symbats 3.0 font (sample)

Those who remember the earlier days of fonts
will recall that symbol font designers tended to put
the symbols in the positions of the keyboard charac-
ters, so that A—Z, a—z, 0-9, and punctuation could
easily be used to get the characters printed. But
with so many symbols now having a standard Uni-
code name and codepoint, and with the big improve-
ments in font file technology, this positioning is no
longer needed in synchronous typographical editors.
It’s not needed for IATEX editors either; for example
% (Aquarius) or ? (Ceres) are both normal Unicode

Peter Flynn

doi.org/10.47397/tb/43-3/tb135inn

TUGhboat, Volume 43 (2022), No. 3

characters and can be typed as such if your editor
has font support for them. However, some do not,
so it seemed like a good step to write a package that
would provide IATEX commands for all the symbols
in this font.

The first thing to do was to extract all the
font character metadata into a spreadsheet using
a combination of the otfinfo utility' and the Font-
Forge scripting language. This provided one line per
glyph, giving the actual character, the hexadecimal
Unicode codepoint, and the Unicode or other name
from the font file. I added a fourth column to pro-
vide a ITEX command name. From this, it was
possible to output a set of declarations like the one
in Figure 2 which equated a command internal to
the package (beginning with SYMBATS@?) with the
TU font encoding and the codepoint of the symbol.
As this was an OTF font, I was using XqITEX and
the fontspec package, for which TU is the appropriate
encoding (using XgKUTEX or LualATEX is therefore a
requirement for using the symbats3).

\DeclareTextSymbol{\SYMBATS@ceres}{TU}{"26B3}

Figure 2: Example of implementing an OTF glyph as
a IATEX internal command

I could have just used the IATEX commands I
had created in the spreadsheet, but some experi-
ments had already shown that the positioning of the
glyph with respect to the baseline of surrounding
text did not take account of the depth (descenders)
of the surrounding font. To allow for this, an addi-
tional definition would be needed for each character
to expose the user command with code for the ap-
propriate repositioning. I wrote a utility command
\SYMBATS@getdesc to get the depth of the descen-
ders of the current font and lower the baseline of the
character by that amount (see Figure 3).

\newcommand{\ceres}[1] [\relax]{/
\SYMBATS@getdesc{#1}/,
\raisebox{\SYMBATS@baselineadjust}

{\symbats\SYMBATS@ceres}/

}

Figure 3: Example of implementing an internal
command as a ATEX user command with an option to
adjust the baseline (code in package)

As not everyone may want this, it is imple-
mented by a package option [descenders]. With-
out it, a user can still add an optional argument to
any of the character commands to raise or lower the
symbol by an arbitrary amount.

I Available from CTAN in the lcdf-typetools package.
2 Thanks to Karl Berry for the change from Sye.

TUGboat, Volume 43 (2022), No. 3

A final step was to put the \newfontface font
load command into \AtBeginDocument and add the
font load option [Scale=MatchUppercase] so that
symbols would be approximately the same size as
the uppercase letters of the main font.

There are 325 symbols in the symbats3 pack-
age, which is available from a CTAN server near
you (https://ctan.org/pkg/symbats3); it’s also
included in TEX Live and MiKTEX.

Swashes. Encouraged by this, I decided to repeat
the process for another font that had been recom-
mended to me. This is Super Tramp,? from designer
and photographer Vivian Dehning.? It’s a quite
slender display font with a large collection of swash
and variant characters, including a lot of extra lig-
atures, some on capitals, and a number of different
upper- and lower-case asterisks.

uchen sofort

ekretarxin

ABCDEFGHIJKLMNOPQRSTUVWXYZf3

[RODSTRR

abcdefghijklmnopqgrstuvwxyz0123456789

Alles vergangliche

Figure 4: Vivian Dehning’s Super Tramp font (sample,
with chicken from the twemojis package).

Again, I thought it best to defer loading of the
fonts until the last thing, so it could be adjusted
to the main font size, although this time it uses
[Scale=MatchLowercase]. Many of the additional

3 Nothing to do with the rock band, movie, or trampoline
manufacturer.

4 This is a commercial font which can be bought from
the designer via https://viviandehning.com/super-tramp-
typeface/.

241

characters use a StylisticSet option (up to eleven of
them) in the OTF font, and there are ligatures and
case-specific variants as well, so the font is currently
loaded 13 times, which is probably wrong, but it
works.

\newcommand{\Rswash}{{\ST@i R}}
\newcommand{\001lig}{{\ST@xii 00}}
\newcommand{\Eswash}{{\ST@i E}}

Figure 5: Generated definitions for the Super Tramp
font.

IATEX command names were incorporated into
a spreadsheet as for the Symbats3 font, attempt-
ing to strike a balance between following the de-
signer’s choice of codepoint names and the conven-
tions to which IXTEX users have become accustomed.
This resulted in some 200 commands, but this time
they all seemed to sit on the baseline quite happily,
so there was no need for adjustment, only a direct
equivalence between IATEX command and the char-
acter from the correct StylisticSet or ligatured font
load.

G

Figure 6: More sample swash characters from Vivian
Dehning’s Super Tramp font (designer’s image, used
with permission).

The naming of multiple swashes for the same
base character led to the adoption of the same mech-
anism used for step-size fonts (\large, \Large, and
\LARGE) so we have \Jswash (), \JSwash (q), and

\JSWASH (7|), etc, in increasing order of complexity.

Typographers’ Inn

242

Characters that can be generated from the key-
board, especially the common diacritics, have not
been given command names. For example, to get
R you just type R using whatever mechanism your
operating system and keyboard provides: there is
no \Rcaron command; similarly for the W, but the
crossed-W variant with diaeresis W is provided for
with \Wuml.

There is still work to do in tidying this up before
I can package it up for CTAN but it should be ready
by the autumn.

To publish or not to publish

There have been some discussions recently among
TEX consultants about providing a better service
for self-publishers. These are authors — of all kinds
of material, not just math and science—who for
one reason or another are not using traditional pub-
lishers, so they have to edit, typeset, proof, bind
or package, and publish their PDF or EPUB them-
selves.

There are of course lots of useful web sites, ser-
vices, and other resources (including books!) to help
people do this, many of them providing very good
quality —at a cost —and very sound advice, often
starting with ‘Don’t. ..’

The conventional path—a wordprocessor, of-
ten Microsoft Word — is perfectly capable, in expert
hands, and with a lot of effort and reconfiguration,
of producing passable typesetting. IATEX can do the
job just as easily if suitable classes and packages are
used, and can produce better quality output.

I have always considered that IATEX’s key fea-
ture was automation: define a pattern once, and it
can be used consistently throughout the whole docu-
ment, and even across documents. Anyone who has
ever taught IATEX knows that avoiding repetitive
manual formatting provides an instant productiv-
ity boost to the bottom line in terms of time saved.
Newcomers have to rely on experienced users to cre-
ate these patterns (the definitions of commands and
environments), so for this project to succeed it is
essential that we can open and maintain a dialogue
between the potential users (authors with a book to
typeset) and the potential contributors (experienced
users).

The discussions include a TEX Live book pub-
lishing resource, and one of the tasks will be to pro-
mote it among self-publishers who care about pub-
lishing trade-quality books. One of the participants,
the author Lloyd R Prentice [6], has said ‘the big
challenge is how to simply and clearly explain why
IATEX is a better book styling and typesetting option

Peter Flynn

TUGhboat, Volume 43 (2022), No. 3

relative to word processing’ I think that’s some-
thing everyone can contribute to.

Afterthought: Translations

I am always happy to be able to announce when
an article from the Inn is translated into another
language so that it reaches a wider audience. To be
able to announce two translations and a reprint of
the same article at the same time is even nicer.

My article ‘To print or not to print’ from this
column [2] is now available in French as ‘Imprimer
ou ne pas imprimer’ in the French typographical
journal Graphé 85 [1], and was reprinted in Cahier
58 of GUTenberg (the journal of the French-speaking
TEX users’ group), translated by Patrick Bideault
[4]; and in collaboration with Bernd Raichle in Ger-
man as ‘Druck oder Nichtdruck’ in Die TgXnische
Komadie (the journal of the German-speaking TEX
users’ group) [3].

I was remiss, however, in not RTFM and re-
ferring them to the copyright and translation notice
inside the front cover of issues of TUGboat to ensure
that TUGboat itself was notified of the publication.
Thank you, Barbara Beeton, for reminding me.

References

[1] P. Flynn. Imprimer ou ne pas imprimer.
Graphé 85:13, Dec 2020. Tr. Patrick Bideault.
https://typo-graphe.com/produit/numero-85/

[2] P. Flynn. Typographers’ Inn: To print or
not to print. TUGboat 41(3), Dec 2020.
https://tug.org/TUGboat/tb41-3/tb129inn.pdf

[3] P. Flynn. Druck oder Nichtdruck. Die TgXnische
Komédie 2022(2), May 2022. Tr. Patrick Bideault
and Bernd Raichle.

[4] P. Flynn. Imprimer ou ne pas imprimer.
Cahier 58, Apr 2022. Tr. Patrick Bideault.
https://www.gutenberg-asso.fr/Cahier-numero-
58-Septembre-2021

[5] P. Jorgensen. The IXTEX Font Catalogue, May
2021. https://tug.org/FontCatalogue/

[6] L. Prentice, V. Novotny. Publish Beautiful
Books with Markdown. Writersglen Publications,
Marshfield, MA, 2021.

o Peter Flynn
Textual Therapy Division,
Silmaril Consultants
Cork, Ireland
Phone: 4353 86 824 5333
peter (at) silmaril dot ie
blogs.silmaril.ie/peter

TUGboat, Volume 43 (2022), No. 3

Formatting mesostic poems a la John Cage
David Bellows

Abstract

IXTEX is useful not only for producing beautifully
typeset math and science papers but can be just as
useful for the typesetting demands of modern po-
etry. This includes a style of poetry called mesostics
that was created by the poet Jackson Mac Low and
embraced and extended by the late composer John
Cage; it is Cage’s approach to mesostics that I will be
addressing in this paper. I will show how I use ITEX
to automatically format my own computer-generated
mesostics.

1 Introduction

Mesostics are a type of poetry and formatting that
the composer John Cage used throughout the lat-
ter part of his career to create poetry by “reading
through” a large source text looking for words con-
taining the letters of the spine or mesoword, where
both the source text and the spine were chosen for
their significance to him. The resulting text would
then be formatted in a way similar to an acrostic
but with the spine word running through the middle.
An example demonstrates this best:
nearLy napping,
camE a
tappilig,
as Of
gently Rapping,
at my chambEr door.

In the above example (generated by my soft-
ware), the source text is Edgar Allan Poe’s The
Raven. The spine is the name “Lenore” (from the
poem) and can be seen as being the only letters in
caps and running down the middle.

The software I use goes through whatever source
text is given looking for words in the order they occur
in the spine word (e.g., “Lenore”) and selects extra
words on either side of the spine word according to
various rules and options. It then formats the results
in one of three styles. The regular style, as you see
above, was by far the most common style Cage used.

My software, The Platonic Music Engine (www.

platonicmusicengine.com) (PME), exists to recre-
ate all artifacts of human culture algorithmically
with a high degree of human interaction, allowing
the user to create unique works that bear a superficial
similarity to existing ideas.

These artifacts of culture include music, visual
art, poetry, divination, gaming, and anything else I
can come up with.

doi.org/10.47397/tb/43-3/tb135bellows-mesostic

243

In this case my software is being used to generate
mesostics based on the user’s choices (source text,
spine, various styles of formatting, various other rules
and options) and then printing out the result using
IATEX.

My software does all the heavy lifting. Not only
does it find the mesostics, it also generates a tex file
with all the necessary formatting in place. A better
TEXnician would offload more work onto (I&)TEX
but I am not that person. I am also not much of
a programmer; I just barely manage to get things
working. Nonetheless, this particular workflow works
very well for me. I generate the results the user wants
and then use various external programs like INTEX,
Csound, LilyPond, etc., to handle all the output and
make me look good.

All the programs that I use for output compile
their results from text files. This is an extremely
handy method of generating content.

The PME is released under the GNU Affero GPL
v3 and can be downloaded from the above website.
I welcome any additions to or comments about the
software.

2 Regular style of mesostic

In my initial attempts at formatting, I used the
alltt package (such as in the above example) and
had my software figure out the spaces needed at the
beginning of each line to make everything work out.

Since alltt uses a monospaced font, the pro-
cess was pretty straightforward. Unfortunately it
doesn’t match Cage’s published versions which used
non-monospaced fonts and still managed to get every-
thing perfectly spaced. I do not know how this was
done in the various books Cage published that con-
tained mesostics, but I'm guessing that a typesetter
manually adjusted the letters as needed.

Since the goal of my software is to create content
without the user having to tweak any of the output,
I had to use an automated method but something
better than what I was doing.

After struggling on my own for a while, I did
what many of us do and asked for help from the
TEX forum at stackexchange.com. Several people
provided some great help that automated the for-
matting of mesostics but then I ran into various
problems.

The overarching problem was that I couldn’t
understand those solutions at all. Anything beyond
commands like \textit and there’s a good chance
I’'m not going to be able to follow your solution.

The two basic problems I ran into is that unlike
with Cage’s original formatting, I wanted to allow

Formatting mesostic poems a la John Cage

https://www.platonicmusicengine.com
https://www.platonicmusicengine.com
https://doi.org/10.47397/tb/43-3/tb135bellows-mesostic

244

the spine letters to be in bold. I feel that this helps
them show up better.

I also noticed that in the regular style, Cage had
the spine letters perfectly centered where the center
of each letter ran down through the center of the
other spine letters (you can typically only see this
with the letter “I” but it does depend on the font
being used). But in a different style, the left side of
each spine letter was aligned with the other spine
letters (see the Merce Cunningham style below).

I could not figure out how to make both of those
changes in any of the offered solutions and I didn’t
want to keep bothering people about this stuff. So I
went back to trying to figure it out myself.

I couldn’t get tables to work. I can’t remember
why, but the kind of formatting I needed was too fine
and I just couldn’t get the level of control I needed.

So then I started using various multi-column
packages. These worked better. The idea is that all
the words to the left of the spine letter would be
in one column set to flush right and then the spine
letter and the rest of the words would be in the right
column with no space between the columns.

I ran into the same problems as before with
centering and bold faced fonts until I found a rather
old package, parallel. In addition to separating
the page into two columns, it makes it easy to use
custom widths for the columns. See figure 1 for an
example generated by my software.

nearLy napping,
camE a
tappiNg,
as Of
gently Rapping,
at my chambEr door.

Figure 1: Example of a PME mesostic using the
regular style.

Here is the code for the first line:

\newlength{\charwidth}
\setlength{\charwidth}{\widthof{L}}
\begin{Parallel}{.5\textwidth - .5\charwidth}
{.5\textwidth + .5\charwidth}
\ParallelLText{\hspacex{-5cm}\raggedleft{near}}
\ParallelRText{\textbf{L}\mbox{y napping, }}
\end{Parallel}

The software uses M TEX to calculate the width
of each spine letter (“L”, in this example) and sets
this value to the variable \charwidth. This value
is then used to work out the space between the two
columns such that the center of the letter is in the
center of the page. Each line uses this same approach

David Bellows

TUGhboat, Volume 43 (2022), No. 3

so that the spine letter is always perfectly centered
regardless of its width.

I added some negative \hspace to the left col-
umn to allow any extra long lines before the spine
letter to run off the page instead of breaking at the
end of the line and messing up the formatting. Cage
imposes a 45 character limit on either side of the
spine letter (which my software follows) which should
limit this from happening with this style, but see
below for where it became an issue.

For some reason the \hspace hack wouldn’t
work on the right side of the column where I had
to use \mbox instead. And I couldn’t get \mbox to
work on the left side, thus this hybrid solution.

3 Merce Cunningham style

John Cage created a set of mesostics for his partner,
the dancer and choreographer, Merce Cunningham.
For this one set of mesostics he devised a different
style of formatting.

The basic idea was the same but each letter
of each mesostic was subject to chance operations
determining the typeface to be used for it, the font,
size, weight and so on. According to Cage’s descrip-
tion of the process, he had available to him over 700
typefaces with which to generate these mesostics.

Cage made each letter touch each other hori-
zontally and spaced things in such a way that each
line would touch the line before and the line after
it. Cage intended for the resulting mesostics to look
like Cunningham dancing, but felt like they ended
up looking more like waterfalls. See figure 2 for an
example published by Cage; the spine used in this
mesostic is “Cunningham”. Cage did not provide an
unstylized version of the text and was probably fine
with this particular style of mesostic being illegible
as well as mostly incomprehensible.

I chose this example deliberately because it
shows more overlap and collisions between the lines
than most of these mesostics. I haven’t studied the
entire collection in depth but it appears that having
the dot on the ‘i’ overlap is the most common type
of collision.

See figure 3 for an example of how my software
generates this style of mesostic using the same source
text and spine as in my previous example. As in
Cage’s versions, there are no included words to the
sides of the spine word.

The code for the first line:

\usepackage [letterspace=-150] {microtype}

\begin{Parallel}{.5\textwidth}{.505\textwidth}
\linespread{2}\selectfont\lsstyle
\ParallelLText{\hspacex{-10cm}\raggedleft

{{\fontsize{11}{1lem}\selectfont

TUGboat, Volume 43 (2022), No. 3

Figure 2: Example of a mesostic in the Merce
Cunningham style, by John Cage. The spine is
‘Cunningham’. (Page 150 from M: Writings '67-"72
(© 1973 by John Cage. Published by Wesleyan
University Press. Used by permission.)

{\textrm{\textit{n}}}}%
{\fontsize{13}{lem}\selectfont
{\texttt{\textit{\textbf{e}}}}}%
{\fontsize{11}{lem}\selectfont
{\textrm{\textit{a}}}}%
{\fontsize{14}{lem}\selectfont {\texttt{r}}}’
3
\ParallelRText{{\fontsize{36}{lem}\selectfont
{\textsf{\textit{\textbf{1}}}}}%
\mbox{{\fontsize{23}{1lem}\selectfont {\texttt{y}}}%
{ Y4
i3
\end{Parallel}

In the preamble for this style, you see my loading
of the microtype package with a \letterspace of
—150. I chose this number through experimentation
and it seems to work well, getting the letters to touch
each other horizontally but without overlapping too

L
L

Figure 3: PME version of a mesostic in the Merce
Cunningham style.

r

much. I expect that different typefaces might require
different values.

The \linespread command is calculated in my
software based on the point size of the tallest letter in
each line and multiplying that by a “magic” number
that is user configurable. I experimented and settled
on what I think is a good default value but the user
is allowed to change this value if they want more or
less space between each line which will decrease or
increase the number of collisions and overlap between
lines.

Another subtle change in these mesostics over
the regular ones is that the spine letters, while still
in the center of the page, are no longer perfectly
centered with each other. Instead, the left sides of
each letter are lined up and in the center of the page.
If you look closely at figure 2 you can see this.

I didn’t come up with any cool mathematical
way to make this work so I just have the left column
end at the halfway part of the page. This should
mean that the spine letter starts at that point. As
you can see in figure 3, this doesn’t always line up
perfectly. I don’t know how to fix this within my
software or via (I2)TEX, so I might just have to be
satisfied with close enough.

You can also see in the code that I extend the
\hspace well into the left margin. Because of the
potential size of the letters in this style, you will get
examples that go off the page on both the right and
left sides. On an aesthetic level I think this is okay
and Cage would have been fine with it.

One of the interesting problems I ran into with
this style was that using different typefaces caused

Formatting mesostic poems a la John Cage

246

all sorts of spacing issues. For example, combining
Garamond with Helvetica created inconsistent spaces
between letters and made centering the spine letter
in this style much worse. So the unfortunate solu-
tion is to use only one typeface (Cage used many
typefaces). For these examples I used Noto, which is
freely available via a XTEX package. It comes with
both serif and sans serif fonts along with italics, bold,
and bold italics. Other typefaces could be used but
I just happen to like how this one looks by default.

The rest of the code works as with the previous
example. On a personal note, I am very proud with
how well this particular style turned out. It is not
as elegant as Cage’s versions, but given the limita-
tions imposed on me by my skills and the nature
of the project, I think my software produces pretty
convincing results.

4 Ezra Pound style

The final style that I recreated from Cage is based on
mesostics he generated by using Ezra Pound’s Cantos.
This was the easiest of the three. See figure 4 for an
example of how my software generates mesostics in
this style. I changed the spine to “Poe” to make the
mesostic fit better in this publication.

seParate dying ember wrOught its thE floor
Presently my sOul grEw

Figure 4: PME version of a mesostic in the Cantos
style.

The basic idea is that each mesostic now occu-
pies a single line that is flush right. You still have
the capital letters spelling out the spine, but they
are no longer aligned vertically.

\begin{flushright}
\normalsize
se\textbf{P}arate dying ember wr\textbf{O}ught its
th\textbf{E} floor \linebreak
\textbf{P}resently my s\textbf{0}ul gr\textbf{E}w
\linebreak
\end{flushright}

Probably the most interesting thing going on
here is that the code uses the \normalsize command.
In order to try to make sure each line fits on the
page, my software adjusts the font size based on the
number of characters being used in the line. This is
calculated once based on the longest line and then is
used for all the lines to ensure a consistent look.

David Bellows

TUGhboat, Volume 43 (2022), No. 3

5 Final thoughts

Formatting Cage’s mesostics for my software was a
challenge. It was a fun challenge and one where I
believe the results justify the effort that went into it.

I wish I were better with (I#)TEX and could turn
this into a package or figure out how to add it to an
existing package, as I hope someone, someday might
have a need for it.

I think there are two interesting ideas to take
from this paper. One is that (I2)TEX, despite stereo-
types to the contrary, can be extremely useful outside
of STEM fields. It is an excellent tool for people work-
ing in the humanities and the arts.

The other idea is that much can be accomplished
by people who don’t have a tremendous amount of
technical knowledge. I don’t know what I’'m doing
most of the time but still manage to achieve my
desired results. Obviously this is because of how
well designed TEX and friends are and, of course, the
amazing ecosystem that has grown up around it over
the decades.

If T can do this stuff so can any other artist,
composer, poet, gamer, ...

Finally, based on a suggestion from TUGboat
editor Karl Berry, I am including one final mesostic
(figure 5). This one uses the text of this article for
the source text and the word “TUGBOAT” for the
spine.

iran inTo
always line Up perfectly.
formattinG of mesostics
at my chamBer
each letter Of
PAper).
verTically.

The spine
be in one colUmn set to
separate dyinG
on the numBer
sOurce text is
embrAced
my desired resulTs.

Figure 5: Mesostic using this paper as the source text
and the word “TUGBOAT” as the spine.

¢ David Bellows
davebellows (at) gmail dot com
https://www.platonicmusicengine.com

TUGboat, Volume 43 (2022), No. 3

Representing Parkosz’s alphabet
in the Junicode font

Janusz S. Bien

Abstract

The 15th century Latin manuscript containing a
treatise by Jakub Parkosz was the very first proposal
of Polish spelling. To account for all the phonemes
of Polish some new letters were proposed, which
are not available in present day fonts. This makes
it difficult to quote the proposal when discussing
the history of Polish spelling. A transliteration was
designed which uses only the characters available in
the Unicode standard, but it was rather cumbersome.
Another approach, suggested by the present author
and implemented by Peter S. Baker in his Junicode
(version two) font, is to use so-called tag characters.

1 Introduction

A digression: when in 1990 I was writing my
proposal of an extended font layout [3] and
wanted to include some comments about the
origin of the letters specific to the Polish lan-
guage, I was very much surprised by the lack
of published information on this topic. Now
the situation is definitely better in one respect:
the original sources have been digitized and
are freely available to anybody. In my opinion
the analysis of sources is still lacking many
details, so some time ago I decided to try to
answer my questions myself ©.

The 15th century handwritten Latin treatise
by Jakub Parkosz (called also Parkoszowic) was
the very first proposal of Polish spelling. You can
find the scans at (for example) jsbien.github.io/
Parkosz4IIIF/. The best source of English language
information on the treatise and its author seems to
be [11]; in Polish, it is [8]. To account for all the
phonemes of Polish, Parkosz created some completely
new letters. As his proposal did not catch on, the let-
ters haven’t became available in printer’s fonts. He
also assigned some different meanings to the variants
of handwritten letters, which also were not used in
print. The almost complete repertoire of Parkosz’s
letters is presented in Fig. 1.

Both the 1830 [2] and 1907 [10] editions of the
treatise were typeset manually and undoubtedly spe-
cial types had to be prepared for the missing charac-
ters. The 1985 edition [8] was typeset leaving empty
space for Parkosz’s letters. The letters were drawn
by hand, cut into pieces and carefully pasted into
the empty spaces.

doi.org/10.47397/tb/43-3/tb136bien-parkosz

247

Two amateurish attempts have been made (by
the author and his student) to create a font for
Parkosz’s letters with FontForge. One was intended
to reproduce the shape of the letters in the 1985 edi-
tion: bitbucket.org/jsbien/parkosz-font-old.
Another was intended to reproduce the shape of
the letters in the 1907 edition: github.com/jsbien/
parkosz-font. However, their quality was not satis-
factory, so for the electronic edition of the treatise [9]
(see also github.com/jsbien/Parkosz-traktat) a
transliteration system was designed. The rationale
for the transliteration decisions were presented in
Polish in [5] and summarized in English in [6]; see
also Appendix A. The transliteration covers all the
characters used by Parkosz, not just the newly cre-
ated ones.

As the transliteration uses regular Unicode char-
acters but changes their meaning, some metadata
is needed to distinguish the normal text from the
transliteration. It would be convenient to make the
metadata unnecessary. Theoretically it is possible
with so-called variation sequences, but they have to
be officially registered by the Unicode Consortium,
which makes this approach impractical, at least at
the present stage.

In [4] a brute force approach was proposed. It
assumed that after creating a TrueType/OpenType
font with appropriate ligatures a little used combin-
ing character, namely U+20E8 COMBINING TRIPLE
UNDERDOT [¢], would serve as a kind of a private
variant selector. At that time I was only vaguely
aware of the usage of the so-called tag characters in
Unicode.

In March 2022 Margaret Kibi (marrus-sh) pro-
posed using tag characters instead of the variable
sequences in the Junicode font.! The proposal was
supported by several font users and accepted by the
font author. I hope this approach will become a
kind of a de facto standard, as it shares many ad-
vantages with TrueType/OpenType features (cf. [1,
pp. 12-13]). To make a long story short, using those
features preserves the properties of the base charac-
ter, while a character in the Private Use Area has
no properties.

This approach was also applied to Parkosz’s let-
ters as the implementation of my feature 1request2
and this is the subject of the present paper. The
characters accessed by variation sequences, tag char-
acters or ligatures can have their own codepoints in
the Private Use Area, but this is another topic.

I github.com/psb1558/Junicode-font/discussions/
122#discussioncomment-2416880
2 github.com/psb1558/Junicode-New/issues/27

Representing Parkosz’s alphabet in the Junicode font

https://jsbien.github.io/Parkosz4IIIF/
https://jsbien.github.io/Parkosz4IIIF/
https://bitbucket.org/jsbien/parkosz-font-old
https://github.com/jsbien/parkosz-font
https://github.com/jsbien/parkosz-font
https://github.com/jsbien/Parkosz-traktat
https://github.com/psb1558/Junicode-font/discussions/122#discussioncomment-2416880
https://github.com/psb1558/Junicode-font/discussions/122#discussioncomment-2416880
https://github.com/psb1558/Junicode-New/issues/27
https://doi.org/10.47397/tb/43-3/tb135bien-parkosz

248

W@[&J’d ;s %J}/KE e LW

f1.587)) t

Pbl e

TUGDboat, Volume 43 (2022), No. 3

By
!

M’G ﬁ)

S o~

iy i

Figure 1: Parkosz’s alphabet summary (with a few omissions)

Tag characters are in principle invisible, but for
documentation purposes the tag sequences will be
rendered here as, e.g., [RI[E; p stands for Parkosz®
and is always the very first tag, s refers to the shape
and means square. Other secondary tags used are [&]
for round, [for hook and [for loop, [E for slashed,
[®] for below; [4] means descender or dot.

In a XHqIATEX source they can be written re-
spectively as \&__p;, \&__s; etc. The same
convention applies to X4ITEX and even to Microsoft
Word and OpenOffice [1, p. 38].

The input can and should be simplified by using
special Emacs input methods or equivalent macros in
other tools. On the other hand usually just isolated
words will be quoted, so providing the tag characters
explicitly is not excessively tedious.

For the reader’s convenience the layout of this
paper is similar to [6] and some figures are repeated
here. Please consult [6] for more details.

2 New letters
2.1 b grossum

Called also b durum and b quadratum. Some occur-
rences in the manuscript are presented in Fig. 2. It
was transliterated as U+0180 LATIN SMALL LETTER
B WITH STROKE ([b, Latin Extended-B block).

In Junicode the glyph is E and the input is
bEI[E].

2.2 b molle

Called also b rotundum. Some occurrences in the
manuscript are presented in Fig. 3.

3 The tag is available in Junicode since build 1.052beta of
August 25, 2022.

Janusz S. Bien

L' b
Figure 2: b grossum in the manuscript: p. [15] 1. 28 (on
the left), p. [8] L. 2

L'éele

Figure 3: b molle in the manuscript: p. [15] 1. 28 (on
the right), p. [7] marginalia and 1. 15.

It was transliterated as U+0253 LATIN SMALL
LETTER B WITH HOOK ([b], IPA Extensions block).

In Junicode the glyph is and the input is
bIEIEL.

2.3 p durum

Called also p quadratum. Some occurrences in the
manuscript are presented in Fig. 4.

It was transliterated as U+1D7D LATIN SMALL
LETTER P WITH STROKE ([p], Latin Extended-C
block).

In Junicode the glyph is @ and the input is

plEIE].

! * o
a&s

Figure 4: Letters p durum and p molle in the
manuscript: p. [8] marginalia, p. [15] 1. 32

TUGboat, Volume 43 (2022), No. 3

2.4 p molle

Some occurrences in the manuscript are also pre-
sented in Fig. 4.

The letter was transliterated as U+01A5 LATIN
SMALL LETTER P WITH HOOK (, Latin Extended-B
block).

In Junicode the glyph is [P] and the input is

plEIE].
2.5

The letter was transliterated as U+026C LATIN SMALL
LETTER L WITH BELT ([}, IPA Extensions block),

In Junicode the glyph is |f] and the input is
1EEI L.

2.6 durum v

I molle

The letter was transliterated as U+028B LATIN SMALL

LETTER V WITH HOOK ([uv], IPA Extensions block).
In Junicode the glyph is and the input is

vIEI[A].

3 Adapted letters

3.1 g improprie

This is the letter ¢ as written by Italians (unco retorto

versus dexteram partem sicut scribunt ipsum Italici).
The letter was transliterated as U+A77F LATIN

SMALL LETTER TURNED INSULAR G (@, Latin Ex-

tended-D block).
In Junicode the glyph is and the input is

gt

3.2 grossum m

This is the letter m as written at the end of words
([..] spissum cum cauda, sicut in fine diccionum poni
solet). As discussed in [6, p. 48], the intended shape
of the letter is not clear.

The letter was transliterated as U+0271 LATIN
SMALL LETTER M WITH HOOK (, IPA Extensions
block).

In Junicode the recommended input is m[E][];
it now renders [m}, i.e., the MUFT (Medieval Font Uni-
code Initiative!) Private Use Area character M4F223°
LATIN SMALL LETTER M WITH RIGHT DESCENDER.
This may change in the future.

3.3 grossum n

Similar to grossum m, this is the letter n as written
at the end of words. As discussed in [6, pp. 48—49],
the intended shape of the letter is not clear; see also
Fig. 5.

4 mufi.info
5 For referencing MUFI codepoints I advocate the use of
the M+ prefix.

249

The letter was transliterated as U40272 LATIN
SMALL LETTER N WITH LEFT HOOK ([n], IPA Exten-
sions block).

In Junicode the recommended input is n[E][];
it now renders [p], i.e., the MUFI character M+1228
LATIN SMALL LETTER N WITH RIGHT DESCENDER.
This may change in the future.

4 Special use letters

To this category belong the letters with the standard
shape, but with a non-standard (from the contem-
porary point of view) phoneme assigned to them by
Parkosz. They are: f molle, g per se, | durum, m
molle, n molle.

All three editions used for these just the stan-
dard letters, which is quite confusing for present-day
readers, even if they are scholars. Therefore the deci-
sion was made to transliterate them as, respectively:

o U+1EIF LATIN SMALL LETTER F WITH DOT
ABOVE (),

o U+0121 LATIN SMALL LETTER G WITH DOT
ABOVE ([g]),

o U+1E37 LATIN SMALL LETTER L WITH DOT
BELOW @)’

e U+1E43 LATIN SMALL LETTER M WITH DOT

BELOW ([m]),

e U+41E47 LATIN SMALL LETTER N WITH DOT

BELOW ([n]),

This part of my proposal can be considered an
unnecessary complication, so should be treated as
optional. Nevertheless in Junicode the characters
can be entered as, respectively: fI&I[d] (), gl
(g), 11 (1), mBE (@) and @I (7).

If used in colored text, it would be desirable
to render the dot in a different color to make clear
this is an artificial addition (an idea of Jakub Wilk
formulated long ago in a different context). I am
aware that because of technical difficulties this is at
present rather a dream.

5 Regular letters

There is no typographical problem with the letters
listed below. We give their names using original early
Latin spelling (breue meaning breve, i.e., ‘short’).

They are: [a] (breue), [c], [d] (per se), [€] (breue),
(breue), [§], I, [8] (breue), [q) (ver se), [f] and

(per se, see also section 8), |{] and [s], [t], [u] (breue),
[v], and [x].

As for an unnamed variant of the letter [c], it
is not obvious how to interpret it. I assumed this is
U+00E7 LATIN SMALL LETTER C WITH CEDILLA (,
Latin-1 Supplement block) and transcribed as such.

Representing Parkosz’s alphabet in the Junicode font

https://mufi.info

250

WA e

=y o VP

B, 4. Ol allt

TUGDboat, Volume 43 (2022), No. 3

'—"

Figure 5: Grossum n in the manuscript at the beginning of words: p. [8] 1. 14

FE oy

Figure 6: Nasal vowels in the manuscript

Y .

However in Junicode there is a special glyph for it,
namely [¢] input as c[E][].
In Junicode long s |{] can be input as sikl[2].

6 Letters not listed in the alphabet
summary

Most old Polish texts for the nasal vowel use U+A7C1
LATIN SMALL LETTER OLD POLISH O (¢) introduced
to Unicode in version 14.0 [7]. However in Parkosz’s
treatise the vowel has the shape of U+00F8 LATIN
SMALL LETTER O WITH STROKE [g], cf. the second
and the third stroked letter in Fig. 6, so it was used
in the transliteration. However in Junicode it can
be input as o[E][E which makes its meaning clear.

The manuscript contains a single occurrence of
U+2C65 LATIN SMALL LETTER A WITH STROKE (4),
cf. the first stroked letter in Fig. 6, which could be a
scribal mistake. Nevertheless it was transcribed just
as [a]

Letter [z] was omitted in the alphabet, probably
by mistake; in the transliteration it was used without
change, which is a simplification, as it looks more
like [3] U4+0292 LATIN SMALL LETTER EZH.

The letter |h| was also omitted probably by mis-
take.

7 Multigraphs

Some multigraphs in the manuscript are written as
ligatures, but there is no need to represent them
as such in the transliteration. On the other hand
it would be desirable if the font rendered them as
ligatures.

As it was mentioned earlier, some multigraphs
consist of doubled vowels: longum aa, longum ee,
longum oo, longum uu.

There is an open question whether the text
would be more readable if longum aa was rendered
as U+AT733 LATIN SMALL LETTER AA (a, Latin Ex-

Janusz S. Bien

tended-D) and longum oo as U+AT4F LATIN SMALL
LETTER 0O (0o, also Latin Extended-D). For longum
ee and uu the ligatures would have to be designed.
The character M+E8C7 LATIN SMALL LIGATURE UU
(w) would be rather misleading.

The other multigraphs are: ch (taken over from
Latin), cz, molle dz, [Jz, [ch and [z, and zz.

8 Majuscules

Some of the examples are proper names, so they
usually (not always) start with a majuscule (cf. the
index in [9]).
The main Polish example is a verse, and the
first words of some lines also start with a majuscule.
In consequence the transcription contained the
following majuscules: [A], (B molle, cf. Fig. 7),

, (G per se), , , , P] (P grossum),
(P molle), [Q], [R], [S], [V] [T], [2]

In Junicode we have now [P]input as P[EI[E and

input as PEIE]; |G| can be input as GEI[].
It is perhaps worth noting that the upper case
of g per se is [I].

9 Concluding remarks

Adding Parkosz’s letter to Junicode is in my opinion
a large step forward in improving the editorial quality
of publications concerning the treatise. Elsewhere I
intend to present the difficulties caused by the lack
of an appropriate font, including a misrepresentation
of Parkosz’s views.

It would be fun to have also a font simulating
original handwriting, but the text would be unread-
able for people without at least some knowledge of
paleography; see, for example, the letters d and z
shown in Fig. 8.

A An excerpt: a word list

According to [11], this is a mnemonic verse; in that
paper you can also find the English translation.
A.1 Pure Unicode transliteration

Some minor mistakes in [9] corrected.
Adaam bil byl cal kaal czas ¢alo chood daal dzaal
efz fhitaa figi i gee je ghaan krot lis dis mjikaa
mika piffki nifki othoofz pige pifchno qoras roffa

TUGDboat, Volume 43 (2022), No. 3

_—E W T

251

o

svy ™

e

Figure 7: The manuscript p. 15 1. 24: Bog vnyem) kafzde {lovko thobe (transliteration)

55FFw P

Figure 8: Outlines (by Szymon Pilas): ¢, d, ff,
p grossum, w, X

rzoofla rofuun). faam) {chaad {lzaadl {zak zzaraa
Zampe to umee uup vila vitaal wita xeedz
janczoc joczi joeokaa

A.2 Junicode transliteration

The characters accessed with tag sequences are set
in italics.
Adaam bil byl cal kaal czas ¢ajo chood daa dzaal
efz fhitaa figi i ee ye ghaan krof [is fis mikaa
mika piflki nifki othoofz pige pifchno quras
rofla rzeefla rofuum. faam {chaad fizaad] {zak
zzaraa Zamno to umee uuy vila vifaa] wita xeedz
janczoc joczi jookaa

A.3 A sample transcription

Various publications use various transcriptions to
quote the treatise. Here is the one used in [11,
pp. 125-126].

Adam byt bil cal kal; czas, cialo, chod dal
dzial; ez fyta figi i je je chan krol; tys lis myka,
Mika nyski niski otoz pije pyszno kwas; rosa
rzasa, rozum; sam szad siadl; zak ziara za
mng; to umie un wita; wylal w usta ksiadz,
jeczac jeczy, jaka.

References

[1] P. Baker. Junicode— the font for medievalists.
specimens and user manual for version 2, 2022.
github.com/psb1558/Junicode-font/

[2] J.S. Bandtkie, E. Raczynski, eds. Jacobi
Parkossii de Zorawice antiquissimus de
orthographia polonica libellus. Wilh.

Deckeri et Societatis, Posnaniae, 1830.
www.wbc.poznan.pl/publication/115430

[3] J.S. Bie. On standards for Computer Modern
font extensions. TUGboat 11(2):175-183, 1990.
tug.org/TUGboat/tb11-2/tb28bien. pdf

[4] J.S. Biefi. Standard Unicode i dawny jezyk
polski. Acta Poligraphica 14:7-28, 2019.
10.5281/zenodo .4058701

[5] J.S. Bien. Traktat Parkosza. Eksperymentalna
edycja elektroniczna. Poznarskie Studia
Polonistyczne. Seria Jezykoznawcza
26(1):27-69, 2019. 10.14746/pspsj.2019.26.
1.2

[6] J.S. Biet. Parkosz’s treatise from a
typographic point of view. Scripta € e-Scripta
22:37-57, 2022. https://www.ceeol.com/

search/article-detail?id=1058326.
After fall 2023, also: http://e-scripta.ilit.
bas.bg/archives/year-2022/issue-22/
yanush-s-bien-traktatt-na-parkosh-ot-
tipografska-gledna-tochka

[7] D. Buncié. Proposal to include the letter ‘Old
Polish O’ in ISO/IEC 10646 and the Unicode
Standard. 12/21-039, 2021. www.unicode.org/
L2/L2021/21039-0ld-polish-o.pdf

[8] M. Kucala. Jakuba Parkosza Traktat o
ortografii polskiej. Panstwowe Wydawnictwo
Naukowe, 1985.
ebuw.uw.edu.pl/publication/220504

[9] M. Kucala. Traktat o ortografii polskiej
[Jakuba Parkosza]. Odczytanie, 2020.
10.5281/zenodo . 3883863

[10] J. Lo$. Jakdba syna Parkoszowego traktat o
ortografii polskiej, 1907. ebuw.uw.edu.pl/
publication/238219

[11] R. Wojcik, W. Wydra. Jakub Parkoszowic’s
Polish Mnemonic Verse about Polish
Orthography from the 15th Century. In
Culture of Memory in Fast Central Europe in
the Late Middle Ages and the Early Modern
Period, R. Wojcik, ed., no. 30 in Prace
Biblioteki Uniwersyteckiej, pp. 119-127.
Biblioteka Uniwersytecka, 2008. Ciazen,
March 12-14, 2008.
hdl.handle.net/10593/6037

¢ Janusz S. Bien
Warsaw, Poland
jsbien (at) uw.edu.pl
sites.google.com/view/jsbien

ORCID 0000-0001-5006-8183

Representing Parkosz’s alphabet in the Junicode font

https://github.com/psb1558/Junicode-font/
https://www.wbc.poznan.pl/publication/115430
https://tug.org/TUGboat/tb11-2/tb28bien.pdf
https://doi.org/10.5281/zenodo.4058701
https://doi.org/10.14746/pspsj.2019.26.1.2
https://doi.org/10.14746/pspsj.2019.26.1.2
https://www.ceeol.com/search/article-detail?id=1058326
https://www.ceeol.com/search/article-detail?id=1058326
http://e-scripta.ilit.bas.bg/archives/year-2022/issue-22/yanush-s-bien-traktatt-na-parkosh-ot-tipografska-gledna-tochka
http://e-scripta.ilit.bas.bg/archives/year-2022/issue-22/yanush-s-bien-traktatt-na-parkosh-ot-tipografska-gledna-tochka
http://e-scripta.ilit.bas.bg/archives/year-2022/issue-22/yanush-s-bien-traktatt-na-parkosh-ot-tipografska-gledna-tochka
http://e-scripta.ilit.bas.bg/archives/year-2022/issue-22/yanush-s-bien-traktatt-na-parkosh-ot-tipografska-gledna-tochka
https://www.unicode.org/L2/L2021/21039-old-polish-o.pdf
https://www.unicode.org/L2/L2021/21039-old-polish-o.pdf
https://ebuw.uw.edu.pl/publication/220504
https://doi.org/10.5281/zenodo.3883863
https://ebuw.uw.edu.pl/publication/238219
https://ebuw.uw.edu.pl/publication/238219
https://hdl.handle.net/10593/6037

252

TeXShop, Version 5: HTML previews
Richard Koch

Abstract

The Mac previewer TeXShop provides a preview
window for each open document, showing pdf out-
put. Version 5 of the program provides an extra pre-
view window for html output. Therefore, TeXShop
authors can use typesetting engines which convert
source files to pdf, or html, or both. Examples
include TEX4ht, which accepts I TEX source and out-
puts html, PreTEXt, which accepts xml source and
outputs either pdf or html, and pure html source,
which can be displayed as a live web page.

1 HTML source

Pictured below is the most straightforward example.
The window on the left contains html source and the
window on the right shows the resulting web page.
Links to local or remote web pages work, as do links
to pdf files, illustrations, and all other standard web
content. After revising the source file, a user can
type command-T, the standard TeXShop shortcut
to typeset, and the web page will instantly update.

LaTex Macros v~ ™=~ — -
eoe samplePage.html

<!l
% ITEX TS-program = html < 2 » Q
-

<HTML>

s <title>Sample Home Page</title>
6 </head>

<body>

TUG supports MacTeX.

* MacTeX Home Page

Read-Me-First pdf document installed by MacTeX:
° TUG supports MacTeX.
10
M <A
2

o Read Me First

="hitps://tug.org/macte An illustration.

14 <p> Read-Me-First pdf document in{
5
16 <A
7

="Read Me First.pdf"

12 <p>An illustration.

21 <p> &n
="300" height-"125"

23

24 <hr noshade>

fe <p> Richard Koch
27 <p> 2740 Washington St
26 <hr noshade> | Eugene OR 97405

2 TgEX4ht

Pictured next is an editing session using TEX4ht. To
save space, the source window is not shown. The
window on the left contains pdflatex output and the
window on the right contains TEX4ht output. The
TEX4ht engine, a very short shell script, typesets
the source twice, once with pdflatex for the pdf

preview and once with TEX4ht for the html preview.

If the user edits the source and typesets again, both
windows instantly update. In the illustration, both

Richard Koch

doi.org/10.47397/tb/43-3/tb13bkoch-texshopb

TUGDboat, Volume 43 (2022), No. 3

windows were resized to be very small. The resizing
changed the magnification in the pdf window, but
reflowed the text in the html window.

FieldsPrize.htm|

Lo
SL-T

and the Basel problem is solved! If we continue multiplying out to match terms with
higher powers of z, we will compute the remaining values of 3" ; for even k.

17 Euler Isn’t Done

7 Euler didn’t quit here. Now he knew 3222 | I for every even . These terms are
special values of a brand new function, which Euler named the Zeta function:
S
)= —

=

‘This sum converges when @ > 1, 50 the function s defined for real z > 1. Here is a
graph of the function

3 PreTEXt

PreTEXt is a project managed by Robert Beezer at
the University of Puget Sound. Pictured below is
a typical editing session. The source window (not
shown) contains xml source for document markup,
but IMTEX source for mathematics. Typesetting calls
the xsltproc program twice, once to convert the
source to pdf, and once to convert it to html. The
pdf is shown on the left and the html is shown on the
right. PreTEXt deliberately formats these outputs
differently, so the pdf looks like standard TEX and
the html looks like a web project. A key advantage
of the PreTEXt project is support for many forms of
user interactions in the html page.

A Minimal Aricle
minimal.html

"eo0e
< 2 URL: Q

A Minimal Article

Robert A. Beezer

Contents

Front Matter

1 Just Some Text
2 ABit More Interesting

This is a short paragraph to introduce the article (b
abstract). It is optional, in case it would be preferak
section be titled an “Introduction.”

Front Matter

1 Just Some Text

2 _A Rit Mara Intaractina

4 TeXShop engines

TeXShop typesetting engines are simple shell scripts
stored in ~/Library/TeXShop/Engines. A TeXShop

https://doi.org/10.47397/tb/43-3/tb135koch-texshop5

TUGboat, Volume 43 (2022), No. 3

user can navigate to this spot within the program,
open files there, and edit them. Thus the user has
complete control over the exact typesetting method
used. In TeXShop 5.0, engine scripts can contain
additional commands like

e !TEX-pdfPreview
o !TEX-htmlPreview
o !TEX-bothPreview

After typesetting, the first of these lines tells
TeXShop to search for a file in the source directory
with the same name as the source file and extension
.pdf. If this file exists, it is opened in the pdf Preview
window. The other commands work similarly.

5 Help recalling HTML commands

Several items in the TeXShop Help menu provide
help recalling IWTEX commands. A new menu pro-
vides a list of html commands. The purpose of each
command is listed, the appropriate tags are shown,
and a short usage sample is provided. This help
document can be typeset with command-T for easy
viewing of examples explaining how to link to a pdf
file, how to link to an external web page, how to dis-
play a movie, and how to display a YouTube video.

If the user needs a command not listed, they
can search for it on Google. Then they can enter a
new item in TeXShop Help, because the help file is
editable. TeXShop will remember the edit, so the
Help list will expand as the user adds items.

6 Different output for PDF and HTML

The PreTEXt system automatically adjusts input for
display in pdf, html, and other formats. In TEX4ht,
it is possible to manually write different source for
pdf and html outputs. The recommended procedure
is:

\ifx\HCode\undefined

% source for pdf
\else

<!-- source for html -->
\fi

Some web authors recommend a similar solution
using “ifpdf”, but that solution fails if the pdf output

is typeset with XqKTEX.

253

7 Purpose of new additions

Several talks at past TUG conferences predicted the
demise of TEX in five or six years, because faculty
members need to provide interactive source material.
I thought these talks were ridiculous. Then Covid
struck, and faculty colleagues had to switch to remote
learning in a week. The pessimistic talks had a point.

In my “dream setup”, a faculty member would
write lecture notes in KITEX or xml and these notes
would be typeset by an engine which outputs both
pdf and html. The pdf document would contain
the course in final polished form, so students could
understand the logical flow of the lectures. The html
document would contain interactive material: movies,
questions with student input, etc., so students would
learn how mathematics is actually created.

I don’t know what system faculty will use in
the future, but I predict it will be able to output
both pdf and html. This system might be PreTEXt,
it might be TEX4ht, it might be software not yet
invented. TeXShop is ready for all possibilities.

¢ Richard Koch
koch (at) uoregon dot edu
https://pages.uoregon.edu/koch/

TeXShop, Version 5: HTML previews

254

Interactive content using TEX4ht
Richard Koch

Abstract

TEX4ht converts IMTEX source into web pages. This
article explains how to add interactive content to
these pages, using TEX4ht and straightforward copy-
ing from web sources. The techniques should work

on all computer platforms. Some refinements to the
TEX4ht methods are also discussed.

1 Introduction

Let me begin with three vignettes.

I started attending TUG conferences in 2001,
and along with expected talks there were a few sur-
prises. In 2005, an expert from England predicted
that TEX would survive for four more years and then
be replaced. He was teaching in the Open Univer-
sity system where students work remotely, and he
wanted to include interactive content in his lectures.
I thought the talk was nonsense. Then COVID hit.

The 2004 Practical TEX conference was held at
Fisherman’s Wharf in San Francisco, and included a
talk by Ernest Prabhakar, an Apple engineer. After
that talk, Prabhakar met with Mac users and others
including Hans Hagen, all sitting around a large
conference table. Hans was trying to convince Apple
to allow Java programs to run in their pdf viewer so
interactive elements could be added. I sat next to
Prabhakar and got to see how he operates. He was
fully engaged in the conversation, but simultaneously
he was surfing the web—the fastest surfer I have
ever seen. Eventually he said to Hans, “It appears
to me that you are the only one in the world writing
Java in pdf files.”

I’'m one of those users who updates TEX Live
daily while drinking my morning coffee. Sometime
in 2022 I noticed that tex4ht was on every day’s
update list. So I wrote the TEX Live mailing list
asking that this bug be fixed. To my surprise, I was
told that the updates were genuine; Michal Hoftich,
who maintains TEX4ht, makes updates almost daily.

2 PDF and HTML fifteen years later

The Fisherman’s Wharf conference was 18 years ago,
and some issues are clearer with the passage of time.
Today every computer platform has excellent soft-
ware to display pdf files, and every computer plat-
form has an up-to-date web browser. It seems clear
that pdf is the right format for static documents,
and that html is the right format for documents with
interactive content. Other formats may emerge, but
that will only happen if an activity cannot be sup-

Richard Koch

doi.org/10.47397/tb/43-3/tb13bkoch-tex4ht

TUGhboat, Volume 43 (2022), No. 3

ported by pdf or html. (Although pdf has facilities
for interactivity, they are rather infrequently used
compared to interactive html.)

3 A TeXShop detour

I wrote TeXShop, a front end for TEX on the Mac-
intosh. TeXShop is relevant here only because it
explains how I was led to reexamine TEX4ht.

Typesetting in TeXShop is controlled by “engine
files”, small shell scripts that users can edit which call
TEX binaries. After typesetting, an engine searches
the source directory for a pdf file with the same
name as the source and opens it in a pdf preview
window if found. This August I added code which
searches for an html file with the same name as
the source, and opens it in an active web window if
found. These windows are created using the Cocoa
programming APIs, so they are part of TeXShop
rather than external Mac applications like Preview
and Safari.

With this change, it is easy to “typeset” html
files. Similarly, it is easy to support PreTEXt, a
project where authors write xml source and then
convert the source to pdf, html, and other formats.

So it was natural to try TEX4ht, which accepts
a IWTEX source file and outputs html (among other
things). TeXShop now has a typesetting engine
which typesets the source twice, once with TEX4ht
and once with pdflatex. The TEX4ht output is
opened in a web viewer and the pdf output is opened
in a pdf preview.

I had seen demonstrations of TEX4ht given by
Eitan Gurari, the original author of TEX4ht. Indeed
at that 2004 conference at Fisherman’s Wharf, Prab-
hakar’s talk was immediately followed by a talk by
Gurari on TEX4ht. At the time, TEX4ht was out-
putting mathematics using pictures, and the results
were a little crude.

In the years since then, MathML was invented,
and then MathJax was created and provided beau-
tiful rendering of MathML code. TEX4ht adopted
these technologies.

I selected a 20-page set of lecture notes, with
extensive mathematical equations and many illus-
trations. The document used hyperref, amsmath,
and other packages. I typeset it with TEX4ht, pro-
ducing html. Typesetting was fast —and the html
output was amazing! The mathematical equations
were crisp and clear, the illustrations were fine; to
tell the truth, I doubted that I was seeing html. As
a test, I resized both windows. The text in the pdf
window shrank since the pdf had been configured
to “fit in window”. The text in the html window
reflowed.

https://doi.org/10.47397/tb/43-3/tb135koch-tex4ht

TUGboat, Volume 43 (2022), No. 3

4 Interactive content

TEX4ht therefore allows you to convert old and new
IMTEX static documents into web documents. But
can you add interactive content to these documents?
Yes, as this article will demonstrate.

Select an old document you have lying around
the house. You'll be able to add interaction to it
by the end of the next two sections. Don’t typeset
immediately because a couple of steps are needed.
Both are given in these two sections.

First we need a method to write source code
which will only appear in the html version of the
document. The following code does the trick:

\ifx\HCode\undefined

% source for pdf document
\else

<!-- source for html document -->
\fi

The \HCode tested here is a command that appears
only in TEX4ht. Some web documents recommend
the ifpdf package, but that fails when typesetting
with XHTEX.

Next, we need to switch from writing I¥TEX
code to writing html code which TEX4ht will insert
verbatim into the final document without processing.
The following code suffices:

\ifx\HCode\undefined
% source for pdf document
\else
Initial words for html document.
\begin{html}
<!-- direct html input -->
\end{html}
\fi

Finally we need something interactive. We’ll
use a piece of SageMath code, which is explained in
a later section. Putting all this together, add the
following lines to your document, creating a new
section in the web version.

\ifx\HCode\undefined
\else
\section{An Experiment}
\begin{html}
<div class="compute">
<script type="text/x-sage">
plot(sin(x), (x, 0, 2%pi))
</script></div>
\end{html}
\fi

Running this, we discover a minor problem. TEX4ht
does not understand the command \begin{html},
and your web browser does not understand the lines
calling Sage.

255

5 The header

To solve the problem, we must add the following
header immediately after \begin{document}, before
any other code is inserted. (The columns in TUGboat
are narrow; the long sagemath.org url below needs
to be on one line, and other source lines would usually
be combined. Also, the source for this article is
available from the article’s web page.)

\ifx\HCode\undefined

\else

% declare environment html:

\ScriptEnv{html}

{\ifvmode\IgnorePar\fi\EndP
\NoFonts\hfill\break}

{\EndNoFonts}

\fi

\ifx\HCode\undefined
\else
% following url needs to be on one line, sorry:
\begin{html}
<script src="https://sagecell.sagemath.org/
static/embedded_sagecell.js">
</script>
<script>
// Make div with id “mycell' being a Sage cell
sagecell .makeSagecell ({
inputLocation: ‘'#mycell',
template: sagecell.templates.minimal,
evalButtonText: 'Activate'l});
// Make div with class ~compute' a Sage cell
sagecell.makeSagecell ({

inputLocation: 'div.compute',
evalButtonText: 'Evaluate'l});
</script>
\end{html}

\fi

This header is divided into two parts, each pre-
ceded by an \HCode test so it is only active when
typeset by TEX4ht. The first defines \begin{html}
for TEX4ht. The second defines the Sage commands
for the browser. Notice that the second command is
also preceded by \begin{html} and thus is inserted
directly into the final html document.

Now your source document has everything re-
quired for interaction, so go ahead and typeset it
with TEX4ht. The recommended way to typeset is

make4ht sourcefile.tex "mathjax"

In the pdf version of the document, nothing
changed. The html version will contain an additional
section pictured below. Notice the button labeled
“Evaluate” (fig. 1). When this button is pushed, the
display changes to the form shown on the second
image (fig. 2).

Interactive content using TEX4ht

256
@® () Fourier.html
< > URL: &
9 An Experiment
plot(sin(x), (x, @, 2%pi)) j |
's
Evaluate

Figure 1: Sage Evaluate button and editable function.

[XN] Fourier.htm|
< > URL: Q
9 An Experiment
1 plot(sin(x), (x, 0, 2%pi)) _,.I |
4
Evaluate

Share

1.0+

0.51

-1.0 4

Help | Powered by SageMath

Figure 2: Original plot results.

But there’s more. The SageMath code shown in
both images is editable. If this entry is changed to
plot(log(x), (x, .1, 10))

a graph of the logarithm is plotted, and if it is
changed to

plot(sin(x) + cos(3*x)/2, (x, 0, 2*pi))

an alternate periodic function is plotted. Therefore
the four lines of code we added for Sage did not just
provide a plot of the sine function. It provided a

plotting machine which readers can use to plot any
function!

6 SageMath

SageMath is an open source alternative to the com-
puter algebra systems Magma, Maple, Mathemat-
ica, and MATLAB. The project was created by
William Stein, a mathematician at the University of
Washington, and first released on February 24, 2005.

Richard Koch

TUGhboat, Volume 43 (2022), No. 3

See sagemath.org and wiki.sagemath.org. Sage
is mostly written in Python, but it integrates many
previous open source projects written in C, Lisp, and
Fortran. Among these are Gap, Macaulay, Maxima,
Octave, and R. The program has been used for se-
rious research on elliptic curves, finite groups, and
many other areas, and has an active support group.

Although the Sage web site has install packages
for major computer platforms, our use of Sage does
not depend on installing SageMath, either for the au-
thor or for the reader on the web. Instead, Sage main-
tains a server which can run Sage over the web. See
https://sagecell.sagemath.org and other links
from that page for details.

Our previous Sage example contains a single
line to plot a function. However, that line can be
replaced by an arbitrary Sage program, which can
be several pages long. We list several examples. All
of these examples come from web pages at the Sage
site; I have just copied and pasted code by others.

Here are two examples of calls to Sage:
\begin{html}
<div class="compute">
<script type="text/x-sage">
x, y = var('x,y")
plot3d(sin(x~2 - y~2), (x,-2, 2), (y,-2,2))
</script></div>
\end{html}
and
\begin{html}
<div class="compute">
<script type="text/x-sage">
u,v = var('u,v')

fx = (3+sin(v)+cos(u))*cos(2*v)
fy = (3+sin(v)+cos(u))*sin(2*v)
fz = sin(u)+2*cos(v)

parametric_plot3d([fx, fy, fz], (u, 0, 2xpi),
(v, 0, 2xpi), frame=False, color="red")

</script></div>

\end{html}

The output from executing these commands is shown

on the next page (fig. 3). However, this (pdf) article

doesn’t show the most amazing thing. If these objects

are grabbed with the mouse, they rotate and magnify

instantly in real time.

For the mathematically inclined, I’ll show two
more examples on the next page, without giving
the Sage code, which can be found on various Sage
web sites. Figure 4 illustrates numerical integration.
The function can be set by the reader, the number
of division points can be set, and the algorithm
determining the top of each rectangle can use the
value of the function at the left, right, or middle, or
the maximum or minimum value. Since Sage can
integrate symbolically, the exact value of the integral

https://sagemath.org
https://wiki.sagemath.org
https://sagecell.sagemath.org

TUGDboat, Volume 43 (2022), No. 3

Using Sage in 3D

‘Type your own Sage below and click Evaluate.
1 x, y =var('x,y")
2 plotad(sin(x*2 - y*2), (x,-2, 2), (y,-2,2)) 'f_’l ‘
Evaluate

Share

Help | Powered by SageMath

A Sage Computation
Type your own Sage ion below and click Evaluate.
1 u,v =var('uv')
2 fx = (3+sin(v)+cos(u))¥cos (2#v) Pl

3 fy = (3+sin(v)+cos(u))*sin(2*v)
4 fz = sin(u)+2*cos(v)
5 parametric_plot3d([fx, fy, fz], (u, 0, 2%pi), (v, 0, 2+pi), frame=False, color="red")

Evaluate

Share

Figure 3: Two fancy plots, which in html output can
be transformed in real time.

is shown at the bottom, and finally the numerical
approximation is computed and shown.

In figure 5 the Taylor series of a function selected
by the user is computed, and both the function and
its approximation are plotted.

7 YouTube videos

Did you know that if you right-click while playing a
YouTube video, a contextual menu appears allowing
you to “copy embed code”, which can be pasted into
a web page?

I found a lecture by John Maynard, one of
the four Field’s Prize winners at the International
Congress of Mathematicians for 2022. It is fun to
watch this video for the depth and clarity of his

257

f sin(x%2) +2

Interval (0, 4)

Number of
boxes

Endpoint

Midpoint
rule oolnt €

Numerical integral with the Midpoint rule

3.0 1

2.5

2.0 1

0.5

0.5 10 15 2.0 25 3.0 35 4.0

b
/ f(z) dz = 8.747133844648115

4
Z F(z:) Az = 1-[£(0.50000) + £(1.5000) + £(2.5000) + £(3.5000)]
=
=1-[2.2474 + 2.7781 + 1.9668 + 1.6889]
= 8.68117858461376.

Help | Powered by SageMath

Figure 4: Numerical integration example with Sage.

*

order 6 @

f(x) = e sin(z)

flz;0) = &a2b— L b+ 1ad— 22+ 2+ O(7)
104
0.8
0.6 1

0.44

0.2

Help | Powered by SageMath

Figure 5: Taylor series of a user-selected function.

mathematics. I confess that I also watched because
Maynard is left-handed and we lefties need to stick
together. I don’t understand a word of the code
which YouTube provided when I clicked, but I added
it to a TEX4ht source page and it worked. Figure 7
shows a frame of the video, and here is some of the
source code, as copied from YouTube:

\begin{html}

Interactive content using TEX4ht

13. Large gaps between primes in subsets - James Maynard (University of Oxford) [2...

..'\

Watch on (B Youlube

Figure 6: Frame from YouTube video, playable live in
html output.

<iframe width="928" height="522"
src="https://www.youtube.com/embed/kQqBeuk_xQw"
title="13. Large gaps between primes ..."
frameborder="0"
allow="accelerometer; autoplay;
allowfullscreen></iframe>
\end{html}

8 Mathematics

Often authors ask a question of readers and pro-
vide a multiple choice answer. If the reader answers
correctly, they are told to go to the next section; oth-
erwise new text appears explaining why their answer
was incorrect.

In a mathematical text, both the question and
the various answers will likely contain mathematical
formulas. But recall that the interactive material
is being written in html and inserted directly in
the final document without processing. Are authors
expected to write the mathematics in MathML? If
they write in IWTEX, TEX4ht cannot convert the code
to MathML because it doesn’t touch the author’s
html blocks.

The happy answer is that, with MathJax, au-
thors can directly write ITEX math, even inside
the verbatim {html} environment we’ve defined (be-
cause MathJax recognizes the math). There is one
caveat: normally, inline math can be specified by
either a pair of $ signs or a \(and \) pair, but
inside {html} and when using MathJax, \(...\)
must be used (or extra MathJax configuration speci-
fied). $...$ works fine with MathJax outside of our
{html} environment.

Display math can be defined by a pair of $$
signs or a \[and \] pair; both these forms work
inside {html}, with MathJax and otherwise.

\ifx\HCode\undefined
\else

Richard Koch

TUGDboat, Volume 43 (2022), No. 3

\section{New Experiment}
\begin{html}
<p>This sentence has bold
and <i>italic</i> text.</p>
<p>Also math: \(y = \sqrt{x"2 + 1}\) and
$$\int_0"\infty e {-x"2} \ dx =
{{\sqrt{\pi}} \over 2}$$</p>
\end{html}
\fi
Typeset and you will see the output below (right
margin has been truncated).

10 New Experiment

This sentence has bold and italic text.

Alsoy = v/z2 4 1 and
‘/weiﬁ d:t: ﬁ
0 2

But how is this possible, since source inside an “html
pair” is inserted directly in the output without pro-
cessing?

9 Calling TEX4ht

Originally TEX4ht output small pictures for inline
and displayed mathematics. Eitan Gurari unexpect-
edly died in 2009, and TUG paid him the ultimate
compliment by keeping his program alive. Now it is
actively maintained by Michal Hoftich.

Due to new developments in MathML and Math-
Jax, there are many ways to call TEX4ht when it is
asked to typeset. Let us concentrate on the three
most important methods.

Calling TEX4ht using the call

maked4ht source.tex "mathml"

causes TEX4ht to insert MathML code for inline and
display equations. This MathML is then rendered by
the browser.

Calling TEX4ht using the call

make4ht source.tex "mathml,mathjax"

causes TEX4ht to insert MathML code for inline and
display equations, but call MathJax to render the
resulting code.

Calling TEX4ht using the call

make4ht source.tex "mathjax"

causes TEX4ht to insert IATEX code for inline and
display equations, and call MathJax to render the
resulting code.

Note that MathJax can render both MathML
and TEX code when it discovers equations in an
html document.

On my computer, mathematical rendering using
the first method is not as clear as rendering with
the other two methods. Integral signs are too small

TUGboat, Volume 43 (2022), No. 3

and there are other minor flaws. The first and third
methods understand IATEX input for interactive con-
tent, but the second does not. These experiments
suggest that the third method is the most desirable
for interactive code.

My initial experiments did not go well with
the third method. Inline equations were fine, but
displayed equations were rendered with static images.
Then one day I tried the alternate \ [notation rather
than $$ and everything worked. I reported this to
Michal, and the very next day he fixed TEX4ht so
both notations are rendered with MathJax. (The
KTEX developers do recommend \[. . .], by the way.)
Please update your TEX Live distribution and typeset
using the third method.

10 A MathJax perk

By now, perhaps you have typeset your own docu-
ment with TEX4ht and MathJax. Select an equation
and right click on it. A contextual menu opens offer-
ing to copy the equation to the clipboard as either
“MathML” or “TeX Commands”. Here’s a picture:

Theorem 4 (Fourier) If f(z) takes real values and we write

f(z) = L z‘/,., P A)
2 = showMathAs >

Copy to Clipboard »| MathML Code
then
Math Settings [TeX Commands

= Accessibilit >
= l/ f() cos(kz) ccessibility : (@) SImKT)
TS

About MathJax

and MathJax Help

o= ; (ax — ibg)

Select “TeX Commands”, copy, and paste some-
where else. You will obtain the IMTEX code for the
equation. This code can be copied into any other
IMTEX source document.

This remarkably useful feature comes from Math-
Jax and is not available if you call TEX4ht using the
first method. Moreover, the menu will offer MathML
code, but not IMTEX code, if you call TEX4ht using
the second method. But the third method of calling

TEX4ht gives BTEX code.

11 Installing documents on the server

Suppose you typeset a document named Sample with
TEX4ht and produce Sample.html. How should this
file be put on a server? The answer is tricky be-
cause Sample.html itself will not contain any im-
ages, so any needed image files must be provided
separately. Moreover, TEX4ht generates a support
file Sample.css, which is also required.

Thus it is convenient to put all illustrations in
a folder, named (say) Graphics, and refer to these
illustrations in the KTEX source using the pattern
Graphics/plotl (BTEX will automatically look for
usual image extensions, using whichever is found).

259

Then the web server should contain Sample.html,
Sample.css, and the Graphics folder.

12 Using the work of other people

Nothing in this document comes from me. When I
discovered that TEX4ht produces completely accept-
able web pages, I wondered if it would accept html
code and send it unmodified to the html document.
I asked Karl Berry, who thought it was possible and
asked Michal Hoftich. Michal sent the method de-
scribed here, but I didn’t believe it was sufficiently
general. So I started writing a sample document
showing that the method could not display math, or
handle YouTube videos, or accept Sage code. My
sample simply proved the opposite.

I do not know a single MathML tag. I knew
the American Mathematical Society recommended
MathJax, but didn’t know why. I don’t understand
how these technologies work.

Several years ago I downloaded Sage. But I
didn’t know that web pages could access a server so
students who had never installed Sage could still read
web pages with Sage content. When I realized that,
I used Sage to graph simple functions. When it dis-
played a 3D graph and let me rotate it interactively,
I almost fell off my chair.

It is strange that I had to learn these lessons
over again, because IATEX is a crucial tool for me and
yet I have never read The TEXbook; TEX macros are
crucial for my life and yet I don’t know how to write
a macro. We can do things in our lives because of
the independent work of thousands of people.

13 PDF and HTML in mathematics

When I was a college sophomore, I took an abstract
algebra course from W. Wistar Comfort. His lectures
were crystal clear; you could copy the board, read
the notes at home, and see every step in its proper
logical order.

Later I took courses with a more rough and
tumble atmosphere; the instructor seemed to be in-
venting right in front of our eyes, and sections of
the board would be crossed out when a better idea
presented itself.

Both lecture styles worked, showing the dual
nature of mathematics. To me, pdf is for the final
crystalline form of mathematics, and html is for the
rough and tumble way it is invented. Euclid is pdf,
but Legendre is html, and Euler is both.

¢ Richard Koch

koch (at) math dot uoregon dot edu
http://pages.uoregon.edu/koch/

Interactive content using TEX4ht

260

A Refinements for TEX4ht

(Everything in this section came from Michal Hoftich,
who we asked to review the above.)

A.1 \ifdefined\HCode

The main article uses

\ifx\HCode\undefined\else ... \fi

to insert material only when processing under TEX4ht.
This is fine, and is the general form. But when only
the html output needs the extra attention, it can be
simplified to:

\ifdefined\HCode ... \fi

(By the way, \ifdefined is an e-TEX primitive; BTEX
has required e-TEX, and some primitives beyond
e-TEX, for years now.)

A.2 \NewDocumentEnvironment{html}

The main article uses the {html} environment inside
\HCode conditionals, so that only TEX4ht sees it.
This is fine, but it is arguably nicer to define the
{html} environment in all cases, and make it a no-op
when being processed for pdf (or dvi, but we won’t
keep mentioning that).

Also, we may as well define an analogous envi-
ronment for material that should only be processed
in the pdf case.

This can most easily be done using the relatively
recent (2020) \NewDocumentEnvironment command.
The following two definitions in the preamble define
an {html} environment to ignore its contents (since
normally we are running KTEX, not TEX4ht), and
the {pdfenv} environment to typeset its contents
(for the same reason):

\documentclass{article}
\NewDocumentEnvironment{html}{+b}{}{}
\NewDocumentEnvironment{pdfenv}{}{}{}

Then, in a configuration file for TEX4ht (see next
section), we reverse the definitions so that {html} is
active and {pdfenv} is a no-op:

% (in a configuration file, see below)
\ScriptEnv{html}
{\ifvmode\IgnorePar\fi\EndP\NoFonts\hfill\break}
{\EndNoFonts}
\RenewDocumentEnvironment{pdfenv}{+b}{}{}

Then the environments can be used without any

conditionals. As a side benefit, the environments can
be nested. For example:

\begin{document}
\begin{html}
<p>This is output only in HTML, but can include

LaTeX math: \(a=b"2 \).</p>
\end{html}

Richard Koch

TUGhboat, Volume 43 (2022), No. 3

\begin{pdfenv}
Nested \LaTeX\ not in the HTML output.
\end{pdfenv}

\begin{html}
<p>Then we can have more HTML.</p>
\end{html}

A.2.1 \NewDocumentEnvironment explanations

You may be wondering what the +b means in the
\NewDocumentEnvironment call. If you’re not won-
dering, skip this section.

The environment name (e.g., html) is the first
argument to \NewDocumentEnvironment. The sec-
ond argument, with the +b, defines how arguments
should be handled. The third and fourth arguments,
empty for us, define the code which is run at the
beginning and end of the environment, respectively.

The b argument specification says to pass the
body of the environment as argument #2 to the code
blocks. (#1 is for the optional argument, which we
don’t use.) The + specifier allows multiple para-
graphs within the environment body.

Since we don’t specify any code to run, nothing
is done with the environment body, so it is effectively
discarded. On the other hand, when the argument
specification is empty, the environment body is pro-
cessed normally.

Many powerful argument specifiers are avail-
able, and they can be used when defining either en-
vironments or commands. See the ITEX usrguide3
document for details.

A.3 TgX4ht configuration files

TEX4ht supports configuration files, which are a con-
venient way to specify document-wide settings. The
environment redefinitions shown above are one ex-
ample. Here is another example, moving the Sage
specifications to the html page header (via @HEAD):
\Configure{@HEAD}{/

<script src="https://sagecell...\Hnewline

% must escape the # character:\Hnewline
inputLocation: '\#mycell',\Hnewline

</script>\Hnewline}

Because the configuration file is ultimately TEX code,
it is necessary to escape # with a backslash, and ex-
plicitly insert newlines in the output with \Hnewline,
as shown.

If the configuration file is saved as conf4ht.cfg
(the name can be anything), the make4ht call be-
comes:

make4ht --config confdht.cfg source.tex "mathjax"

TUGboat, Volume 43 (2022), No. 3

What’s new in TEX4ht: 2022
Michal Hoftich

Abstract

This article provides an overview of the recent de-
velopment of TEX4ht, ITEX to XML converter, and
makedht, the build system that carries out this con-
version.

1 Introduction

Richard Koch wrote an article on interactive docu-
ments produced using TEX4ht in this issue of TUG-
boat. He and Karl Berry asked if I would be able to
provide additional tips on the usage of TEX4ht and
also to summarize recent changes in the system.
You can find the basic summary of the basic
features of TEX4ht in my previous article [1]. T will
focus on new features and changes in this article.

2 Changes and new features in make4ht

There are some substantial changes in the make4ht
build system. These are the most important:

2.1 Terminal output

Originally, make4ht showed the full terminal output
of TEX and all the commands it called during the
conversion process. This resulted in a huge amount
of information printed on the terminal. It also used
the default behavior of ITEX, so the compilation was
stopped for every error, waiting for the user action.

The new default behavior is to run the compi-
lation in \nonstopmode, with most terminal output
suppressed. Only errors and warnings are shown.

You can change the output method using a new
command line option --loglevel, or —a in the short
form. Each log level prints messages of the current
level and all higher levels. It supports the following
levels:

error print only error messages.

warning show make4ht warnings, for example, from
HTML postprocessing filters.

status this is the default level.

info print all make4ht messages, but suppress the
output from commands.

debug this level is the original default, printing all
output from TEX and all other executed pro-
grams, and it also stops on compilation errors.

2.2 Input redirection

makedht now supports shell input redirection, which
means that it can process the output of other com-
mands without the need to use temporary files. You

doi.org/10.47397/tb/43-3/tb13bhoftich-make4ht

261

need to pass - as the filename, and also set the output
filename using the --jobname or -j option:

$ python generatetex.py | maked4ht -j foo -

2.3 Conversion of additional markup
languages

In addition to ATEX and plain TEX, make4ht sup-
ports some additional markup languages, thanks
to the preprocess_input extension. It detects the
markup used using the file extension, so it is nec-
essary to name the file accordingly. It preprocesses
the input using Pandoc or R with the Knitr library,
which needs to be installed on your system.
Here’s the list of supported file extensions:

.rtex ITEX with R code chunks

.rnw ATEX with Sweave code chunks

.rmd RMarkdown
.rrst R + reStructuredText

.md Markdown
.rst reStructured Text
For example, the following IATEX document con-

tains R commands, so we name it (say) x.rtex:
\documentclass{article}
\begin{document}
You can have R commands in your \LaTeX{}
document. They will be processed and

their output will be typeset:

<L>>=

Create a sequence of numbers

X =2:10

Summary of basic statistical measures
summary (X)

@

\end{document}

You can compile it with the following command,
which loads the preprocess_input extension:

$ make4ht -f htmlb+preprocess_input x.rtex

2.4 New commands available in build files

With make4dht, you can use Lua build files to call
additional commands, such as indexing and bibliog-
raphy processors. Built-in commands are provided
for Biber, BIBTEX, Makeindex, Xindy, Xindex and
PythonTeX. They take care of the special settings
necessary to work correctly with TEX4ht.

As an example, the following document produces
an index with links that point to the places where
\index is used:

\documentclass{article}
\usepackage{makeidx}

\makeindex

\begin{document}

Hello\index{hello} world\index{world}
\printindex

\end{document}

What’s new in TEX4ht: 2022

https://doi.org/10.47397/tb/43-3/tb135hoftich-make4ht

262

A build file, say build.lua, that uses Makein-
dex as an indexing processor could look like this:
Make:htlatex {}

Make :makeindex {}
Make:htlatex{}

The command Make :htlatex compiles the doc-
ument using IMTEX with the TEX4ht package auto-
matically loaded, Make :makeindex calls Makeindex
and the final Make:htlatex compiles the document
with the index included. Note that instead of page
numbers, the numbers in the index are numbered
consecutively for each \index command. Due to
that, we can point every index entry back to the
original location.

To use a build file, use the —e command line
option:
$ make4ht -e build.lua foo.tex

3 Documentation and server side
compilation

We have made progress in writing new TEX4ht doc-
umentation. It contains chapters on available config-
uration commands and command line options, and
also a how-to guide with common tasks. Developer
information for package writers is also included. It
is available here:

www.kodymirus.cz/tex4ht-doc

It also describes an important development, the us-
age of server-side compilation. Thanks to Github
Actions, documentation is automatically generated
from IXTEX sources every time we update them. We
don’t need to upload generated HTML files to a
web server, everything is handled automatically by
Github Actions. In the background, the Docker con-
tainer for TEX Live is used. It enables us to call any
command available in TEX Live, including make4ht.
A similar service is also provided by GitLab and
other source code hosting platforms.

This method has also been used for the conver-
sion of Overleaf projects linked to Github repositories,
the HTML version of make4ht documentation, and
even a simple blog:

www .kodymirus.cz/testblog/

4 JATS format support

We recently added support for the JATS XML for-
mat, which is intended for scientific article authoring.
This is an important development, as this format is
required by many publishers for article archiving or
further processing.

It is also the first output format for TEX4ht that
I personally created. The specification is quite strict
on the structure of the document, which is often

Michal Hoftich

TUGhboat, Volume 43 (2022), No. 3

inconsistent with the free document structure used
in BTEX. makedht postprocessing using LuaXML is
heavily used to produce the correct structure.

The support is still fairly basic, so user feed-
back and bug reports are appreciated. The basic
invocation:

$ maked4ht -f jats foo.tex

5 MathJax configuration

We continue to extend support for MathJax, which
can be used to render math in converted documents.
The resulting document typically looks much better
than documents converted using the default TEX4ht
method, which uses a mix of images and HTML for-
matting. It is also better for accessibility, as MathJax
can support screen readers, for example.

One pitfall is that MathJax does not support
custom commands out of the box. It needs to be
given special configuration that declares these com-
mands. Here is an example of such a configuration
file for a hypothetical macro \foo:

\Preamble{xhtml ,mathjax}
\Configure{MathJaxConfig}+{{
tex: {
\detokenize{’
macros: {
foo: "\\mathrm{fool}",
}
}
3
i3
\begin{document}
\EndPreamble

The \Configure{MathJaxConfig} command here is
given JavaScript code that configures MathJax. The
macros table, which needs to be located inside the ta-
ble tex, can contain user macros. The \detokenize
(e-TEX) command is used to prevent problems with
backslash characters, which need to be doubled. In
the example, we define the \foo macro, which prints
the word “foo” in roman font.

References

[1] M. Hoftich. TEX4ht: BTEX to Web publishing.
TUGboat 40(1):76-81, 2019. tug.org/TUGboat/
tb40-1/tb124hoftich-makedht.pdf

© Michal Hoftich
michal dot h21 (at) gmail dot com
https://tug.org/tex4ht/

https://www.kodymirus.cz/tex4ht-doc
https://www.kodymirus.cz/testblog/
https://tug.org/TUGboat/tb40-1/tb124hoftich-make4ht.pdf
https://tug.org/TUGboat/tb40-1/tb124hoftich-make4ht.pdf

TUGboat, Volume 43 (2022), No. 3

Adding XMP metadata in BRTEX
Ulrike Fischer, Frank Mittelbach

Abstract

One task of the “IKTEX Tagged PDF Project” [6] is
to evaluate existing solutions to add XMP metadata
to a PDF, and if needed, to design and implement
a new standard interface for this. In this article we
will describe the current state of this task.

Contents

1 Introduction 263

2 Creating the XMP metadata 263
2.1 The hyperxmp package 264
2.2 The pdfx package 264
2.3 hyperxmp and pdfx clash 265

3 XMP metadata with the IXTEX PDF
management support 265
3.1 Design goals for the XMP metadata

support 266

3.2 Implementation of the design goal . 266
3.3 Status and outlook 267

1 Introduction

The PDF format offers two places to store metadata.
For one there is the Info dictionary. It is directly at
the root of the PDF structure and contains key—value
pairs representing document data, such as the PDF
creation date (e.g., /CreationDate (D:2022100515
3151+02°007)) and title (e.g., /Title (Bearwear)).
(Recall that string constants in PDF and PostScript
are enclosed in parentheses.) Various standard keys
exist, such as /Title, /Author and /CreationDate,
but the dictionary can also hold private keys. pdfTEX
for example adds its banner: /PTEX.Fullbanner
(This is pdfTeX, ...). PDF viewers normally
show a selection of the standard keys in the prop-
erties of a PDF. All TEX engines offer tools to add
content to this dictionary and to change the values
added automatically by the engines. In I#TEX the
title and the author are normally added with the
help of the hyperref package and its pdftitle and
pdfauthor keys.

While the Info dictionary can hold arbitrary
data, it is nevertheless only an unordered list and not
well suited as a serious data container. So in PDF 1.4
a second option was added to the format: one can
embed an XML file with the data and reference this
file from the PDF catalog through the /Metadata

doi.org/10.47397/tb/43-3/tb136fischer-xmp

263

key.! The format of the XML is defined as part of a
framework called the Extensible Metadata Platform
(XMP), first described in an Adobe document and
now an ISO standard [3], and so commonly these
metadata are referred to as XMP metadata.

In PDF 2.0, the XMP metadata replaces the
deprecated Info dictionary. In earlier PDF versions
the metadata has already been required by standards
like the various PDF /A and PDF /X versions, PDF/UA
(the standard for accessible PDF), and standards for
electronic invoice data exchange like ZUGFeRD 2.2/
Factur-X 1.0 [1]. It is therefore quite important to
have tools and interfaces to add them to a PDF. In
the following we will describe various existing options
and give our outlook on future plans in this area.

We assume that all source files are UTF-8 en-
coded and won’t mention places where 8-bit encoded
files need perhaps additional care (XMP metadata
in the PDF are always UTF-8 encoded).

2 Creating the XMP metadata

It is quite easy to add an XML file to a PDF and
to reference it in the catalog. In all engines this
can be done with a few lines of code; the small
package xmpincl [9] demonstrates it for pdfITEX.
The challenge is to correctly build the content.

e At first, as always with XML there is quite a
large amount of formal syntax to understand
and follow.

e PDF standards contain further demands on the
content and the structure of the XML. As an ex-
ample, properties that don’t count as predefined
[8] must be declared in extension schemas, and if
data like a title is present in the Info dictionary
and in the XMP metadata they must match—
something that is not easy to ensure as they use
different encodings and formatting and so this
requires concrete tests with PDF viewers and
validators.

e Then one must decide which XMP metadata
should be supported (various more or less stan-
dard name spaces exist here) and devise user
interfaces for the data that can’t be detected
automatically.

e User input must be sanitized, properly escaped
for use in an XML file and converted to UTF-8.

In the past, two ITEX packages took on this
task. They don’t produce exactly the same XMP
metadata, but the differences are small; on the whole,
they settled more or less on the same set.

1 Tt is possible to add more XML files and to reference
them from other parts of the PDF but in this article we restrict
the discussion to the document-wide data container.

Adding XMP metadata in BTEX

https://doi.org/10.47397/tb/43-3/tb135fischer-xmp

264

Listing 1: A selection of XMP metadata added
automatically by hyperxmp

<pdf :PDFVersion>1.5</pdf :PDFVersion>

<dc:format>application/pdf</dc:format>

<xmp:CreateDate>2022-10-06T10:27:33+02:00
</xmp:CreateDate>

<xmp:CreatorTool>LaTeX with hyperref
</xmp:CreatorTool>

<xmpMM:DocumentID>
uuid:aef2b675-9b18-4d18-97£7-a3339b139000

</xmpMM:DocumentID>

Listing 2: hyperxmp example with additional
\hypersetup keys

\documentclass{article}

\usepackage{hyperxmp}

\usepackage{hyperref}

\hypersetup

{
pdftitle = {Uber einen die Erzeugung und

Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt},

pdfauthor={Albert Einstein},
pdflang = {de},
pdfmetalang={de},
pdfdate={1905-03-17},
pdfcontactcity={Bern},
pdfcontactcountry={Switzerland},
pdfissn={0003-3804},
pdfdoi={10.1002/andp.19053220607%},

}

\begin{document}

Text

\end{document}

2.1 The hyperxmp package

Simply loading the hyperxmp package from Scott
Pakin [7] will add XMP metadata. Listing 1 shows
some selected lines.

hyperxmp supports all major compilation routes:
pdfIATEX, LualTEX, XqIWTEX, WTEX with dvips,?
(u)(p)KBIEX with DVIPDFMz.

For the user interface, the package hooks into
the \hypersetup command of hyperref. It retrieves
the values of native hyperref keys like pdftitle and
pdfauthor and defines new keys for a variety of
additional XMP metadata. Listing 2 shows a few
examples. The hyperxmp package supports quite a
large set of metadata tags but has no interface to
extend this set.

2 But sadly Ghostscript has no option to add the XMP
metadata as an uncompressed stream.

Ulrike Fischer, Frank Mittelbach

TUGboat, Volume 43 (2022), No. 3

hyperref is used by hyperxmp not only for the
user interface but also to sanitize the user input: All
user input is first converted by \pdfstringdef to the
format used in bookmarks and then back to UTF-8;
it can contain arbitrary Unicode characters and all
commands supported by hyperref in the bookmarks.
If hyperref is missing it is loaded automatically by
hyperxmp at the end of the preamble. If the docu-
ment should contain XMP metadata but not links
or bookmarks, load hyperref with the package option
draft.

Individual items in the author and keyword lists
should be separated by commas; if a real comma is
wanted \xmpcomma must be used.

Some keys allow adding language variants with
the command \XMPLangAlt:

\hypersetup{pdflang=de,pdftitle=Mein Titel}
\XMPLangAlt{en}{pdftitle={My titlel}}

This results in metadata using the xml:lang at-
tribute:

<dc:title>
<rdf:Alt>
<rdf:1i xml:lang="x-default">Mein Titel
</rdf:1i>
<rdf:1i xml:lang="de">Mein Titel</rdf:1i>
<rdf:1li xml:lang="en">My title</rdf:1i>
</rdf:Alt>
</dc:title>

2.2 The pdfx package

The goal of the pdfx package [2], currently main-
tained by Ross Moore, is to support the generation
of PDF/X-, PDF/A- and PDF/E-compliant documents.
As XMP metadata are required by the standards they
are created by the package, but it will (in part de-
pending on the requested standard) also embed a
color profile, change ToUnicode values, redefine math
accents and more.

pdfx can only be used with pdfI¥TEX, LualATEX
and XgIATEX. (It makes use of the xmpincl package
written for pdfIATEX for the actual embedding of the
XMP data and tweaks it a bit to make it compatible
with the two other engines). The compilation with
XHIUTEX requires the use of --shell-escape as pdfx
calls Lual&TEX to retrieve the creation date of the file;
this can be avoided by defining \pdfcreationdate
manually before loading pdfx, e.g.?

\def\pdfcreationdate
{\string D:20221002224824+10°00°}

3 The \string is needed as pdfx expects a D with catcode
other.

TUGboat, Volume 43 (2022), No. 3

Listing 3: Example input with the pdfx package

\begin{filecontents}[force]{\jobname.xmpdata}
\Title{Baking through the ages}
\Author{A. Baker\sep C. Kneader}
\Language{en-GB}

\Keywords{cookies\sep muffins\sep cakes}
\Publisher{Baking International}

\end{filecontents}

\documentclass{article}

\usepackage [a-1b] {pdfx}

\begin{document}
some text

\end{document}

When using pdfx the user must provide meta-
data in an external file with the extension .xmpdata.
It is recommended to create this file at the beginning
of the document with a filecontents environment.
In this .xmpdata file the data are then given as
arguments of various commands—Listing 3 shows
an example. The arguments can contain arbitrary
Unicode characters, and don’t need to be printable
in the document. Commands for non-Latin char-
acters like \CYRD (cyrillic), \hebzayin (hebrew) or
\textarabicfa can also be used, if enabled through
package options like cyrxmp and hebxmp.

pdfx loads hyperref as it, like hyperxmp, uses
\pdfstringdef to sanitize some of the input. It also
uses hyperref to set the PDF version. As hyperref
normally should be loaded late but the PDF version
must be set early, getting the loading order right can
get tricky.

The default setup for the XMP metadata is
stored in external templates,® pdfa.xmp, pdfx.xmp,
pdfe.xmp, By copying these templates and ad-
justing them it is possible to add private data. As a
side effect of the processing the resulting XMP data
are written to a file, pdfa.xmpi or pdfx.xmpi, which
allows to feed them to an RDF validator [11].

Lists are created if the items are separated by
the command \sep. Language support is offered
through optional arguments:

\Title[en]{Baking through the ages}

\Keywords [de] {Kekse,
\sep[en]CookiesY
\sep[fr]Biscuits}

This will result in:

4 Depending on the standard, pdfx will create slightly
different metadata.

265

<dc:title>
<rdf:Alt>
<rdf:1i xml:lang="en">
Baking through the ages
</rdf:1i>
</rdf:Alt>
</dc:title>
<dc:subject>
<rdf:Bag>
<rdf:1i xml:lang="de">Kekse</rdf:1i>
<rdf:1i xml:lang="en">Cookies</rdf:1i>
<rdf:1i xml:lang="fr">Biscuits</rdf:1li>
</rdf :Bag>
</dc:subject>

2.3 hyperxmp and pdfx clash

The two packages can’t be used in the same docu-
ment. As both use low-level primitive commands to
reference their XMP stream, the PDF catalog would
contain two /Metadata entries if both packages are
used, and this is invalid in a PDF:

/Metadata 3 0 R /Metadata 6 O R

3 XMP metadata with the *TEX PDF
management support

Over the past years the N TEX Project Team has in
connection with the Tagged PDF project [6] writ-
ten and released code targeting various PDF-related
tasks. Some of this code is already included in the ker-
nel through the 13pdf module of the L3 programming
layer [4], the rest is provided through the external
bundle pdfmanagement-testphase [5].

The goals of this code are, first, to provide ab-
stracted, backend independent commands. So for ex-
ample instead of setting the pdf version directly (de-
pending on the engine: with \pdfminorversion, or
\pdfvariable minorversion or with a \special),
you can use \pdf_gset_version:n{1.7} with all
supported backends. hyperref already makes use of
this: when the PDF management is active the same
generic driver is loaded for all backends.

The second goal of the new code (and the rea-
son why it is called PDF management) is to prevent
clashes like the one between hyperxmp and pdfx men-
tioned above, by providing interfaces for managed
access to central PDF resources. If for example two
packages try to add a /Metadata reference or some
other resources to the catalag, then the code will
ensure that the conflict is correctly resolved — either
by merging the resources or by rejecting one of the
requests.

The PDF management doesn’t work with pack-
ages that bypass the interfaces by using primitive

Adding XMP metadata in BTEX

266

commands. This means neither hyperxmp nor pdfx
are usable with it, and a replacement to add the
important XMP metadata was needed. As an inter-
mediate solution hyperxmp was patched but as part
of task 2.3.4 of the feasibility study [6] this patch
has now been replaced by proper support in the
I3pdfmeta package of the pdfmanagement-testphase
bundle.

3.1 Design goals for the XMP metadata
support

After reviewing the existing packages the following
main design goals of the new XMP metadata support
have been identified:

e The dependency to hyperref should be removed.
XMP metadata are not directly related to links
and other interactive features and should work
also in documents which don’t use them.

e The standard interface should be a key—value
system with \DocumentMetadata as the default
interface command. To ease the transition from
hyperxmp the \hypersetup keys should continue
to work where possible.

e The input should support the full range of Uni-
code and standard commands.

e The default set of supported XMP tags should
be similar to the set of the existing packages.

e There should be no need in the user input for spe-
cial commands like \xmpcomma, \XMLlangalt or
\sep. List items should be input as comma lists
where “real commas” are protected by braces
as usual. The language alternatives can be set
with optional arguments.

e As with pdfx it should be possible to export the
XMP metadata in an external document, but
this should be a debug option.

e The XMP metadata should be extensible. As a
proof of concept, an example document showing
how to add the metadata needed for a ZUGFeRD
document should be developed.

3.2 Implementation of the design goal

The new XMP metadata support has been imple-
mented in the 13pdfmeta module and is loaded to-
gether with PDF management code. This is done by
using the \DocumentMetadata command with key—
value pairs at the beginning of the document. XMP
metadata are then automatically added to the PDF
they can be suppressed by setting the key xmp to
false (see listing 4). This works with all engines
supported by the L3 layer backend.

In accordance with the goals specified above
the minimal document doesn’t require hyperref: The

Ulrike Fischer, Frank Mittelbach

TUGboat, Volume 43 (2022), No. 3

Listing 4: Minimal input for XMP metadata with the
PDF management

\DocumentMetadata
{
%xmp=false, % no XMP
xmp=true % optional as default
}
\documentclass{article}
\begin{document}
abc
\end{document}

code relies on \text_purify:n and other functions
from the L3 layer to sanitize the input.

XMP metadata for the PDF standard,® the PDF
version and the language are already retrieved from
keys set in \DocumentMetadata:

\DocumentMetadata
{
pdfstandard = a-2b,
pdfversion = 1.7,
lang = de
}

At the moment other metadata still requires
the use of the hyperref and the \hypersetup inter-
face with the hyperxmp keys known from listing 2 —
we haven’t decided yet how to name and organize
suitable keys in the \DocumentMetadata command.

As outlined in the design goals, lists are input as
comma lists with real commas protected by braces as
usual. Where sensible it is possible to add a language
tag with an optional argument before the item. The
next listing demonstrates both for the title:

\hypersetup
{ pdftitle=
{[en]Baking,
[de]{Kekse, Kuchen und Torten backen}}}

This results in this metadata:

<dc:title>
<rdf:Alt>
<rdf:1i xml:lang="en">Baking</rdf:1i>
<rdf:1i xml:lang="de">Kekse,
Kuchen und Torten backen</rdf:1i>
</rdf:Alt>
</dc:title>

5 As with pdfx, declaring a standard can have further ef-
fects; for example, embed a color profile or do some validations.
Be aware that IATEX can neither ensure nor check all require-
ments of any given standard, and an external validator like
veraPDF [10] should be used.

TUGboat, Volume 43 (2022), No. 3

The XMP metadata can be exported to an ex-
ternal file—the default name is \jobname.xmpi —
with a debug setting in \DocumentMetadata:

\DocumentMetadata
{
debug = { xmp-export, more debug options ... }
}

Finally, first steps have been undertaken to ex-
tend the XMP metadata. To support, for example,
the ZUGFeRD standard, additions to the XMP meta-
data are needed in three places:

e A new XML namespace with a suitable prefix
must be declared.

e A new schema with declarations for the new tags
must be added to the pdfaExtension:schemas
section.

e And the data itself must be added.

For all these tasks internal functions have been de-
fined, and a first prototype that implements the
ZUGFeRD 2.2 standard exists, but it isn’t yet clear
what the public interface should look like.

3.3 Status and outlook

The new code supports XMP metadata at a compa-
rable level to that provided by the existing packages.
Almost all of the above design goals are already
implemented. There remains some work to do to
provide suitable public interfaces for certain parts.
Also needed are more tests with PDF viewers and
validators to check if their interpretation of the stan-
dards agrees with the code. Feedback and comments
are welcome!

References

[1] Forum for Electronic Invoicing Germany.
What is ZUGFeRD? www.ferd-net.de/
standards/what-is-zugferd

[2] Han Thé Thanh, P. Selinger, et al. The pdfz
package. ctan.org/pkg/pdfx

13l

4]

[5]

[6]

7]

18]

19]
[10]

[11]

267

International Organization for Standardization.
150 16684-1:2019: Graphic technology —
Eztensible metadata platform (XMP)
specification — Part 1: Data model,
serialization and core properties. 2nd ed., 2019.
Wwww.iso.org/obp/ui/#!iso:std:75163:en

IATEX Project Team. The I3kernel package.
ctan.org/pkg/13kernel

IMTEX Project Team. The pdfmanagement-
testphase package. ctan.org/pkg/
pdfmanagement-testphase

F. Mittelbach, U. Fischer, C. Rowley.
IITEX tagged PDF feasibility evaluation.
latex-project.org/publications/2020-
tagged-pdf-feasibility.pdf

S. Pakin. The hyperxmp package.
ctan.org/pkg/hyperxmp

PDF competence center. Technote 0008:
Predefined XMP properties in PDF/A-1.
Technical report, 2008. www.pdfa.org/
resource/technical-note-tn0008-
predefined-xmp-properties-in-pdfa-1/
M. Sneep. The xmpincl package.
ctan.org/pkg/xmpincl

veraPDF consortium. veraPDF—industry
supported PDF /A validation. verapdf.org

W3C. W3C RDF validation service.
www.w3.org/RDF/Validator/

¢ Ulrike Fischer
TEX Project Team
Bonn
Germany
ulrike.fischer (at)
latex-project.org

¢ Frank Mittelbach
TEX Project Team
Mainz
Germany
frank.mittelbach (at)
latex-project.org

Adding XMP metadata in BTEX

https://www.ferd-net.de/standards/what-is-zugferd
https://www.ferd-net.de/standards/what-is-zugferd
https://ctan.org/pkg/pdfx
https://www.iso.org/obp/ui/#!iso:std:75163:en
https://ctan.org/pkg/l3kernel
https://ctan.org/pkg/pdfmanagement-testphase
https://ctan.org/pkg/pdfmanagement-testphase
https://latex-project.org/publications/2020-tagged-pdf-feasibility.pdf
https://latex-project.org/publications/2020-tagged-pdf-feasibility.pdf
https://ctan.org/pkg/hyperxmp
https://www.pdfa.org/resource/technical-note-tn0008-predefined-xmp-properties-in-pdfa-1/
https://www.pdfa.org/resource/technical-note-tn0008-predefined-xmp-properties-in-pdfa-1/
https://www.pdfa.org/resource/technical-note-tn0008-predefined-xmp-properties-in-pdfa-1/
https://ctan.org/pkg/xmpincl
https://verapdf.org
https://www.w3.org/RDF/Validator/

268

The BTEX Tagged PDF project — A status
and progress report

Frank Mittelbach, Ulrike Fischer

Abstract

The IXTEX Tagged PDF project was started in spring
2020 and announced to the TEX community by the
IWTEX Team at the (online) 2020 TUG conference.
This short report describes the progress and status
of this multi-year project.

Contents
1 Project overview 268
1.1 Phase I — Prepare the ground 268
1.2 Phase II—Provide tagging of
simple documents 269
1.3 Preparatory work for tasks in
Phases IlTand IV. 270
1.4 Cross-phase tasks 270
1.5 Interface to project code for users . . 271
1.6 Summary of current status 271
2 Software releases 271

1 Project overview

A tagged PDF is a PDF with additional semantic
structure, which improves accessibility and reuse. To
enable IMTEX to create such tagged PDFs, the IXTEX
Tagged PDF project was initiated in Q4 of 2019 with
a feasibility study produced for Adobe [18]. This led
to a commitment by Adobe to financially support
the project as proposed in that study. Unfortunately,
due to the COVID-19 pandemic that flared up at
that time, the execution of this commitment was
delayed until Q3 of 2020. Despite this delay, the
ITEX Project Team started the effort in late spring
2020 (with at that time limited resources) and the
project was announced to the TEX community at
the (online) TUG 2020 conference, where the team
also presented the first results from Phase I of the
project [19].

The ITEX Tagged PDF project is divided into
six phases, each producing immediately usable appli-
cations. This ensures both early user benefits and
early feedback to the project team. The phases are
roughly aligned with the bi-yearly TEX release cy-
cle, with each phase being expected to take one to
three KTEX releases.

In the feasibility study, all identified project
tasks are given a unique number, in order to easily
cross-reference them, describe their dependencies,
and arrange them in the project schedule outlined in
the study. In addition to referring to tasks by name,
the current report also lists these task numbers to

Frank Mittelbach, Ulrike Fischer

doi.org/10.47397/tb/43-3/tb136mitt-tagged

TUGboat, Volume 43 (2022), No. 3

assist readers in finding more detailed information
about a particular task by looking it up in that
study [18].

1.1 Phase I—Prepare the ground

The purpose of the first phase was the implemen-
tation of the core functionality inside KTEX that
forms the basis for all the later work of creating a
well-tagged PDF. This phase was completed in 2021
and contained three important milestones:

e “The Hook Management System” (task 2.2.5)
e “PDF Object Support” (task 2.2.6)
e “The Automated Testing Environment”

(task 2.1.2)

As part of the work on Phase I we also identified two
new tasks not covered in the feasibility study:

e “Add Generic Command Hooks” (task 2.2.5(b))
e “Provide a General Configuration Point Man-
agement” (task 2.2.5(c))

1.1.1 The hook management system

The “Hook Management System” was made avail-
able to the general public in the 2020 fall release
of ITEX and enhanced KTEX with a generic hook
interface and a variety of document, shipout, file and
environment hooks [11, 13, 15].

Half a year of general use of the hook manage-
ment system (by the team and by many third-party
developers) showed that it needed some extensions
and adjustments. This resulted in the add-on task
2.2.5(b) to augment the hook management system
with a generic method to automatically add hooks
to third-party commands when necessary.

These generic command hooks will allow us to
patch third-party code from the outside (i.e., without
taking over the maintenance of abandoned but oth-
erwise functional packages) and this way simplifying
the adoption of tagged PDF. The generic command
hooks were implemented and made available in the
2021 spring release of BTEX [12].

We also identified the need for “General Config-
uration Point Management”, similar to hook man-
agement but for configurations where only a single
package or class can be in charge. This is needed
to avoid packages patching into internal ITEX com-
mands and overwriting each other (partially) or over-
writing tagging support code. For example, several
packages currently attempt to alter the same inter-
nal commands of the output routine to insert some
special code for footnote handling.

Conceptual work for this new task 2.2.5(c) has
already been undertaken; package writer interfaces,
similar to those of the hook management, will be
provided during 2023.

https://doi.org/10.47397/tb/43-3/tb135mitt-tagged

TUGboat, Volume 43 (2022), No. 3

1.1.2 PDF object support

“PDF Object Support”, code to support various PDF
related tasks, is in part already included in the kernel
through the 13pdf module of the L3 programming
layer [5]. Further functionality is provided through
the external bundle pdfmanagement-testphase [16],
which was released in early 2021. This will be inte-
grated into the kernel at a later stage.

As part of this task it was necessary to work
with TEX engine developers to develop some engine
patches for LuaTEX and pdfTEX, in order to enable
these engines to fully support PDF 2.0 Structure Des-
tinations (XHTEX was already capable out of the
box). Such structure destination provides the same
view mechanism as a destination, but references a
structure element instead of a page and so creates
a direct connection from a link to some content.
With TEX Live 2022 and current MiKTEX, struc-
ture destinations are now created automatically if
the \DocumentMetadata command, or the tagpdf
package, are used to create a PDF 2.0 document.

Sadly there is currently no easy way to check
locally if a link points to a structure and to which
one. The tag-view of Adobe Pro doesn’t show them
and its html export ignores the structure. To test
the new feature one has to check the internal PDF
structure or use an online service like ngPDF [1], a
demo site for new technology to derive HTML from
tagged PDF in a predictable manner, developed by
the PDF Association. When using ngPDF the HTML
export of a tagged PDF with structure destinations
contains links to the id of a structure:

<h1l id="6d4ff5-1">1 abc</h1>
1

Without the structure destination the link would
point only to a page related target:

1

1.1.3 The automated testing environment

The “Automated Testing Environment” is integral to
achieving a successful completion to the project. It
is essential to build up a large test suite on which
all tests can be run and verified automatically. This
is because we need to modify substantially the core
IXTEX code without adversely affecting the millions
of existing users who expect to be able to continue
to reprocess their documents without finding any
unexpected visual changes. Thus, even though this
code is handled directly only by the KTEX team, its
existence and stability is of utmost importance to
the success of the project.

269

1.2 Phase IT—Provide tagging of simple
documents

The main goal of Phase II is to provide automatic
tagging of simple documents, excluding more com-
plicated structures such as mathematics, tables, etc.
This will be achieved by setting up the necessary
core code that provides general mechanisms to deal
with the issues around the automatic detection of
paragraph text and its correct tagging, together with
enabling a subset of the standard IXITEX document
elements to produce the required tags.

Work on these two essential foundations for
Phase II was started earlier, in parallel to finishing
Phase I:

e “Core Tagging Support” (task 2.3.1); and

e Support for “Automated Paragraph Tagging’
(task 2.3.2).

The main objective of these tasks is to provide the
necessary infrastructure for the automatic tagging of
relatively non-complex documents. The current focus
is thus on the remaining major task for Phase II:

)

e “Implement tagging for the basic document ele-
ments of XTEX” (task 2.3.3).

Work on Phase II took slightly longer than ini-
tially estimated due to additionally identified tasks
that are either prerequisites for a successful com-
pletion of Phase II, or necessary for later phases
and, for one reason or another, were best undertaken
now, in parallel. We expect to close out Phase II
be the end of 2022 with an out-of-sequence release
of the latex-1ab bundle, which was added in June
2022 to enable safe experimentation with new project
code without disrupting workflows using production

BTEX [9].
1.2.1 Core tagging support

Tagging a PDF requires writing and managing various
objects and literals in the PDF. The needed “Core
Tagging Support” code is currently available as an
add-on package (the package tagpdf [2]), since this
allows for safe experimentation by those who wish to
have tagged PDF output now, but without disrupting
any user workflows. Once it is thoroughly tested,
the code will be integrated into the kernel (this will
form its own task in a later phase). How to use the
code to create simple tagged PDF’s was described by
Ulrike Fischer at the (online) 2021 TEX Users Group
conference [3].

1.2.2 Automated paragraph tagging

Large parts of standard documents consist of simple
paragraphs. For the success of the project it is of
utmost importance that such paragraphs are tagged

The IMTEX Tagged PDF project — A status and progress report

270

automatically and that paragraphs split over pages
are handled correctly. The kernel extensions needed
for such “Automated Paragraph Tagging” were fin-
ished in time for the 2021 spring release of KTEX
and announced at the (online) 2021 TUG conference
by Frank Mittelbach [17]. They use marks and new
hooks at the beginning and end of paragraphs [14].

1.2.3 Tagging for basic document elements

The goal of this task is to make standard IXTEX
document elements tagging-aware, so that all the
structural information they encapsulate is automati-
cally transferred into an appropriate tag structure
(including attributes) in the resulting PDF document.
In the project schedule this task is split between
phases II and III, starting in Phase II by concentrat-
ing on the high-level structural elements such as links,
headers and footers, headings, lists, footnotes and
tables of contents. The tagpdf package and the PDF
management code already implement the automatic
tagging of hyperlinks and the tagging of headers and
footers (as artifacts). Automatic footnote tagging
(with links) including special cases, such as footnotes
broken across columns or pages, tagging of lists and
tagging of tables of contents will be deployed with
the release of latex-1lab at the end of 2022. Later
in Phase III (in 2023) the remaining basic document
structures will be added, leaving more complex struc-
tures, such as tables, to later phases.

In this context, “automatic tagging” means that
“identified document elements will be mapped using
a default mapping to PDF tags without manual ad-
justments or fine-grained flexibility.” Such flexibility
will of course eventually be necessary in order to
produce the highest quality of tagged PDF; therefore,
this flexibility had to be catered for already in the
underlying support code, which led to a new task:

e “Design and implement a general key/value
interface” (task 2.3.3b).

This was identified as an additional prerequisite for
successfully completing tasks 2.3.3 and 2.3.5. It must
be made possible to extend the optional argument
of standard commands and environments, for exam-
ple, for sectioning and captions to accept key/value
arguments to specify alternative text.

The task also includes the design and imple-
mentation of a general template mechanism for com-
mands and environments using the key/value method
for configuration. However, exposing these concepts
on the user and package developer levels will require
the design of interfaces for their configuration and
manual overwriting, both of which are parts of later
phases.

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 43 (2022), No. 3

1.3 Preparatory work for tasks in
Phases III and IV

For a number of technical and practical reasons we
have diverged from the original schedule layout and
have already started work on tasks planned for later
phases. These include:

e “Design and implement an extended cross-
reference mechanism for WTEX” (task 2.2.2)

e “Provide an interface for specifying all types
of document metadata” (task 2.3.4)

e “Design and implement hyperlinking and move
it into the ATEX kernel” (task 2.2.3)

e “Standards compliance” (task 2.3.9)

1.3.1 Interface to document metadata

The status and outlook on the implementation of
document metadata (task 2.3.4) is described in a
separate article in the current issue [4].

1.3.2 Hyperlinking improvements

User interfaces (and backend code) for hyperlink-
ing facilities are currently provided mainly by the
hyperref package. With the new PDF Object Sup-
port described above, large parts of the backend
code have already been moved into the I¥TEX kernel
or into the pdfmanagement-testphase package. At
the time when structures such as footnotes, headings,
and tables of contents are made tagging-aware, native
hyperlinking support will be added as well, and the
no-longer-needed patches in hyperref suppressed.

1.3.3 Standards compliance

Support for various PDF /A standards is provided by
the pdfmanagement-testphase package (13pdfmeta
module). The code will add the typically-needed
color profiles and PDF objects, and suppress forbid-
den actions such as JavaScript code.

It should be noted that ITEX cannot check
all requirements of a standard and that an exter-
nal validator such as veraPDF should be used for
this. Support for PDF/X standards is currently only
provided in the form of XMP metadata entries.

1.4 Cross-phase tasks

A number of tasks require attention and action across
all phases. Up to now these are:

e “Define a change strategy to safely extend KTEX
without causing serious issues for the worldwide
user base” (task 2.1.1)

e “Developer acceptance testing for finished tasks”
(task 2.4.1)

e “Coordinate updates to external packages” (task
2.4.3)

TUGboat, Volume 43 (2022), No. 3

Altering and enhancing KTEX without disrupt-
ing existing documents and workflows is an important
goal of the project. For this a number of tools have
been implemented:

e The \DocumentMetadata interface allows tagged
documents and non-tagged documents to be pro-
cessed by the same ITEX format by changing
only one line.

e Experimental code is kept first in external pack-
ages such as pdfmanagement-testphase and
tagpdf, or the latex-1lab bundle.

e The firstaid package allows us to temporarily
patch external packages if it turns out that they
are incompatible with a change.

e The latex-dev releases give package authors
time and opportunity to test changes and report
problems, and the IMTEX team time to contact
package authors and coordinate updates.

e The package tagpdf-base provides dummy ver-
sions of the core tagging commands, thus sup-
porting the writing of commands and environ-
ments which are properly tagged if the user
activates tagging, but which also work without
tagging.

e The \IfDocumentMetadataTF kernel command
allows testing if the new interface has been used
in a document.

e The \MakeLinkTarget kernel command pro-
vides a dummy version of the command used by
hyperref that creates anchors, and so allows
writing commands and environments with built-
in hyperlinking features which are activated if
the user loads hyperref.

1.5 Interface to project code for users

As part of the metadata task (2.3.4), we provided a
\DocumentMetadata command in the I4TEX kernel
to be used as the very first declaration in a document
(i.e., before \documentclass). This allows us to load
the PDF management code and enable tagging and
other project-related code. In short, by using this
declaration the user indicates that this is a document
to which tagging should be applied. That is, it serves
a similar role as the switch from \documentstyle
(old BTEX 2.09 pre-1994) to \documentclass (mod-
ern WTEX). This eases the transition and allows old
and new code to coexist.

In this way, we also avoid users having to load
special packages to test new features, instead every-
thing boils down to giving a simple line

\DocumentMetadata{testphase=phase-II,...}

271

at the start of the document which then loads every-
thing necessary to make use of currently-available
results from a particular phase.

This interface has been deployed in IXTEX 2022
June release and from that point onwards it is avail-
able to every IXTEX user.

1.6 Summary of current status

Phase I of the project was completed previously and
the results are deployed and in general use today.

Phase II is near completion, with most tasks
implemented and deployed, and an expected closeout
with the release of the latex-lab bundle at the end
of 2022. This will then enable automatic tagging of
KTEX documents with a (still fairly) simple element
structure by adding the aforementioned

\DocumentMetadata{testphase=phase-II,...}

at the top of a document.! Thus the major aim of
Phase II is to enable many existing I“TEX documents
to be reprocessed to produce tagged, and hence ac-
cessible, PDF output with no change to the source
file other than adding a line like the above.

The goal of the later phases is then to expand
this scope with more and more document elements
being recognized, and to support adjustments to the
tagging, thereby increasing the quality of the tagged
PDF output. Eventually, the temporary interface
within \DocumentMetadata, responsible for loading
the tagpdf support package, will also no longer be
necessary.

Overall, we can confidently state that the project
progress is in good shape and within the main plan
boundaries and will continue to be so.

2 Software releases

In the period between 2020-Q4 and 2022-Q4 the
team has implemented and distributed five main
IXTEX releases that have a direct bearing on the
progress of the project. Important features of the
releases are summarized below; the releases also con-
tain other improvements not directly related to the
Tagged PDF project.

BTEX Release 2020-10, see [6]

e Provide the new hook management for IMTEX
(task 2.2.5)

e Move the xparse interfaces to the kernel
(needed for various later tasks to provide
document-level interfaces)

1 The data to place into the \DocumentMetadata argument
is temporary at this point and will change over the course of
the project, e.g., testphase=phase-II means apply the code
for Phase II—something that will not be necessary once the
code is finalized and integrated with the IATEX kernel.

The ITEX Tagged PDF project — A status and progress report

272

ETEX Release 2021-06, see [7]

Extending hook management to paragraphs

(needed for task 2.3.2)

Extending hook management to commands

(needed for Phases IT& III tasks)

ETEX Release 2021-11, see [8]

Consolidation release

Corrections and improvements to the hook
management system after extensive use by the
project team and by third-party developers

ETEX Release 2022-06, see [9]

\DocumentMetadata interface (needed for task
2.3.4)

Introduction of the latex-lab bundle (needed
to allow safe user experimentation with new
functionality from the project)

First part of the new key/value handling in
the kernel (needed for several tasks)

ETEX Release 2022-11, see [10]

Auto-detecting new key/value arguments, e.g.,
in \section or \caption (implements task
2.3.3b; needed for several other tasks)

References

[1]
2]

13l

4]

[5]
[6]

7]

DualLab. Next generation PDF. ngpdf . com

U. Fischer. The tagpdf package.
ctan.org/pkg/tagpdf

U. Fischer. On the road to Tagged PDF:
About StructElem, marked content, PDF/A
and squeezed Béars. TUGboat 42(2):170-173,
2021. https://doi.org/10.47397/tb/42-2/
tbl31fischer-tagpdf

U. Fischer, F. Mittelbach. Adding XMP
metadata in BTEX. TUGboat 43(3):263-267,
2022. https://doi.org/10.47397/tb/43-3/
tb135fischer-xmp

ITEX Project Team. The L3kernel package.
ctan.org/pkg/l3kernel

BTEX Project Team. I#TEX news, issue 32,
2020. www.latex-project.org/news/
latex2e-news/ltnews32.pdf

IBTEX Project Team. I#TEX news, issue 33,
2021. www.latex-project.org/news/
latex2e-news/ltnews33.pdf

Frank Mittelbach, Ulrike Fischer

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

TUGboat, Volume 43 (2022), No. 3

ETEX Project Team. ITEX news, issue 34,
2021. www.latex-project.org/news/
latex2e-news/ltnews34.pdf

ITEX Project Team. IXTEX news, issue 35,
2022. www.latex-project.org/news/
latex2e-news/ltnews35.pdf

ITEX Project Team. KTEX news, issue 36 —
draft, 2022. www.latex-project.org/news/
latex2e-news/ltnews36.pdf

IMTEX Project Team. IATEX’s hook
management, 2022. mirrors.ctan.org/
macros/latex/base/lthooks-doc.pdf

IMTEX Project Team. The ltecmdhooks module,
2022. mirrors.ctan.org/macros/latex/
base/ltcmdhooks-doc.pdf

IXTEX Project Team. The ltfilehook
documentation, 2022. mirrors.ctan.org/
macros/latex/base/ltfilehook-doc.pdf

IATEX Project Team. The ltpara.dtz code, 2022.
mirrors.ctan.org/macros/latex/base/
ltpara-doc.pdf

IMTEX Project Team. The ltshipout package,
2022. mirrors.ctan.org/macros/latex/
base/ltshipout-doc.pdf

IXTEX Project Team. The pdfmanagement-
testphase package, 2022.
ctan.org/pkg/pdfmanagement-testphase

F. Mittelbach. Taming the beast — Advances
in paragraph tagging with pdfTEX and XHTEX
(2021): Automatic paragraph tagging with
the pdfTEX and XH{TEX engine now possible.
www.latex-project.org/news/2022/09/06/
TUG-online-talks-21-22/

F. Mittelbach, U. Fischer, C. Rowley.
IMTEX Tagged PDF feasibility evaluation.
latex-project.org/publications/
2020-tagged-pdf-feasibility.pdf

F. Mittelbach, C. Rowley. ITEX Tagged
PDF—a blueprint for a large project.
TUGboat 41(3):292-298, Nov. 2020.
latex-project.org/publications/
2020-FMi-TUB-tb129mitt-tagpdf.pdf

o Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

¢ Ulrike Fischer
Bonn, Germany
https://www.latex-project.org

https://ngpdf.com
https://ctan.org/pkg/tagpdf
https://doi.org/https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/https://doi.org/10.47397/tb/43-3/tb135fischer-xmp
https://doi.org/https://doi.org/10.47397/tb/43-3/tb135fischer-xmp
https://ctan.org/pkg/l3kernel
https://www.latex-project.org/news/latex2e-news/ltnews32.pdf
https://www.latex-project.org/news/latex2e-news/ltnews32.pdf
https://www.latex-project.org/news/latex2e-news/ltnews33.pdf
https://www.latex-project.org/news/latex2e-news/ltnews33.pdf
https://www.latex-project.org/news/latex2e-news/ltnews34.pdf
https://www.latex-project.org/news/latex2e-news/ltnews34.pdf
https://www.latex-project.org/news/latex2e-news/ltnews35.pdf
https://www.latex-project.org/news/latex2e-news/ltnews35.pdf
https://www.latex-project.org/news/latex2e-news/ltnews36.pdf
https://www.latex-project.org/news/latex2e-news/ltnews36.pdf
https://mirrors.ctan.org/macros/latex/base/lthooks-doc.pdf
https://mirrors.ctan.org/macros/latex/base/lthooks-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltcmdhooks-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltcmdhooks-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltfilehook-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltfilehook-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltpara-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltpara-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltshipout-doc.pdf
https://mirrors.ctan.org/macros/latex/base/ltshipout-doc.pdf
https://ctan.org/pkg/pdfmanagement-testphase
https://www.latex-project.org/news/2022/09/06/TUG-online-talks-21-22/
https://www.latex-project.org/news/2022/09/06/TUG-online-talks-21-22/
https://latex-project.org/publications/2020-tagged-pdf-feasibility.pdf
https://latex-project.org/publications/2020-tagged-pdf-feasibility.pdf
https://latex-project.org/publications/2020-FMi-TUB-tb129mitt-tagpdf.pdf
https://latex-project.org/publications/2020-FMi-TUB-tb129mitt-tagpdf.pdf

TUGboat, Volume 43 (2022), No. 3

IXTEX News

Issue 36, November 2022

Contents
Introduction 273
Auto-detecting key/value arguments 273
A note for font package developers 273
Encoding subsets for TS1 encoded fonts 273
New or improved commands 274
Better language handling for case-changing
commands 274
Code improvements 274
Support for slanted small caps in the EC fonts 274
EC sans serif at small sizes 274
Improve font series handling with incorrect
fdfiles ..o 274
Detect nested minipage environments 274
Robust commands in package options 274
Improve |3docstrip integration into docstrip . . 274
LuaTEX callback efficiency improvement 274
Rule-based ordering for LuaTgX callback
handlers 274
Bug fixes 275
Prevent TEX from losing a \smash 275
Resolve an issue with \mathchoice and
localalphabets 275
Reporting of unused global options when
using key/value processing 275

Changes to packages in the graphics category 275
Fix a \mathcolor bug 275

Changes to packages in the tools category 275
array: Correctly identify single-line m-cells . . . 275

Introduction

The 2022-11 release of IXTEX is largely a consolidation
release where we made a number of minor improvements
to fix some bugs or improve one or the other interface.

The only really important functionality that was added
is described in the next section: the ability to easily
define document-level commands and environments that
accept a key/value list in one of its (usually optional)
arguments, including the ability to determine if the
argument does in fact contain such a key/value list or
just a single “classical” value.

For the “Tagged KTEX Project” this functionality is
very important because many document-level commands
will need to accept such key/value lists, for example, to

doi.org/10.47397/tb/43-3/tb1351tnews36

273

specify alternative text or overwrite default tagging if
that becomes necessary in a document.

Auto-detecting key/value arguments

To allow extension of the core KTEX syntax, ltcmd now
supports a =... modifier when grabbing arguments.
This modifier instructs ITEX that the argument should
be passed to the underlying code as a set of key/values.
If the argument does not “look like” a set of key/values,
it will be converted into a single key/value pair, with
the argument to = specifying the name of that key. For
example, the \caption command could be defined as

\DeclareDocumentCommand\caption
{s ={short-text}+0{#3} +m}
{...}

which would mean that if the optional argument does
not contain key/value data, it will be converted to a
single key/value pair with the key name short-text.

Arguments which begin with =, are always interpreted
as key /values even if they do not contain further = signs.
Any = signs enclosed within $...$ or \(...\), i.e. in
inline math mode, are ignored, meaning that only =
outside of math mode will generally cause interpretation
as key/value material.

In case the argument contains a “textual” = sign that
is mistaken as a key/value indicator you can hide it
using a brace group as you would do in other places,
e.g.,

\caption[{Use of = signs}]
{Use of = signs in optional arguments}

However, because = signs in math mode are already
ignored, this should seldom be necessary.

A note for font package developers

Encoding subsets for TS1 encoded fonts

The text companion encoding TS1 is unfortunately not
very faithfully supported in fonts that are not close
cousins to the Computer Modern fonts. It was therefore
necessary to provide the notion of “sub-encodings” on a
per font basis. These sub-encodings are declared for a
font family with the help of a \DeclareEncodingSubset
declaration, see [5] for details.

Maintainers of font bundles that include TS1 encoded
font files should add an appropriate declaration into
the corresponding tsifamily.£fd file, because otherwise
the default subencoding is assumed, which is probably
disabling too many glyphs that are actually available in
the font.! (github issue 905)

1The IATEX format contains declarations for many font fami-
lies already. This was done in 2020 to quickstart the use of the

ETEX News #36

274

New or improved commands

Better language handling for case-changing commands
The commands \MakeUppercase, \MakeLowercase
and \MakeTitlecase now automatically detect the
locale currently in use when babel is loaded. This
allows automatic adjustment of letter mappings where
appropriate. They also accept a leading optional
argument. This accepts a key—value list of control
settings. At present, there is one key available: locale,
which can also be accessed via the alias lang. This is
intended to allow local setting of the language, which
can be done using a BCP-47 descriptor. For example,
this could be used to force Turkish case changing in
otherwise English input

\MakeUppercase[lang = tr]{Ragip Huldsi Ozdem}
yields RAGIP HULUSI OZDEM.

Code improvements

Support for slanted small caps in the EC fonts

For some time IATEX has supported the combination
of the shapes small caps and italic/slanted. The EC
fonts contain slanted small caps fonts but using them
required the loading of an external package. Suitable
font definitions have now been added to tlemd.fd and so
from now on

\usepackage [T1]{fontenc}

\textsc{\textsl{Slanted Small Caps}};
\textsc{\textit{Italic Small Caps}};
\bfseries

\textsc{\textsl{Bold Slanted Small Capsl}};
\textsc{\textit{Bold Italic Small Capsl}}.

will give the expected result: SLANTED SMALL CAPS;
ITALIC SMALL CAPS; BOLD SLANTED SMALL CAPS;
BoLp ITALIC SMALL CAPS.

Given that the Computer Modern fonts in T1 do not
have real italic small caps but only slanted small caps,
the latter is substituted for the former. This is why both
work in the above, but there is no difference between
the two (and you get a substitution warning for the
\textit\textsc shape combination). (github issue 782)

EC sans serif at small sizes

The EC (T1 encoded Computer Modern) sans serif fonts
have errors at small sizes: the medium weight is bolder
and wider than the bold extended. This makes them
unusable at these small sizes. The default .fd file has
therefore been adjusted to use a scaled down 8pt font
instead. (github issue 879)

Improve font series handling with incorrect . fd files

By convention, the font series value is supposed to
contain no m, unless you refer to the “medium” series
(which is represented by a single m). For example, one

symbols in the kernel, but it is really the wrong place for such dec-
larations. Thus, for new fonts the declarations should be placed
into the corresponding .fd files.

IMTEX News #36

TUGhboat, Volume 43 (2022), No. 3

should write ¢ for “medium weight, condensed width”
and not mc. This was one of the many space-conserving
methods necessary in the early days of ETEX 2¢.

Some older .£d files do not obey that convention but
use mc, bm, etc., in their declarations. As a result, some
font selection scheme functionality was not working
when confronted with such .£d files. We have therefore
augmented \DeclareSymbolFont and \SetSymbolFont
to strip any surplus m from their series argument so that
they do not unnecessarily trigger font substitutions.
Regardless of this support such .£d files should get fixed
by their maintainers. (github issue 918)

Detect nested minipage environments
Nesting of minipage environments is only partially
supported in ITEX and can lead to incorrect output,
such as overfull boxes or footnotes appearing in the
wrong place; see [1, p. 106]. However, until now there
was no warning if that happened. This has been changed
and the environment now warns if you nest it in another
minipage environment that already contains footnotes.
(github issue 168)

Robust commands in package options

With the standard key-based option handler added in
the last release, or with contributed packages offering
similar features, users may expect to be able to use a
package option such as [font=\bfseries]. Previously
this failed with internal errors as the option list was
expanded via \edef. This has now been changed to use
the existing command \protected@edef so that any
IXTEX robust command should be safe to pass to a key
value option. (github issue 932)

Improve [3docstrip integration into docstrip

In 2020 we merged |3docstrip.tex into docstrip.tex to
support the %<@@=(module)> syntax of expl3; see [2].
However, this support was incomplete, because it didn’t
cover docstrip lines of the form %<+...>or %<-...>. This
was never noticed until now, because usually %<*...>
blocks are used. Now all lines in a .dtx file are subject
to the @@ replacement approach. (github issue 903)

LuaTgX callback efficiency improvement

The mechanism for providing the

pre/post_mlist_to_hlist_filter callbacks in

LuaTgX has been improved to make it more reusable

and to avoid overhead if these callbacks are not used.
(github issue 830)

Rule-based ordering for LuaTgX callback handlers

In Lual&TEX the callback handlers used to be called
in the order in which they were registered in, but this
was often rather fragile. It depends a lot on the load
order and any attempts to enforce a different order
required unregistering and reregistering the handlers
to be reordered. Additionally, even if some ordering
constraints where enforced that way, another package
loaded later could accidentally overwrite it.

TUGboat, Volume 43 (2022), No. 3

To improve this, we now order the callback handlers
based on ordering rules similar to the hook rules.
When registering a callback which should
run before or after another callback,
luatexbase.declare_callback_rule can now be
used to record this ordering constraint. For example

luatexbase.add_to_callback
(’pre_shaping_filter’, my_handler, ’my_name’)
luatexbase.declare_callback_rule
(’pre_shaping_filter’,
’my_name’, ’before’, ’other_name’)

will ensure that my_handler will always be called before
the handler registered as other_name.

This also means that the order in which callbacks are
registered no longer implicitly defines an order. Code
which relied on this implicit order should now define the
order rules explicitly.

Bug fixes

Prevent TEX from losing a \smash

When TEX is typesetting a fraction, it will rebox

the material in either the numerator or denominator,
depending on which is wider. If the repackaged part
consists of a single box, that box gets new dimensions
and if it was built using a \smash that effect vanishes
(because a smash is nothing other than zeroing some
box dimension, which now got undone). For example, in
the line

\frac{1}{2} = \frac{1}{\smash{2°X}}
\neq \frac{100}{\smash{27X}}

the 2 in the denominators was not always at the same
vertical position, because the second \smash was ignored

due to reboxing: 1 1 100
3= 3% 7 5%

The differences are subtle but noticeable. This is now
corrected and the \smash is always honored. Thus now
you get this output: 1 1 100

2—2@ (github issue 517)

Resolve an issue with \mathchoice and localalphabets
The code for keeping a number of math alphabets
local (introduced in 2021; see [3]) used \aftergroup to
do some cleanup actions after a formula had finished.
Unfortunately, \aftergroup can’t be used inside the
arguments of the \mathchoice primitive and as a
result one got low-level errors if the freezing happened
in such a place. The implementation was therefore
revised to avoid the \aftergroup approach altogether.
(github issue 921)

275

Reporting of unused global options when using key/value
processing

Using the new key/value option processor did not
properly report any unused global options when it was
used in handling class options. This has now been
corrected. (github issue 938)

Changes to packages in the graphics category

Fix a \mathcolor bug

The \mathcolor command introduced in [4] needs to

scan for following sub- and superscripts, but if it did

so at the end of an alignment cell, e.g., in a array

environment, the & was evaluated too early, causing

some internal errors. This is now properly guarded for.
(github issue 901)

Changes to packages in the tools category

array: Correctly identify single-line m-cells
Cells in m-columns that contain only a single line are
supposed to behave like single-line p-cells and align at
the same baseline. To test for the condition, array used
to compare the height of the cell to the height of the
strut used for the table rows. However, the height of
that strut depends on the setting of \arraystretch and
if you made this negative (or very large) the test came
out wrong. Therefore, we now test against the height
of a normal strut to ensure that single-line cells are
correctly identified as such (unless their content is truly
very tall, in which case aligning is pointless anyway).
(github issue 766)

References

[1] Leslie Lamport. XTEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with corrections
in 1996.

[2] BTEX Project Team: ETEX 2= news 32.
https://latex-project.org/news/latex2e-news/
ltnews32.pdf

[3] BTEX Project Team: KTEX 2: news 34.
https://latex-project.org/news/latex2e-news/
ltnews34.pdf

[4] BTEX Project Team: ETEX 2 news 35.
https://latex-project.org/news/latex2e-news/
ltnews35.pdf

[6] BTEX Project Team: KTEX 2= font selection.
https://latex-project.org/help/documentation/

ETEX News #36

276

Markdown 2.17.1: What’s new, what’s next?
Vit Novotny

Abstract

In this article, we introduce new features developed
for the Markdown package and ideas for its future.

The article is divided into four sections. In the
first three sections, we introduce the new features to
three different audiences of the Markdown package:

1. the writers, who type content in Markdown;
2. the coders, who prepare templates and solutions;
3. the developers, who make the package better.

In Section 4, we outline the roadmap for the next
major version of the Markdown package.

1 Writer’s newsletter

In this section, we introduce four new Markdown
tags, which you can use to format your manuscripts.

1.1 Superscripts and subscripts

Use superscripts and subscripts to write ordinal indi-
cators, exponents, or atomic valencies. Since version
2.16.0, the Markdown package has supported the
superscripts and subscripts options:!

\documentclass{article}
\usepackage [superscripts, subscripts]

{markdown}
\begin{document}
\begin{markdown} Output:
2710" is 1024. 210 is 1024.

H~2~0 is a liquid. H2O is a liquid.
\end{markdown}

\end{document}

1.2 Strike-throughs

Use strike-throughs to denote information that is no
longer accurate. Since version 2.16.0, the Markdown
package has supported the strikeThrough option:?

\documentclass{article}

\usepackage [strikeThrough] {markdown}
\begin{document}

\begin{markdown}

Under his pillow P'raps found

~~A cake that weighed a half a pound.~~
A plenty of space to roll around.

Output:

\end{markdown} Under his pillow P’ra sfoun(?l1 =
\end{document} |, Lo t] P .W] . p] n ,
A plenty of space to roll around.

I See https://github.com/witiko/markdown/pull/162
2 See https://github.com/witiko/markdown/pull/160

Vit Novotny
doi.org/10.47397/tb/43-3/tb136novotny-markdown

TUGhboat, Volume 43 (2022), No. 3

1.3 Fancy lists

In lists, it can be important to display item labels
exactly as you wrote them. Since version 2.16.0, the
Markdown has supported the fancyLists option:3
\documentclass{article}

\usepackage [fancyLists] {markdown}

\begin{document}
\begin{markdown} Output:
You are: You are:

a) awesome
b) brilliant

¢) charming

a) awesome

b) brilliant
c) charming
\end{markdown}
\end{document}

2 Coder’s newsletter

In this section, we introduce a new API for reacting to
YAML metadata and user-defined syntax extensions.

2.1 Building better APIs with YAML

In our previous article, [3, Section 2.1] we showed how
we can react to YAML metadata in Markdown docu-
ments. However, our approach used a low-level API
that required use of the expl3 programming language.
Since Markdown 2.16.0, the \markdownSetup KTEX
command has supported the jekyllDataRenderers
key, which provides a high-level API for reacting to
YAML metadata without the need to use expl3:*

\documentclass{article}
\usepackage [jekyllData] {markdown}
\newtoks\abstract \newtoks\authors
\markdownSetup {
jekyllDataRenderers = {
abstract = {\abstract={#1}},
title = {\global\title{#1}},
/authors/* = {%
\authors=\expandafter{/,
\the\authors \and #1}J
}, year = {%
\global\date{%
One year after
\the\numexpr (#1-1)\relax}%
},
}, renderers = {
jekyllDataEnd = {
\global\author{\the\authors}y,
\maketitle \section*{Abstract}
\the\abstract
},
},

3 See https://github.com/witiko/markdown/pull/168
4 See https://github.com/witiko/markdown/pull/175

https://github.com/witiko/markdown/pull/162
https://github.com/witiko/markdown/pull/160
https://github.com/witiko/markdown/pull/168
https://github.com/witiko/markdown/pull/175
https://doi.org/10.47397/tb/43-3/tb135novotny-markdown

TUGDboat, Volume 43 (2022), No. 3

\begin{document}
\begin{markdown*}{expectJekyllData}

title: 'This is a title: with a colon'

authors: [Jane Doe, John Doel
year: 2022
abstract: | Output:
This is the This is a title: with a colon
abstract

Jane Doe John Doe

It contains One year after 2021

two paragraphs. Abstract
\end{markdownx*} This is the abstract
\end{do cument } It contains two paragraphs.

2.2 User-defined syntax extensions

Since version 2.17.0, the Markdown package has
supported user-defined syntax extensions, which you
can use to customize Markdown to your tastes:®

\documentclass{article}
\usepackage{soul}
\begin{filecontents}
[nosearch, noheader, overwrite]
{strike-through.lua}
local strike_through = {
api_version = 2,
grammar_version = 1,
finalize_grammar = function(reader)
local nonspace, doubleslash
nonspace = lpeg.P(1) - lpeg.S("\t ")
doubleslash = lpeg.P("//")

local function between(p, sep)
ender = lpeg.B(nonspace) * sep
return (sep * #nonspace
* lpeg.Ct(p * (p - sep)”~0)
* sep)
end

local read_strike_through = between(
lpeg.V("Inline"), doubleslash

) / function(s)
return {"\\st{", s, "}"}

end

reader.insert_pattern(
"Inline after Emph",
read_strike_through)
reader.add_special_character("/")
end
}
return strike_through
\end{filecontents}

5 See https://github.com/witiko/markdown/pull/182

277

\usepackage{markdown}
\begin{document}
\begin{markdownx*}
{extension = strike-through.lua}

Under his pillow P'raps found
//A cake that weighed a half a pound.//
A plenty of space to roll around.
\end{markdown*}
\end{document} Output same as in Section 1.2

For more information about syntax extensions,
see the technical documentation of the Markdown
package [2, Section 2.1.2] and the article about pars-
ing complex data formats in Lua by Henri Menke. [1]

3 Developer’s newsletter

In this section, we introduce new reflection capabili-
ties and discuss a recent code clean-up.

3.1 Reflection of options and renderers

In versions 2.15.0 and 2.15.3, the Markdown package
has received reflection capabilities that allowed it to
take a look in a mirror and inspect itself.

Using reflection, we have automated parts of
the code that were previously hand-written. These
include parts responsible for type-checking options,
passing options from plain TEX to Lua, and defining
high-level interfaces for IWTEX and ConTgXt.

3.2 Refactoring TEX and Lua code

In patch versions 2.15.1 through 2.15.4, we focused
on cleaning up the code of the Markdown package.
In the following, we discuss the major changes.

In version 2.15.3, we separated a part of the
Markdown package into its own separate package

6 See https://github.com/witiko/markdown/pull/137

Markdown 2.17.1: What’s new, what’s next?

https://github.com/witiko/markdown/pull/182
https://github.com/witiko/markdown/pull/137

278

called It3luabridge.” With It3luabridge, you can
execute Lua code in TEX engines other than LuaTEX.

Also in version 2.15.3, we separated built-in
syntax extensions such as subscripts, superscripts,
and strike-throughs from the base grammar of mark-
down.® This change cut the development time of
new syntax extensions in half and paved the way for
the introduction of user-defined syntax extensions in
Markdown 2.17.0 (see Section 2.2).

In version 2.15.4, we replaced all calls to the
xstring and keyval packages with built-in functions
from the expl3 programming language.®

4 Roadmap for Markdown 3.0.0

The next major version of Markdown will be 3.0.0.
Markdown 3.0.0 will remove features that have been
deprecated in Markdown 2.X.Y, such as the on-disk
caching of conversion outputs and the leftover inter-
faces for what is now the 1t3luabridge package (see
Section 3.2). Furthermore, Markdown 3.0.0 should
also make the base grammar of markdown compliant
with the CommonMark standard and freeze it, so
that authors of user-defined syntax extensions (see
Section 2.2) do not have to aim at a moving target.

Before Markdown 3.0.0, all syntax extensions
that have been implemented to the upstream luna-
mark library should be ported to the Markdown pack-
age as well.'? Furthermore, all improvements to the
high-level interface for INTEX that we have discussed
in our previous article [3, sections 3.3 and 3.4] should
also be implemented.!! Finally, the user manual of
Markdown should be typeset using the Markdown
package and TEX4ht rather than Pandoc, which will
allow us to automatically generate parts of the user
manual using reflection (see Section 3.1).12

7 See https://ctan.org/pkg/1t3luabridge

8 See https://github.com/witiko/markdown/pull/143

9 See https://github.com/witiko/markdown/issues/96

10 See https://github.com/witiko/markdown/issues/123
https://github.com/witiko/markdown/issues/126
and https://github.com/witiko/markdown/issues/173

11 See https://github.com/witiko/markdown/issues/107
and https://github.com/witiko/markdown/issues/121

12 See https://github.com/witiko/markdown/issues/135
and https://github.com/witiko/markdown/issues/184

Vit Novotny

TUGhboat, Volume 43 (2022), No. 3

References

[1] H. Menke. Parsing complex data formats
in LuaTEX with LPEG. TUGboat
40(2):129-135, 2019. tug.org/TUGboat/
tb40-2/tb125menke-1peg. pdf

[2] V. Novotny. A Markdown interpreter for
TEX. Version 2.17.1-35-g2848cb5 (2022-10-15).
mirrors.ctan.org/macros/generic/
markdown/markdown.pdf

[3] V. Novotny, D. Rehdk, et al. Markdown 2.15.0:
What’s new? TUGboat 43(1):10-15,
2022. tug.org/TUGboat/tb43-1/
tb133novotny-markdown.pdf

o Vit Novotny
Studend 453/15
Brno, 638 00
Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

https://ctan.org/pkg/lt3luabridge
https://github.com/witiko/markdown/pull/143
https://github.com/witiko/markdown/issues/96
https://github.com/witiko/markdown/issues/123
https://github.com/witiko/markdown/issues/126
https://github.com/witiko/markdown/issues/173
https://github.com/witiko/markdown/issues/107
https://github.com/witiko/markdown/issues/121
https://github.com/witiko/markdown/issues/135
https://github.com/witiko/markdown/issues/184
https://tug.org/TUGboat/tb40-2/tb125menke-lpeg.pdf
https://tug.org/TUGboat/tb40-2/tb125menke-lpeg.pdf
https://mirrors.ctan.org/macros/generic/markdown/markdown.pdf
https://mirrors.ctan.org/macros/generic/markdown/markdown.pdf
https://tug.org/TUGboat/tb43-1/tb133novotny-markdown.pdf
https://tug.org/TUGboat/tb43-1/tb133novotny-markdown.pdf

TUGboat, Volume 43 (2022), No. 3

Mapping to individual characters in expl3
Joseph Wright

It is natural to think that separating a word up into
individual characters is an easy operation. It turns
out that for the computer this isn’t really the case.
If we look at a system that natively understands Uni-
code (like XqTEX or LuaTgX), most of the time one
‘character’ is stored as one codepoint. A codepoint
is a single character entity for a Unicode programme.
For example, if we take the input ‘café’ in a file saved
as UTF-8, it is made up of four codepoints:

U+0063 (LATIN SMALL LETTER C)
U+0061 (LATIN SMALL LETTER A)
U+0066 (LATIN SMALL LETTER F)
U+00E9 (LATIN SMALL LETTER E WITH ACUTE)

So we could, in XgqTEX/LuaTEX, use a simple
mapping to grab one character at a time from this

word and do stuff with it. However, that’s not always
the case. Take for example ‘Spifial Tap’: the dotless-i
is a single codepoint, but there is no codepoint for
an umlauted-n. Instead, that is represented by two
codepoints: a normal n and a combining umlaut.
As a user, it’s clear that we’d want to get a single
‘character’ here. So there’s clearly more work to do.

Luckily, this is not just a TEX problem and
the Unicode Consortium have thought about it for
us. They provide a data file and rules that describe
how to divide input into graphemes: ‘user perceived
characters’. So ‘all’ that is needed is to examine the
input using these rules, and to divide it up so that
‘characters’ stay together.

For pdfTEX, there’s an additional wrinkle: it
uses bytes, not codepoints, and so if we use a naive
TEX mapping, we would divide up any codepoint out-
side the ASCII range into separate bytes: not good.
Luckily, the nature of codepoints is predictable: all
that is needed is to examine the first byte and collect
the right number of further bytes to re-combine into
a valid codepoint.

This work isn’t something the average end user
wants to do. Luckily, they don’t have to as the IATEX
team have worked on this and created a suitable set
of expl3 functions to do it: \text_map_function:nN
and \text_map_inline:nn.

doi.org/10.47397/tb/43-3/tb136uright-grapheme

279

For example, we can do (mapping each character
to printing itself in parentheses):

\ExplSyntaxOn
\text_map_inline:nn

{ Spatial ~ Tap } { (#1) }
\ExplSyntax0ff

and get

(S)(P) W) @) @) M () (T)(a)(p)

in any TEX engine — assuming we are set up to print
the characters, of course. Getting the right fonts is
an independent issue from parsing the input.

Taking a more ‘serious’ example (and one that
is going to use LuaTEX for font reasons), we might
want to map over Bangla text: I'm going to use
HfPH as my example. Our \text_map_inline:nn
function divides up the characters correctly:
(R @) () (R (D ().

In contrast, the generic expl3 token-list func-
tion \tl_map_inline:nn gives:

() () () () (R) () (F2) (F) (=) () () (),
which is a very odd result. In short: Unicode char-
acters are neither bytes nor tokens.

(If you want to try that demo yourself, you’ll
need a document preamble that can work properly
with Bangla: I'm using
\usepackage{fontspec}

\newfontface\harfbangla
{NotoSansBengali-VariableFont_wdth,wght.ttf}
[Renderer = HarfBuzz, Script = Bengalil

then using \harfbangla in a brace pair around my
demonstrations. Finding a monospaced font that
properly renders Bangla is ... tricky.)

So, as you can see, mapping to ‘real’ text is easy
with expl3: you just need to know that the tools are
there.

o Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)
morningstar2.co.uk

Mapping to individual characters in expl3

280

Typesetting external program code and its
output: hvextern

Herbert Vois

Abstract

When writing a book with a mathematical, scientific
or technical background, the output of programs is
often inserted as text or an illustration; in many
cases, also with complete or partial indication of the
respective source code. As an author, you have the
problem of keeping such external sample programs
in sync with the current manuscript. If you keep
the source code in the book manuscript itself, and
create the external examples at the same time as
typesetting the main document, you can be sure the
code and output stay consistent.

1 Introduction

If you use IATEX to write a book about IATEX, you
can easily insert the output of the examples directly
in the main document. [2] This does not necessarily
mean that the examples will also work as small indi-
vidual documents. All examples in a larger book use
the main document’s preamble, which is not available
to a reader of the book.

It usually makes more sense to create examples
as separate documents or programs that are indepen-
dent of the main document. To do this, the complete
source code is written from the main document into
an external file, which is then processed using a spec-
ified program and the result is integrated back into
the main document as a PDF, PNG, text, or what-
ever form is appropriate. From the entire source code
of the example, you can use markers to place the
essential lines of code in the main document before
or next to the example output.

The output of the following examples was
generated “on-the-fly” when compiling this
TUGDboat article. Any change in the example
code therefore automatically led to updated
output during the next compilation process.

To begin, first we’ll show a short example: TUG-
boat is normally compiled with pdfIATEX, so there
are problems with an example that absolutely re-
quires the use of XqIATEX. The example must be
created externally and the output integrated as a
PDF. It makes more sense to do this from the main
document and include the output directly, as shown
here: E&H—K.

First published in Die TEXnische Komédie 2/2022, pp. 30-60.
Translation by the author.

Herbert Vofs

doi.org/10.47397/tb/43-3/tb135voss-extern

TUGboat, Volume 43 (2022), No. 3

This is made possible by the hvextern package, which
defines only one environment and one command. [5]
The corresponding code for the above inline

example is:

Inline example

[...] as shown here:

\begin{externalDocument}[
compiler=xelatex, inline, runs=2, force,
grfOptions={height=8pt}, crop, cropmargin=0,
cleanup, docType=latex]{voss}

\documentclass{ctexart}% needs xelatex

\pagestyle{empty}

\begin{document}

EIFH—K.

\end{document}

\end{externalDocument}

This is made [...]

Any change in this example will automatically
be kept in sync — during the next translation process,
the output of the main document will be updated,
and with it the new code of the example will be run,
and thus also the new output will be inserted.

In the example above, only the output was in-
cluded without showing the source code. Depending
on the application, it may be desirable to display
portions or all of the source code; this is described
on the following pages.

Currently the hvextern package supports ex-
ternal documents for METAPOST, TEX, ConTgXt,

IATEX, LuaTgX, LualATEX, XaTEX, XalATEX, Lua,
Perl, Java, Python, and shell scripts.

2 Syntax

The package, which has no special options, is loaded
as usual: \usepackage{hvextern}. The package de-
fines only one environment, {externalDocument}, and
one command, \runExtCmd:

Syntax

\begin{externalDocument}[(options)]
{{output filename without extension)}
. source code ...
\end{externalDocument}

\runExtCmd [(options)]
{{command)}
{{output filename without extension)}

The main document must be compiled with the
-shell-escape option (or with two dashes, as usual),
otherwise no external commands will be run and
thus the correct output will not be shown.

lualatex invocation
lualatex --shell-escape (latezfile)

https://doi.org/10.47397/tb/43-3/tb135voss-extern

TUGboat, Volume 43 (2022), No. 3

Let’s show another example: The following code
for character manipulation must be compiled us-
ing the program sequence latex—dvips—ps2pdf,
because it does not work with other TEX engines.
With the environment externalDocument, however,
you can write the complete code in an external file,
specify the necessary process, and embed the result
as a PDF. The only important thing is that when
creating the graphic, the standard output of the page
number is suppressed and any white space is cut off
using the crop option. Of course, this does not apply
if a complete page is to be included (see page 284).

3 Mg

The code of the above example looks like:

dvips example

\begin{externalDocument}[compiler=latex,crop,
force=false, cleanup={log,aux,ps,dvi},
grfOptions={width=\1inewidth}]{voss}

\documentclass{article}

\usepackage[american]{babel}

\pagestyle{empty}

\usepackage{pst-text,blindtext}

\begin{document}

\DeclareFixedFont{\SF}{T1}{phv}{b}{n}{2cm}

\pstextpath(0, -1lex){\pscharpathx*[
linestyle=none] {\SF Herbert Voss}}{%

\tiny \blindtext}

\end{document}

\end{externalDocument}

The meaning of each option:
compiler=latex Use IATEX to compile. The rest of the

invocation, including other programs, is determined

by the internal definition of \hv@extern@runLATEX.

crop Crop the whitespace with pdfcrop.

force Recreate the output even if it already exists.

cleanup={log,aux,ps,dvi} Delete the specified auxiliary
files at the end.

grfoptions={width=\linewidth} Scale output to the cur-
rent linewidth.

voss Filename that is extended internally by a consecu-
tive number.

The external filename, extended by a consec-
utive number, can be printed into the margin by
setting the keyword showFilename. In general it is
printed in the outer margin, or in twocolumn mode in
the outer column. If the example is set in twocolumn
mode but inside a starred floating environment over
both columns, then use the keyword outerFN (see
Figure 1). Then hvextern doesn’t test for twocolumn
mode.

A vertical shift of the filename is possible by
specifying a length for shiftFN, e.g., shiftFN=5ex.

281

Essentially, it doesn’t matter which program-
ming language is used, as long as minimum communi-
cation between the main document and the external
program is guaranteed: this consists only of the re-
quirement that the external document must provide
its output with the same file name with which it was
called. However, even this can be a problem in some
programming languages, as shown below with some
examples.

By default, source code and output are displayed
one above the other, so that a page break in the
source code is not a problem. The following example
creates and runs a Python program, and then in-
cludes the output as a PNG format file. The header
of the externalDocument environment is:

Options for Python —
\begin{externalDocument}[compiler=python3,
code, ext=py, docType=py, usefancyvrb,
grfOptions={width=\1linewidth}]{voss}
. Python code ...
\end{externalDocument}

It is only in rare cases that you will want to
output the complete source code. Therefore, areas
can be defined using so-called markers, which then
delimit the output. The markers are written to the
external file as normal comments, the only reason
why they are programming language dependent; the
comment character is not uniform. For Python the
markers are:

Python marker lines —
\hv@extern@ExampleType{py}
{\NumChar StartVisibleMain}
{\NumChar StopVisibleMain}
{\NumChar StartVisiblePreamble}
{\NumChar StopVisiblePreamble}

and for plain TEX:

TeX marker lines

\hv@extern@ExampleType{tex}
{\perCent StartBody}
{\string\bye}
{\perCent StartVisiblePreamble}
{\perCent StopVisiblePreamble}

\perCent and \NumChar are the TEX and Python
comment characters % and #, which must be escaped
for INTEX. Internally, the category of the character is
changed so that it is available as a normal character
using the \perCent or \NumChar command.

After calling the Python program, it must be
ensured that the file name is determined in order to
provide the output with the same main file name and
a different file extension. In Python this is possible
with the following code:

Typesetting external program code and its output: hvextern

vV0Ss-3.py

282

TUGDboat, Volume 43 (2022), No. 3

Complete example code

Python: get filename
fileName = os.path.basename(
os.path.splitext(__file__)[0])

Depending on the output format, this file name is
extended by .pdf, .png, or .txt, so that the output
can be easily inserted into the INTEX main document.
In addition, the markers are now used so that the
output of parts of the Python source code can be
done, requested with the code keyword. (Output
grayscaled for printed TUGboat.)

from PIL import Image
import subprocess
drawing area (xa < xb and ya < yb)

xa = -0.1716
xb = -0.1433
ya = 1.022
yb = 1.044

maxIt = 1024 # iterations

imgx = 1000 # image size

imgy = 750

image = Image.new("RGB", (imgx, imgy))

for y in range(imgy):
cy =y x (yb - ya) / (imgy - 1)
for x in range(imgx):
cX = X * (xb - xa) / (imgx - 1) + xa
c = complex(cx, cy)
z=0
for i in range(maxIt):
if abs(z) > 2.0: break
z

+ ya

b=1%16 * 16
image.putpixel((x, y), b*65536 + g*256 + r)

In a purely formal way, the output of the source
code can be defined by analogy to IATEX as a pream-
ble (general definitions) and program body (appli-
cation), whereby two slightly different background
colors are used for differentiation. The markers can
be used anywhere in the document. The above ex-
ample was created with the following IATEX code:

Herbert Vofs

\begin{externalDocument}[compiler=python3, force=false,
%showFilename,
runs=1, code, ext=py, docType=py,
usefancyvrb, grfOptions={width=\linewidth}]{python}
import os
#StartVisiblePreamble
from PIL import Image
import subprocess
drawing area (xa < xb and ya < yb)
Xa = -0.1716; xb = -0.1433
ya = 1.022; yb = 1.044
maxIt = 1024 # iterations
imgx = 1000 # image size
imgy = 750
image = Image.new("RGB",
#StopVisiblePreamble

(imgx, imgy))

#StartVisibleMain
for y in range(imgy):
cy =y *x (yb - ya) / (imgy - 1)
for x in range(imgx):
cx = X * (xb - xa) / (imgx - 1) + xa
complex(cx, cy)
z =0
for i in range(maxIt):
if abs(z) > 2.0: break
Z=272%2Z+C
i%4 %6
i 8 x 32
b=129%16 * 16
image.putpixel((x, y), bx65536 + g*256 + r)
#StopVisibleMain
now get the filename created by the latex
imageName = os.path.basename(
os.path.splitext(__file__)[0])
image.save(imageName+".png", "PNG")
\end{externalDocument}

+ ya

o0

By specifying a width for the output of the
source code, code and result can be arranged side by
side, as shown in Figure 1.

3 Using markers in the source code

The markers identify the areas of the source code
that are to be output in the (I#TEX) main document.
For an external document with TEX or IATEX code,
the use of the markers are shown in the following
examples:

IATEX marker lines

[...]

%StartVisiblePreamble

[... listed preamble code ...]
%StopVisiblePreamble

[...]

\begin{document}

[... listed body code ...]
\end{document}

Everything between the %StartVisiblePreamble
and %StopVisiblePreamble lines is printed with the
background color BGpreamble (default black!12).
All of the lines between \begin{document} and
\end{document}, on the other hand, are considered
as the text body and printed with the background
color BGbody (default black!8).

TUGboat, Volume 43 (2022), No. 3

\usepackage{tikz}
\usepackage[hks,pantone,xcolor]{xespotcolor}

\SetPageColorSpace{HKS}
\definecolor{HYellow}{spotcolor}{HKSO5N,0.5}
\definecolor{HRed}{spotcolor}{HKS14N,0.5}
\definecolor{HBlue}{spotcolor}{HKS38N,0.5}
\begin{tikzpicture}[fill opacity=0.7]
\fill[HYellow] (90:1.2) circle (2);
\fill[HRed] (210:1.2) circle (2);
\fill[HBlue] (330:1.2) circle (2);
\node at (90:2) {Typography};
\node at (210:2) {Design};
\node at (330:2) {Coding};
\node {\LaTeX};
\end{tikzpicture}

283

Typography

BTEX

Design Coding

Figure 1: Example for side-by-side code and output inside a figurex environment in twocolumn mode.

For TEX we use:

TeX marker lines

[...]
%StartVisiblePreamble
[... listed preamble code ...]
%StopVisiblePreamble
[...]
%StartBody
[...]

\

bye

Now everything between %StartBody and \bye
is the printed text body.

The markers are defined by the internal macro
\hv@extern@ExampleType. This macro expects five
parameters, for example for Java:
- Java marker lines
\hv@extern@ExampleType{java}

{//StartVisibleMain}
{//StopVisibleMain}
{//StartVisiblePreamble}
{//StopVisiblePreamble}

context java latex lua lualatex luatex
mpost pdflatex perl python3 sh tex texlua
xelatex xetex

The configurations for Lua, Perl, Java, shell,
and Python all have the same structure; they only
differ in the comment character to be used. For Lua,
we have

Lua marker lines

\hv@extern@ExampleType{lua}
{--StartVisibleMain}
{--StopVisibleMain}
{--StartVisiblePreamble}
{--StopVisiblePreamble}

Sometimes, both docType and compiler are the
same, for example when using Lua: docType=lua and
compiler=lua. Indeed, for Lua files that also have
the .lua extension, the value lua must be assigned
three times:

Options for Lua code
ext=lua, compiler=lua, docType=lua,

The comment starter for Java is //, for Lua --,
and for Perl #. The latter must be escaped by using
\NumChar, as already shown in an example above. In
general, the option docType defines the type of the
source code (the comment starter), and it must have
one of these values:

context java latex lua mp pl py tex sh

As you can see, only tex is allowed for docType,
not latex, pdflatex, etc. This is because the com-
ment starter is uniformly % for all TEX variants.

The compiler option defines the base program
to be run, and the entire invocation, which may
involve additional programs. The following compiler
values are currently supported:

The following Lua example writes plain text to
standard output, so we pass the redirect option
to the externalDocument environment; the output is
then redirected into a file of the same main name but
with the extension .txt. This is read verbatim from
within the main IATEX document and can therefore
contain any characters.

"..type("Hello world").." ")
.type(10.4%3))

io.write("3. "..type(print).." ")
io.write("4. "..type(type).." ")
print("5. "..type(true))

io.write("6. "..type(nil).." ")

print("7. "..type(type(X)))

io.write("1.
print("2. ".

voss-4.tex

voss-5.lua

Typesetting external program code and its output: hvextern

voss-6.java

284

io.write("8. "..type(a).." ")
a =10

io.write("9. "..type(a).." ")
a = "a string!!"

io.write("10. "..type(a).." ")
a = print

print("11. "..type(a))

string
number
function
function
boolean
nil
string
nil

. number
10. string
11. function

O 0O NOOUAsE WN =

The same applies to the following example with
Java code:
Options for Java code
ext=java, compiler=java, docType=java,

public static int iterZahl(
final double cx,
final double cy,
int maxIt,
final double radius){
// count the number of iterations
int zaehler = 0;
double zx = 0.0, zy = 0.0, tmp;
do {
tmp = zx*xzx - zyxzy + CX;
zZy = 2*zX*zy + Cy;
zx = tmp;
zaehler++;
// run as long as the kength of the vector
// is smaller than the radius
} while (zxxzx+zyxzy<=radius && zaehler<maxIt);

return zaehler;

}
double xa = -2.5, xe = 0.7, ya = -1.2, ye = 1.2;
double dx = (xe-xa)/(imageWidth-1),

dy = (ye-ya)/(imageHeight-1);
double cx, cy; int R, G, B;
double radius = 10.0; int maxIt = 1024;
cX = Xa;
for (int sp = 0; sp < imageWidth; sp++) {
// from top to bottom:
cy = ye;
for (int ze = 0; ze < imageHeight; ze++) {
int zIter = iterZahl(cx,cy,maxIt,radius);
if (zIter == maxIt) {
g.setColor(Color.WHITE);
g.drawLine(sp, ze, sp, ze);

} else {
R = zIter % 4 * 6 ;
G = zIter % 8 x 32;
B = zIter % 16 * 16;
g.setColor(new Color(R,G,B));
g.drawLine(sp, ze, sp, ze);

}

cy = cy - dy;

Herbert Vofs

TUGDboat, Volume 43 (2022), No. 3

} // for ze
cX = cx + dx;
} // for sp

4 Options
4.1 Program(s) and number of runs

In general, any selected compiler program should be
found in your search path, with pdflatex being the
default. However, in rare cases it may be necessary
to specify a path for the program, which is done by
assigning to progpath. A / must appear at the end,
for example ‘progpath=./bin/’.

Here is the code defining the options progpath,
compiler, runs, and runsequence. The full list of
compiler values was given on previous page. (The
definitions are omitted.)

Compiler options

\define@key{hv}{progpath}[]{...}

\define@choicekeyx+{hv}{compiler}[\val\nr]{%
context, ..., xetex}

[pdflatex]{...}
\define@key{hv}{runs}[11{...}
\define@key{hv}{runsequence}[1{...}

Instead of using compiler, biber and xindex,
an explicit run sequence can also be specified via
the runsequence parameter. A comma-separated list
is expected. The input filename is added to each
program being run. For example, this sequence gen-
erates the bibliography and (with additional options)
index, besides the main document:

Invocation (runsequence) example
runsequence={lualatex,biber,xindex -1 de -c DIN2,
makeglossaries, lualatex, lualatex},
cleanup={log, aux, toc, bbl, blg,
run.xml, bcf, idx, ilg},
pages={1,2,3,4,5,6,7,8,9},

The example also prints pages 1-9 of the created
external document, which also has a glossary and a
list of symbols and acronyms.

voss-7.tex

TUGboat, Volume 43 (2022), No. 3

\documentclass[paper=a5,parskip=half-,DIV=12,
bibliography=totoc,
listof=totoc, fontsize=12pt]{scrreprt}
\usepackage[ngerman]{babel}
\usepackage{libertinus-otf,hvindex}
\usepackage{biblatex,makeidx}\makeindex
\addbibresource{biblatex-examples.bib}
\usepackage[abbreviations, symbols,postdot,
stylemods, style=index]{glossaries-extra}
\makeglossaries
\title{Umlaute} \author{Friedrich Schiller}

\maketitle \tableofcontents
\chapter{Introduction} \section{Words}
\Index{0Osterreich} \Index{Oresund}
\Index{Ober} \Index{Ostern} \Index{Oberin}
\Index{0Osterreich} \Index{Oresund}
\Index{0Odem} \Index{Oligarch} \Index{Oder}
\Index{Goldmann} \Blindtext[3]
\section{Glossary}

First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.
\printindex \printglossaries
\nocite{*}\raggedright\printbibliography

1 Introduction

Inhaltsverzeichnis
Umlaute

Friedrich Schiller

7.Juni 2022

Index

Glossar

Symbole Akronyme Literatur

4.2 Graphics options

Graphics options
\define@key{hv}{grfOptions}[1{...}

The value for grfOptions is passed to the
well-known \includegraphics macro, for example
{angle=90, width=\linewidth}, as shown in the fol-
lowing example.

285

\usepackage{tikz}

% needs xelatex:

\usepackage[hks,pantone,
xcolor]{xespotcolor}

Coding

\SetPageColorSpace{HKS}
\definecolor{HYellow}{spotcolor}

{HKSO5N, 0.8}
\definecolor{HRed}{spotcolor}

{HKS14N, 0.8}
\definecolor{HBlue}{spotcolor}

{HKS38N, 0.8}
\begin{tikzpicture}

[fill opacity=0.5]
\fill[HYellow] (0,0)circle(2);
\fill[HRed] (3,0)circle(2);
\fill[HBlue] (6,0)circle(2);

\node at (0,0){Typography};
\node at (3,0){Design};
\node at (6,0){Coding};
\node at (3,2.2){\LaTeX};
\end{tikzpicture}

ITEX

Design

Typography

Since source code and output are arranged next
to each other here, the specification \linewidth refers
to the current width of the minipage. Thus the
output has the maximum possible size.

4.3 Listing options

Listings options
\define@key{hv}{lstOptions}[]{...}

The value assigned is passed to either the macro
\lstinputlisting or, if usefancyvrb is specified, to
the macro \VerbatimInput from the fancyvrb pack-
age. It should be noted that the options for the re-
spective packages have different meanings and names,
S0 it is not so easy to switch between listings and
fancyvrb.

The following example uses the listings pack-
age, which is the default and therefore does not
require any parameter setting. A slightly exotic list
of options is given, and we omit the graphical output
(which is seen in the next example), purely for the
demonstration:

— Listings options example
lstOptions={basicstyle=\sffamily\slshape\scriptsize,
columns=fullflexible, showoutput=false},

\documentclass[landscape]{article}
\usepackage[margin=1cm]{geometry}
\usepackage{pst—calendar}

\psscalebox{0.5}{%
\psCalDodecaeder|
Year=2022,style=june]%

\hspace{4cm}
\psscalebox{0.5}{%
\psCalDodecaeder|
Year=2022,style=july] %

Typesetting external program code and its output: hvextern

voss-8.tex

voss-9.tex

voss-10.tex

286

4.4 Background color for the code

Different colors for the background and the frame
can be selected. They can be modified via the follow-
ing parameters, which show the defaults in brackets.
(The actual definitions are omitted.) BG is the abbre-
viation for “background” and BO for “border”:

TUGboat, Volume 43 (2022), No. 3

\ShellEscape{#1ldvips\space #3.dvi}%

\ShellEscape{#1lps2pdf\space
-dAutoRotatePages=/None\space
-dALLOWPSTRANSPARENCY\space#3.ps}%

The macro must have the following structure:

Color options
\define@key{hv}{BGpreamble}[black12]{...}
\define@key{hv}{BGbody}[black81{...}
\define@key{hv}{BOpreamble}[black12]{...}
\define@key{hv}{BObody}[black8]{...}

The parameter values are passed to a tcolorbox
environment (of the package with the same name),
and evaluated there. [3] Because the background
and frame have the same color, the frame remains
“invisible” by default. This changes with different
values, for example:

Differing frame and background colors
BGpreamble=red!10, BOpreamble=red,
BGbody=blue!8, BObody=blue,

Typically, you should use subtle colors so that
the output does not fade into the background com-
pared to the code.

[\usepackage{pst-calendar}]

\psscalebox{0.3}{%
\psCalDodecaeder]|
Year=2022,style=julyl%

We'll return to the default gray colors now.

4.5 Type of source code

The current version of hvextern supports source code
in METAPOST, plain TEX, IATEX, ConTEXt, Python,
Lua, shell, and Perl. Each language’s definition con-
tains the source code markers already mentioned, and
the program invocation sequence if special treatment
is necessary. For example, source code in IATEX re-
quires special treatment if the program used is latex;
the corresponding definition contains the following:
Marker and run setting for dvips

\hv@extern@ExampleType{latex}

% for _all_ LaTeX engines

{\string\begin\string{document\string}}

{\string\end\string{document\string}}

{\perCent StartVisiblePreamble}

{\perCent StopVisiblePreamble}

% only for the sequence latex->dvips->ps2pdf

\def\hv@extern@runLATEX#1#2#3#4{%
%path/compiler/file/extension
\ShellEscape{#1#2\space #3#4}%

Herbert Vofs

Macro implementing the run sequence
\def\hv@extern@run<NAME>#1#2#3#4{%
%path/compiler/file/extension

)

The definition for TEX is similar. The type of
source code and the program used can be different for

TEX, IATEX and ConTEXt, for example type latex
but program lualatex.

4.6 Output of one or more full pages

In the event that only a subset of pages are to be
output, this can be controlled via the pages param-
eter, as we saw in a previous example. It expects
a comma-separated list of the pages to be printed.
The individual pages can be framed with the frame
parameter in order to achieve a clearer presentation.
— Output page selection
\define@key{hv}{pages}[11{...}
\define@key{hv}{pagesep}[lem]{%
\hv@extern@pagesep=#1}
\define@boolkey{hv}[hv@extern@]{frame}[truel{}

It is up to the user to use the grfOptions pa-
rameter to ensure that the pages for the output are
scaled as needed. This example outputs the first
three pages of a document:

Page selection example
pages={1,2,3}, grfOptions={width=0.3\linewidth},
pagesep=1pt,
frame, compiler=lualatex, runs=2, % for the TOC

\usepackage[american]{babel}
\usepackage{libertinus}
\usepackage{blindtext}

\title{A multipage example}
\author{Erasmus von Rotterdam}
\maketitle

\tableofcontents
\blinddocument

voss-11.tex

voss-12.tex

TUGboat, Volume 43 (2022), No. 3

4.7 Output as a float

As arule, the output is in the running text, which can
be undesirable if the text width is relatively small.
Larger free spaces can then arise on one side, which is
always unfavorable. In such cases you should use the
float option, in which case, as usual, a caption can
be specified using the caption parameter and a cross-
reference label can be specified using label. The
floating type is by default figure and the placement
can be set by the optional argument floatsetting.
It is preset to !'htb.

\usepackage{pst-coxeterp}

\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=2]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=3]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=5]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=7]\end{pspicture}

Figure 2: An example for Coxeter images.

Float options
\define@boolkey{hv}[hv@extern@]{float}[truel{}
\define@key{hv}{caption}[1{...}
\define@key{hv}{label}[1{...}

287

and we want to remove any surrounding white space.
For documents that consist of only one page, the
document class standalone can generally be used,
which automatically removes all white space. If you
have more than one page or want to use another
special document class, hvextern provides the crop
option:

Crop options
\define@boolkey{hv}[hv@extern@]{crop}[true]{}
\define@key{hv}{cropmargin}[2]{...}% in pt

crop can also be applied to documents with
multiple pages. In this case, however, you should
make sure that the pages have headers and footers
so that the white space that is cut off always has
the same size. Otherwise the pages end up with
different heights, as shown in the example below,
which is usually undesirable. Among other things,
the following parameters were set:
Crop example
pages={1,2,3}, grfOptions={width=0.3\1linewidth},
frames, pagesep=1lpt, crop, cropmargin=5,%is 5pt
compiler=lualatex, runs=2, % for the TOC

\usepackage[american]{babel}
\usepackage{libertinus}
\usepackage{blindtext}
\pagestyle{headings}

\title{A multipage example}
\author{Erasmus von Rotterdam}
\maketitle

\tableofcontents
\Blinddocument

Figure 2 shows an example as a floating object.
It was created with the following parameters:
Float example

[...]

float,

caption={An example for Coxeter images.},
label=img:cox,

[...]

The specification float refers only to the output;
otherwise, a previous listing could not have a page
break and the typesetting of the text would be more
difficult. On the other hand, it may well be that other
text appears between the code and the output of an
example. Then manual intervention is necessary, for
example by using the command \captionof from
the package caption, which allows a caption without
floating space.

5 Cropping white space

When displaying the output of examples, usually only
the area that contains a graphic or text is of interest,

5.1

Normally the source code is printed first and then
the output. This order cannot be changed with the
current version of hvextern. For side-by-side output,
the mpwidth parameter determines the width of a left
minipage and is always evaluated if it is greater than
Opt. A second minipage is then reserved for output
for the remainder of the line, except for the value of
mpsep. Both minipages are aligned to the value of
mpvalign, the top edge by default.

Source code and output side by side

Typesetting external program code and its output: hvextern

voss-13.tex

- Side-by-side options
\define@key{hv}{mpwidth}[Opt]{...}
\define@key{hv}{mpsep}[lem]{...}

The default distance between the two minipages
is 1em, as shown.

5.2 Horizontal alignment of the output

The code is always left-aligned, whereas the output
can use various known alignments via the align op-
tion. The use of the ragged2e package does not have
any advantages here.

— Horizontal alignment
\define@key{hv}{align}[\centeringl{...}

The default with align=\centering:

\rule{0.5\linewidth}{3mm}

Left-justified with align=\raggedright:

\rule{0.5\linewidth}{3mm}

Right-justified with align=\raggedleft:

\rule{0.5\linewidth}{3mm}

Side by side, default with align=\centering:

Side by side, with align=\raggedright:

Side by side, with align=\raggedleft:

5.3 Inline output, rather than displayed

\rule{0.2\linewidth}{3mm}

\rule{0.2\linewidth}{3mm}

\rule{0.2\linewidth}{3mm}

The output can be printed within a line in the so-
called inline mode. This can make sense if you don’t
have certain characters available in your document’s
font, but they can be generated externally and then
input as PDF. Here, the corresponding source code
should not be shown, so code=false is automatically
set with inline.

Inline option
\define@boolkey{hv}[hv@extern@]{inline}[truel{...}

An example has already been shown on page 280.

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

5.4 Handling plain text output

For IATEX documents, the output is generally PDF,
but when using a programming language such as Perl,
the output would more typically be plain text. This
must be redirected or written to a file so that it can be
inserted verbatim into the main document. This can
be controlled with the parameters includegraphic
and redirect. The output is typeset with listings
or fancyvrb, and options for the typesetting environ-
ment set with textoptions.

With includegraphic=false it is up to the user
to ensure that every output within the external doc-
ument is written to a text file; hvextern looks for a
file with the right name. This is done automatically
with redirect, but then all program output ends up
in the external text file.

— Plain text output options
\define@boolkey{hv}[hv@extern@]{redirect}[true]{}
\define@boolkey{hv}{includegraphic}[truel{}
\define@key{hv}{textOptions}[]{...}

The text file must have the same main file name
as the external file, but with the extension .txt. As
we’ve seen, each program can determine by itself
what name it was called with, so it is easily possible
to determine the correct name for the text output
file. For a Perl program, this could be achieved with
the following code, for example:

- Perl: get filename

my $filename = $0; # the current filename
$filename =~ s/\.pl//; # without extension .pl
$filename = "${filename}.txt"; # for the output
open(my $fh, ’'>', $filename);

However, in the next example, the optional key-
word redirect is given, so determining the filename
in the code is not needed. The example is set with:
— Example output redirect
compiler=perl, includegraphic=false, docType=pl,
ext=pl, usefancyvrb, runs=1, code, redirect,
tcbox=false, force, lstOptions={fontsize=\small,

fontfamily=tt, frame=lines}

my $number = 1;
my $start = 1;
my $end =9;
my $found = 0;

print "Searching for Kaprekar constants\n";
while ($number < 8) {

print "${number}-digits: ";

foreach ($start...$end){

@chars = split(//,$%$-);

$Min = join("",sort(@chars));

$Max = reverse($Min);

$Dif=$Max-$Min;

if($- eq $Dif) {

v0ss-20.pl

TUGboat, Volume 43 (2022), No. 3

$found = 1;
print $_,", ";
}
}
if (!$found) { print "---\n"; }
else { print "\n"; }
$found = 0;
$number++;
$start = $startx10;
$end = $endx10;
}
Searching for Kaprekar constants
1-digits: ---
2-digits: ---
3-digits: 495,
4-digits: 6174,
5-digits: ---
6-digits: 549945, 631764,
7-digits: ---

(Just for the sake of completeness: A Kaprekar
constant is a number A with max(A) — min(A) = A,
where max and min are the sorted/reverse-sorted
digits of the number, e.g., A = 495 = 954 — 459.)

Our next example is in Lua, and also produces
text output; but instead of using redirect, the code
outputs to the appropriate file. This filename can be
determined as follows:
- lua:
-- get full filename
local filename = arg[0]

-- delete extension

local shortFN = str:match("(.+)%..+")
-- open external file

outFile = io.open(shortFN..".txt","w+")

get filename

289

end

outFile:write("\n")

t = nextrow(t)

end
end
triangle(10)

1
1 1
1 2 1

1 5 10 106 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84126 126 84 36 9 1

5.5 Generating the bibliography and index

The current version of hvextern has predefined sup-
port for constructing the bibliography with Biber and
an index with xindex, via the following parameters:
Index and bibliography options
\define@boolkey{hv}[hv@extern@]{biber}[true]{}
\define@boolkey{hv}{xindex}[truel{}
\define@key{hv}{xindexOptions}[1{...}

In principle, the external run of Biber does not
require any further parameters, whereas the xindex
program requires information about the language,
the style file, etc., for example. The next example is
generated with the following parameters:
xindex example

function nextrow(t)
-- fill table
local ret = {}
t[0], t[#t+l] =0, 0
for i = 1, #t do

ret[i]=t[i-1]+t[i]

end
return ret

end

function triangle(n)
t = {1}
for i =1, n do
m=(n - 1)
for j = 1,m do
outFile:write(" ")
end
for k = 1,i do
outFile:write(
string.format("%4s",t[k]))

\begin{externalDocument}[

compiler=lualatex, runs=2,pages=2,crop,
xindex,xindexOptions={-1 DE --config DIN2},
docType=latex, cleanup={log,aux,ilg,idx},...]

To use other bibliography or index programs,
you can use the runsequence option; see the example
on p.284.

\usepackage{makeidx}
\makeindex
\usepackage{hvindex}

\Index{Osterreich} \Index{Oresund}
\Index{Odipus} \Index{Ochsle}
\Index{Ostern} \Index{Ober} \Index{Oberin}
\Index{0Osterreich} \Index{Oresund}
\Index{0Odem} \Index{Oligarch} \Index{Oder}
\Index{Ostern} \Index{Ober} \Index{Oberin}
\Index{0Obstler} \Index{01} \Index{&élen}
\Index{0Oder|seealso{Fluss}} \Index{Gobel}
\Index{oder} \index{Fluss!Oder}
\Index{Goethe} \Index{G6the} \Index{Gotz}
\Index{Goldmann}

\printindex

Typesetting external program code and its output: hvextern

voss-21.lua

V0ss-22.tex

290
Index
¢ oL 1
Fluss Olen, 1
-Oder, 1 Oresund, 1
o Osterreich, 1
) Ober, 1
Gobel, 1 i
0 Oberin, 1
Gothe, 1
Obstler, 1
Goethe, 1
0 Oder, 1
Gotz, 1 oder, 1
1 1 :
Goldmann, Oder, siehe auch Fluss
o Oligarch, 1
Odem, 1 Ostern, 1

6 Verbatim modes: listings and fancyvrb
6.1 Using listings

By default the command \lstinputlisting from the
package listings is used for printing the source code.
We saw an example of setting hvextern’s 1stOptions
option for it earlier.

6.2 Package fancyvrb

There are no fundamental objections to the listings
package, but sometimes it makes more sense to use
\VerbatimInput from the fancyvrb package, espe-
cially when displaying non-ASCII Unicode characters.
Most of the examples in this article use fancyvrb, by
passing the usefancyvrb option.

6.3 Vertical space

Vertical space can be controlled by four keywords for
the stretchable vertical space:

aboveskip The vertical space before the environment
externalDocument or the command \ runExtCmd
(default \medskipamount).

belowpreambleskip The vertical space between the
preamble and body (default \smallskipamount).
If the preamble is missing, then there will be
only aboveskip.

belowbodyskip The vertical space between body and
output (default \smallskipamount).

belowskip The vertical space after the environment
externalDocument or the command \ runExtCmd
(default \medskipamount).

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

7 Supported METAPOST and TEX engines

Here we show a few examples using the common
TEX-world programs. (IATEX is omitted here since
most of the examples throughout this article use

IATEX.)
7.1 METAPOST example

MetaPost example
\begin{externalDocument}[
compiler=mpost,docType=mp, ...]

defaultfont:="ptmr8r";
warningcheck:=0;

draw fullcircle shifted (0.5,0.6) xscaled 8cm
yscaled 3.5cm withpen pencircle scaled 5bp
withcolor 0.33; % gray bands

special("/Times-Roman findfont 150 "

& " scalefont setfont "

& " 0 10 moveto (MPost) false charpath 2 "

& " clip stroke gsave 150 70 translate "

& " 2 4 600 {dup O moveto @ exch O exch"

& " 0 360 arc stroke} for grestore ");

Here is the definition of the command sequence
for running METAPOST, just in case you want to
modify something:

_— MetaPost run sequence
\def\hv@extern@runMP#1#2#3#4{%
% path / compiler / file / extension
\ShellEscape{#1#2\space -tex=tex\space #3#4}%
\ShellEscape{#1ltex\space "\string\input\space
epsf\string\relax\string\nopagenumbers

\string\epsfbox{#3.1}\string\bye"}%

\ShellEscape{#ldvips\space -j\space -E\space

-o\space #3.eps\space epsf.dvi}%

\ShellEscape{#lepstopdf\space #3.eps}%
}

7.2 Plain TEX example
Plain TgX example

\begin{externalDocument}[
compiler=tex,docType=tex,...]

V0Ss-23.mp

voss-24.tex

TUGboat, Volume 43 (2022), No. 3

\footline={\footsc the electronic journal
of combinatorics {\footbf 16} (2009),
\#ROO\hfil\footrm\folio}

\font\bigrm=cmrl2 at 14pt
\centerline{\bigrm An elementary proof
of the reconstruction conjecture}

\bigskip\bigskip

\centerline{D. Remifa\footnotex{Thanks to the
editors of this journal!}}

\smallskip

\centerline{Department of Inconsequential Studies}

\centerline{Solatido College, North Kentucky, USA}

\centerline{\tt remifa@dis.solatido.edu}

\bigskip

\centerline{\footrm

Submitted: Jan 1, 2009; Accepted: Jan 2, 2009;
Published: Jan 3, 2009}

\centerline{\footrm Mathematics Subject
Classifications: 05C88, 05C89}

\bigskip\bigskip

\centerline{\bf Abstract}

\smallskip

{\narrower\noindent

The reconstruction conjecture states that the

multiset of unlabeled vertex-deleted subgraphs

of a graph determines the graph, provided it

has at least 3 vertices. A version of the problem

was first stated by Stanis\l aw Ulam. In this

paper, we show that the conjecture can be proved

by elementary methods. It is only necessary to

integrate the Lenkle potential of the Broglington

manifold over the quantum supervacillatory measure

in order to reduce the set of possible

counterexamples to a small number (less than a

trillion). A simple computer program that

implements Pipletti’s classification theorem for

torsion-free Aramaic groups with symplectic socles

can then finish the remaining cases.}

\bigskip
\beginsection 1. Introduction.

This is the start of the introduction.

* Thaiks to the editorsof

291

7.3 ConTgXt example (mklIV)

This example is run with ConTEXt from TEX Live
2022, but it should also work with the new LMTX.
ConTgXt example
\begin{externalDocument}[pages={3,4},
compiler=context,docType=context,runs=2,...]

\definehead
[myhead]
[section]

\setuphead

[myhead]

[numberstyle=bold,
textstyle=bold,
before=\hairline\blank,
after=\nowhitespace\hairline]

\startstandardmakeup

\midaligned{From Hasselt to America}
\midaligned{by}

\midaligned{J. Jonker and C. van Marle}
\stopstandardmakeup
\placecombinedlist[content]
\chapter{Introduction}

\input knuth \input knuth
\chapter[rensselaer]{The Rensselaer family}
\section{The first born}

\input knuth

\section{The early years}

. in those days Hasselt was ...
\section{Living and workin in America}
\input knuth
\chapter[lansing]{The Lansing family}
\input knuth

. the Lansing family was also ...
\chapter[cuyler]{The Cuyler family}
\input knuth

. much later Tydeman Cuyler ...
\myhead[headlines]{And the end}
foo

Typesetting external program code and its output: hvextern

v0ss-25.tex

292

8 Running arbitrary external commands

To typeset listing of the current directory of this
document we can use the macro \runExtCmd with the
optional argument redirect. We filter the output
with additional commands.
\runExtCmd[redirect]

{ls -1aB | awk ’'{print $6,%$7,$8,$9}" }

{voss}
to produce the directory listing:

Nov 3 18:49 .

Nov 1 23:39 ..

Jun 3 17:36 .dict.pws

Nov 3 18:49 Exa-extern

Jun 3 18:04 Makefile

Nov 3 18:49 firstpage.tex

Nov 3 18:49 lastpage.tex

Nov 3 18:49 tbl35voss-extern.aux
Nov 3 18:49 tbl135voss-extern.bbl
Jun 3 17:36 tb135voss-extern.bib
Nov 3 18:49 tb135voss-extern.blg
Nov 3 18:49 tb135voss-extern.log

Oct 31 16:12 tb1l35voss-extern.ltx
Nov 3 18:49 tb135voss-extern.out
Nov 3 18:49 tb135voss-extern.pdf

The general behaviour is similar to the environ-
ment, externalDocument: the output is saved in an
intermediate file, in this case voss-{num).txt and
then read by \VerbatimInput. The options code and
showFilename are off by default.

9 Other options

Most of the options which hvextern provides for
externalDocument and \runExtCommand have been
discussed. Here is a brief summary of some that
have not been seen, or mentioned only in passing.

force With force=false an existing output file is
used, thus reducing compilation time. This op-
tion should only be used in exceptional cases,
because with it, a change in the main document
in the source code of the example does not lead
to updated example output.

moveToExampleDir Move all generated example files,
both source and output, to the directory spec-
ified by ExamplesDir. This can ease document
development and maintenance when there are
many examples. The directory itself must be
created by the user.

ExampleDir The directory to which example files are
moved if requested.

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

cleanup Auxiliary files from an (I#)TEX or other run
can be deleted to improve the overview in a
directory. By default, these are the .aux and
.log files: cleanup={aux,log}.

framesep Value for \fbox if keyword frame is used.

mpsep Distance between code and output (default
lem).

pagesep Distance between pages for multipage out-
put (default 1em).

shiftFN Length to shift marginal filename; positive
values shift up.

inline False by default; if true, include the gener-
ated output in the paragraph, not as a display.

showoutput True by default; if false, omit the gener-
ated output.

code True by default (unless inline=true); if false,
omit the source code listing.

tcbox If false, do not use any box commands from
the tcolorbox package (for debugging and in
case of bugs).

eps Convert the generated PDF file to EPS (historical
reasons).

10 Caveats

Due to issues with tcolorbox, you can expect prob-
lems if a page break appears in the code part imme-
diately before the first code line is printed. In such
a case put a \newpage or \pagebreak just before the
externalDocument environment. If you do not need
tcolorbox features, you can disable its use with the
option tcbox=false.

References

[1] C. Heinz, J. Hoffmann, B. Moses. The listings
package, version 1.8d, 2020-03-24.
ctan.org/pkg/listings

[2] R. Niepraschk. The showexpl package, version
0.3s. ctan.org/pkg/showexpl

[3] T.F. Sturm. The tcolorbox package, version
5.0.2, 2022-01-07. ctan.org/pkg/tcolorbox

[4] T. Van Zandt, H. Vo&, et al. The fancyvrb
package, version 4.2. ctan.org/pkg/fancyvrb

[5] H. Vof. The hvextern package, version 0.28.
ctan.org/pkg/hvextern

¢ Herbert Vofs
Wasgenstrafe 21
14129 Berlin, Germany
herbert (at) dante dot de
https://hvoss.org/

https://ctan.org/pkg/listings
https://ctan.org/pkg/showexpl
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/fancyvrb
https://ctan.org/pkg/hvextern

TUGboat, Volume 43 (2022), No. 3

The luamodulartables and luaset
KETEX packages
Chetan Shirore, Ajit Kumar

Abstract

The luamodulartables package was developed by
us to generate modular addition and multiplication
tables for positive integers, for use in ITEX docu-
ments. The commands in the package have optional
arguments for formatting of tables. These commands
can be used in an environment similar to the tabular
and array environments. The commands can also
be used with the booktabs package to provide better
formatting of tables in IATEX.

Similarly, the luaset package is developed by us
to define finite sets and perform different operations
on them inside I TEX documents. There is no special
environment in the package for performing set oper-
ations. The package commands can be used in any
environment (including mathematics environment).

These packages are written in Lua, and the TEX
source is to be compiled with the Lual&TEX engine.
There is no need to install Lua on users’ systems
as TEX distributions (TEX Live and MiKTEX) come
bundled with Lual#TEX. The packages can be modi-
fied or extended by writing custom Lua programs.

1 Introduction

The Lua [1] programming language is a scripting
language which can be embedded across platforms.
With LuaTgX [3], and more easily with the luacode
[2] package, it is possible to use Lua in BTEX. The
TEX [9] and BTEX languages provide for program-
ming [8]. However, with the internals of TEX there
are several limitations, especially for performing cal-
culations on numbers in KTEX documents. There are
packages like pgf [7] and xparse [10] in IWTEX which
provides some programming capabilities inside KTEX
documents. However, such packages do not provide
the complete programming structure that general
programming languages, such as Lua, provide. The
luacode [2] package is used in development, in addi-
tion to the xkeyval package.

The modular addition (multiplication) of inte-
gers with respect to a positive integer n is obtained
by taking the remainder of the usual addition (mul-
tiplication) after dividing it by n. There is no easy
way in BTEX to do modular addition and multiplica-
tion [4]. With Lua, it can be achieved easily in ¥ TEX.
Also, non-Lua ways of doing modular arithmetic in
ETEX are more complicated [5].

The time required for the LuaTEX compilation
to generate modulo addition and multiplication ta-

doi.org/10.47397/tb/43-3/tb13bshirore-luamath

293

bles with the luamodulartables package, or to per-
form different operations on sets with the luaset
package, is not an issue.

2 Installation and license

The installation of luamodulartables and luaset
package is similar to simple IXTEX packages, with a
.sty file in the BTEX directory of a texmf tree. The
packages can be loaded with \usepackage{luaset}
and \usepackage{luamodulartables} commands
in the preamble of a ITEX document. The TEX file
is to be compiled using the Lual&ATEX engine.
luamodulartables and luaset packages are re-
leased under the KTEX Project Public License v1.3c
or later. The complete license text is available at
latex-project.org/lppl.txt. The packages are
developed in Lua. Lua is available as certified open
source software. Its license is simple and liberal, com-
patible with the GNU GPL. A small part of the devel-
opment of these packages was inspired by questions
on https://tex.stackexchange.com. The content
on this site is available under the CC BY-SA license.

3 The luamodulartables package

\luaModularMult and \luaModularAdd are the two
basic commands in the luamodulartables package,
to generate modular multiplication and addition ta-
bles, respectively. The command \luaModularMult
has the following syntax and it is used to generate
modular multiplication tables for positive integers.

\luaModularMult

[multlabel=(text),

headline=(text),midline=(text)]

{(n)}
The command has one compulsory argument (n),
and three optional arguments multlabel, headline
and midline. The compulsory argument denotes
the positive integer n with respect to which modular
multiplication is to be carried out.

The multlabel string denotes the label to be
printed as the entry in the first row and first column
of the generated tabular environment. Its default
value is \times. The headline refers to the style
of horizontal line after first row in tabular or table
environment. The midline refers to the style of
horizontal lines after second row till the second last
row. The headline and midline strings are both
empty by default.

The formatting of the top line (before the be-
ginning of the first row) and the bottom line (after
the end of the last row) are defined in the user’s
ETEX document. The alignment of columns and use
of vertical lines for columns are likewise specified in
the document.

The luamodulartables and luaset IATEX packages

https://latex-project.org/lppl.txt
https://tex.stackexchange.com
https://doi.org/10.47397/tb/43-3/tb135shirore-luamath

294
Zy |0 1 2 3
00 0 0 O
110 1 2 3
210 2 0 2
310 3 2 1

Table 1: Illustration of \luaModularMult

An example of using the \1luaModularMult com-
mand follows, specifying the optional arguments
multlabel and headline. It requires the amsmath
and amssymb packages.

\begin{tabular}{r|rrrr} \toprule
\luaModularMult [multlabel=\mathbb{Z}_4,
headline=\midrule]

{43 \\
\bottomrule \end{tabular}

This generates the output shown in Table 1.
Similarly, the command \1uaModularAdd is used

to generate addition modulo tables for positive inte-
gers. It has the following syntax:
\luaModularMult

[addlabel=(text),

headline=(text),midline=(text)]

{(n)}
The addlabel argument denotes the label to be
printed as the entry in the first row and the first col-
umn of tabular environment. Its default value is $+8$.
The optional parameters headline and midline are
exactly the same as in the \luaModularMult com-
mand.

4 The luaset package

4.1 Defining and displaying sets

A set can be defined with the \luaSetNew command:
\luaSetNew{(name)}{(set)}

For example, the following defines sets A and B:
\luaSetNew{A}{a,b,c,10,d,10,a,30}
\luaSetNew{B}{d,e,f,10,20}

The set can be output with \luaSetPrint:
\luaSetPrint{(name of set)}

Continuing our example, the commands

\(A = \luaSetPrint{A}\) \\

\(B = \luaSetPrint{B}\)

generates this output (notice that duplicate elements
have been removed, this being a set):

A ={10,30,a,b,c,d}
B = {10,20,d, ¢, f}

Chetan Shirore, Ajit Kumar

TUGhboat, Volume 43 (2022), No. 3

The command \luaSetPrint parses, sorts and
prints all elements by using the parsers.iterator
[6] function in lualibs.

4.2 Commands in the luaset package

These commands are available in the luaset package

to perform various operations on finite sets in KTEX

documents.

\luaSetUnion{C}{A}{B} Defines new set C as
union of sets A and B.

\luaSetIntersection{C}{A}{B} Defines new set
C' as intersection of sets A and B.

\luaSetDifference{C}{A}{B} Defines new set C
as difference of sets A and B.

\luaSetCardinal{A} Gives cardinality of set A.

\luaSetBelongsto{x}{A} Returns true if z is in
set A, otherwise returns false.

\luaSetSubseteq{A}{B} Returns true if set A is
a subset of set B, otherwise returns false.

\luaSetSubset{A}{B} Returns true if set A is a
proper subset of set B, otherwise returns false.

\luaSetEqual{A}B} Returns true if set A is
equal to set B, otherwise returns false.

References

1] Lua 5.4 reference manual. lua.org/manual/5.4

)

Luacode package page. ctan.org/pkg/luacode
LuaTeX package page. ctan.org/pkg/luatex

Modular arithmetic in LaTeX.
mathoverflow.net/questions/18813

[5] Modular arithmetic in LaTeX.
tex.stackexchange.com/questions/34424

EE,—.r—‘

[6] parsers.iterator function in lualibs.
github.com/latex3/lualibs/blob/main/
lualibs-util-prs.lua

[7] PGF package page. ctan.org/pkg/pgf
[8] W.M. Richter. TEX and scripting languages.

TUGboat 25(1):71-88, 2004.
tug.org/TUGboat/tb25-1/richter.pdf

[9] Wikipedia. TeX. en.wikipedia.org/wiki/TeX
[10] Xparse package page. ctan.org/pkg/xparse

¢ Chetan Shirore
Department of Mathematics,
Institute of Chemical
Technology, Mumbai - 400019,
Maharashtra, India

o Ajit Kumar
Department of Mathematics,
Institute of Chemical
Technology, Mumbai - 400019,
Maharashtra, India

https://lua.org/manual/5.4
https://ctan.org/pkg/luacode
https://ctan.org/pkg/luatex
https://mathoverflow.net/questions/18813
https://tex.stackexchange.com/questions/34424
https://github.com/latex3/lualibs/blob/main/lualibs-util-prs.lua
https://github.com/latex3/lualibs/blob/main/lualibs-util-prs.lua
https://ctan.org/pkg/pgf
https://tug.org/TUGboat/tb25-1/richter.pdf
https://en.wikipedia.org/wiki/TeX
https://ctan.org/pkg/xparse

TUGboat, Volume 43 (2022), No. 3

Using OpenType and TrueType fonts with

XAIATEX and LualATEX
Herbert Vofs

Abstract

For both “new” TEX engines XH{ITEX and LuaTgX,
which are admittedly no longer all that new, there
are a few things to consider in connection with fonts
that are important for users who have previously
worked with pdfIATEX. Until now, only the fonts
that came with the TEX distribution in use were
easily available to “inexperienced” users.

1 Introduction

With the use of XHIATEX or LualATEX the following
facts have to be considered:

e The default font is by definition Latin Modern,
regardless of whether fontspec is loaded or not.
For pdfIATEX, the default is Computer Modern.

e The packages inputenc and/or fontenc should
not be loaded. First, UTF-8 is already for years
the all-but-universal default input encoding, and
second, fontspec automatically loads fontenc
with the TU (Unicode) encoding.

e To support OpenType fonts for math, load the
unicode-math package instead of the amsfonts
and/or amssymb packages. The amsmath package
can still be used, but should be loaded before
fontspec/unicode-math.

e The xltxtra and xunicode packages are obso-
lete and should no longer be used.

The fontspec package can be used with both
XHIATEX and LualATEX:

\usepackage | {options)]{fontspec}

It greatly simplifies the integration of OpenType
and TrueType fonts that are not part of the TEX
distribution. In order for the system to find them
automatically, they must either be in the current
document directory or, depending on the operating
system, in (usually) one of the following directories:

GNU/Linux /usr/share/fonts
/usr/local/share/fonts
~/.fonts (user-specific)
C:\Windows\Fonts
/System/Library/Fonts
/Library/Fonts
~/Library/Fonts (user-specific)

Windows
macOS

Any other readable directory can be used, if the
path is passed to the package fontspec.

First published in Die TEXnische Komdédie 1/2022, pp. 49-57;
translation by the author.

295

The properties of a font can be displayed with
an appropriate program, e.g. otfinfo, which is avail-
able on every TEX distribution. For a font which is
part of the TEX directory tree, one can simplify the
argument: the complete path is not needed, since it
can be found with kpsewhich:

$ otfinfo -i ‘kpsewhich ComicNeue-Regular.otf’
Family: Comic Neue

Subfamily: Regular

Full name: Comic Neue Regular

PostScript name: ComicNeue-Regular

Version: Version 2.003;hotconv 1.0.109
Unique ID: 2.003;;Comic Neue Light
Designer: Craig Rozynski

Designer URL: http://www.craigrozynski.com
Manufacturer: Craig Rozynski

Vendor URL: http://www.comicneue.com
Copyright: Copyright 2014 The Comic Neue

Project Authors (https://github.com/crozynski/
comicneue)
License URL: https://scripts.sil.org/0FL
License Description: This Font Software is licensed
under the SIL Open Font License, Version 1.1. [...]
Vendor ID: UKWN

2 Font search: luaotfload-tool and
luafindfont

The program luaotfload-tool can be used to list
the fonts installed on the system. Both system fonts
and TEX distribution fonts are taken into account.
However, the program is geared more to the needs of
TEX itself than to those of users. For example, search-
ing for the font “Times” typically returns something
like this:

$ luaotfload-tool --find=times

luaotfload | resolve : Font "times" found!

luaotfload | resolve : Resolved file name "/System/
Library/Fonts/Times.ttc", subfont nr. 0

That is, the output of the script is only one font,
although several variants are installed, albeit with
different file names. The search can be expanded by
using the --fuzzy option. Now searching for “times
new roman”, for example:
$ luaotfload-tool --fuzzy --find="times new roman"
luaotfload | resolve : Font "times new roman" found!

luaotfload | resolve : Resolved file name "/System/
Library/Fonts/Supplemental/Times New Roman.ttf"

But even this search is not especially successful.
With the Lua utility luafindfont, which is part of
the TEX distribution, searching for times yields more
informative results (see Listing 1).

The luafindfont program can be started with
various options and also allows an AND condition
when specifying the font to search for. A brief listing
of the options:
-h,--help
-i,--info

font number to use (default 0)

Using OpenType and TrueType fonts with XgIATEX and LualATEX

doi.org/10.47397/tb/43-3/tb135voss-unifont

https://doi.org/10.47397/tb/43-3/tb135voss-unifont

296

-m,--max_string (default 90)

-n, --no-symbolic-names

-0,--otfinfo font number and options (default 0)
-v,--verbose verbose output

-X, --xetex

(string)

The main (string) argument is usually (part of) a font
name, but can contain extra conditions, as explained
below. A longer description of the options:

-i (number) The existing font styles are output
for the font with the specified number.

-m (number) Number of characters to be used for
the output of the font name including the path.
The full path specification can be very long
and thus can be limited, for example, to 50
characters by specifying -m 50. Characters in
the middle of the path are replaced with “...”.

-n Omit the symbolic (family) names column from
the output.

-o (number[{option)]) The otfinfo program is
run on the font with the specified number to
supply additional font information. Options
for otfinfo must immediately follow the font
number.

-x Test if font is found by kpsewhich (1/0).

Some example applications of luafindfont:

search for times in the filename with path:
luafindfont times

search for palatino and run otfinfo -v on font no 3:
luafindfont palatino -o 3v

search for arial, font no 3, max 50 characters:
luafindfont -i 3 -m 50 arial

To search for both a font and style, the specifi-
cations are linked with the ‘& character, which must
be quoted for the shell. As an example, Listing 2
searches for all the Myriad semibold fonts.

Various options are supported by the otfinfo
program, with its i option being the default. List-
ing 3 has an example of its output.
otfinfo options

font’s
font’s
font’s
font’s
font’s
font’s
font’s
font’s
font’s

family name.
GSUB/GPOS features.
glyph names.

Report
Report
Report
Report
Report
Report
Report
Report
Report

PostScript name.
supported scripts.
OpenType tables.

version information.
optical size information.

N<~WwDTHFHQ —HhQ

The following examples are marked with a file-
name in the margin. All example files can be down-
loaded from https://tug.org/~hvoss/tb135.zip.

Herbert Vofs

names and designer/vendor info.

TUGboat, Volume 43 (2022), No. 3

These are complete documents whereas in this article
I show only the important parts of the preamble and
document body, with the output in a frame below.
All examples must be run with LualATEX.

3 Font selection by name

Selecting a font by its symbolic name assumes the
font can be found in one of the directories listed above.
XAIATEX and LualATEX go different ways: XaTEX
searches for its fonts with fontconfig; this library
(freedesktop.org/www/Software/fontconfig) is in-
cluded in XHTEX, while LuaTEX determines the fonts
from a self-created font catalogue. However, the nor-
mal user does not have to be particularly interested
in this.

\usepackage{fontspec}

\fontspec{Cambria}A short test with the font Cambria
and now a change to {\fontspec{DejaVu Serif}%
[Scale=0.85] the font Dejavu and now at last
{\fontspec{Arial}[Scale=0.9]to the font Arial.}}

A short test with the font Cambria and now a
change to the font Dejavu and now at last to the
font Arial.

As shown above, the correct font names can
be found using various programs, such as pdffonts.
Listing 4 shows the fonts used in the above example.

4 Font selection by file name

This variant should always be used for X{IEX if you
want to use OpenType or TrueType fonts from the
existing TEX tree, which are normally not recognized
by the underlying operating system. This restriction
does not exist for LuaTEX; TEX font trees are also
searched.

\usepackage{fontspec}

\fontspec{Iwona}A test in the Iwona font and now a
switch to the {\fontspec{Kurier}Kurier font and now
to the {\fontspec{Antykwa Poltawskiego}Antykwa
Poltaws\-kiego font}} which doesn’t look like
\fontspec{HelveticaNeue}Helvetica Neue.

A test in the lwona font and now a switch to
the Kurier font and now to the Antykwa Poltaws-
kiego font which doesn't look like Helvetica Neue.

Since LuaTEX manages its own cache for the
fonts, there is a pause in the TEX run the first time
it is called because this cache has to be created:
[...]
luaotfload | db

generating new one.

Font names database not found,

tb135voss-1.tex

tb135voss-2.tex

https://tug.org/withtilde%20hvoss/tb135.zip
https://freedesktop.org/www/Software/fontconfig

TUGboat, Volume 43 (2022), No. 3 297

Listing 1: Searching for Times on my local system

$ luafindfont times

No. Filename Symbolic Name Path

tb135voss-3.tex

1. Times New Roman Bold Italic.ttf timesnewroman /Users/voss/Library/Fonts/Times/
2. Times New Roman Bold Italic.ttf timesnewroman /System/Library/Fonts/Supplemental/
3 Times New Roman Bold.ttf timesnewroman /System/Library/Fonts/Supplemental/
4 Times New Roman Bold.ttf timesnewroman /Users/voss/Library/Fonts/Times/
5. Times New Roman Italic.ttf timesnewroman /Users/voss/Library/Fonts/Times/
6 Times New Roman Italic.ttf timesnewroman /System/Library/Fonts/Supplemental/
7 Times New Roman.ttf timesnewroman /System/Library/Fonts/Supplemental/
8 Times New Roman.ttf timesnewroman /Users/voss/Library/Fonts/Times/
9. Times.ttc times /System/Library/Fonts/
10. Times_Sans_Serif.ttf timessansserif /Users/voss/Library/Fonts/Times/
11. TimesNewRomanMTStd-Bold.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
12. TimesNewRomanMTStd-BoldCond.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
13. TimesNewRomanMTStd-BoldIt.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
14. TimesNewRomanMTStd-Cond.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
15. TimesNewRomanMTStd-CondIt.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
16. TimesNewRomanMTStd-Italic.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
17. TimesNewRomanMTStd.otf timesnewromanmtstd /Users/voss/Library/Fonts/Times/
18. TimesNewRomanPS-BoldItalicMT.otf timesnewromanpsmt /Users/voss/Library/Fonts/Times/
19. TimesNewRomanPS-BoldMT.otf timesnewromanpsmt /Users/voss/Library/Fonts/Times/
20. TimesNewRomanPSMT.otf timesnewromanpsmt /Users/voss/Library/Fonts/Times/
21. TimesNewRomanPSStd-Bold.otf timesnewromanpsstd /Users/voss/Library/Fonts/Times/
22. TimesNewRomanPSStd-BoldIt.otf timesnewromanpsstd /Users/voss/Library/Fonts/Times/
23. TimesNewRomanPSStd-Italic.otf timesnewromanpsstd /Users/voss/Library/Fonts/Times/
24. TimesNewRomanPSStd-Regular.otf timesnewromanpsstd /Users/voss/Library/Fonts/Times/

luaotfload | db

: This can take several minutes; please

be patient.(compiling luc: /home/voss/texlive/2022/
texmf-var/luatex-cache/generic/fonts/otf/lmromanl0-
regular.luc) (compiling luc: /home/voss/.texlive2022
/texmf-var/luatex-cache/generic/fonts/otf/Ilmromanl0
-regular.luc) (save: /home/voss/texlive/2022/texmf-
var/luatex-cach

Running the example above with XgIATEX in-
stead of LualATEX will produce an error message
because the fonts lwona, Kurier, and Antykwa Poltaws-
kiego will not be found by XHTEX, since a full file
name is not specified. In the following example, the
file name with an extension must therefore be speci-
fied for the first three fonts, whereas HelveticaNeue
is still loaded via the name, since it is a system font
in my local macOS system and not part of the TEX
distribution.

\usepackage{fontspec}

\fontspec{Iwona-Regular.otf} A test in the font Iwona
and now a change to the font
{\fontspec{Kurier-Regular.otf} Kurier and now to
{\fontspec{antpolt-regular.otf} most recently the
font Antykwa Poltawskiego,}} which doesn’t look like
\fontspec{HelveticaNeue} Helvetica.

Using OpenType and TrueType fonts with XgIATEX and LualATEX

A test in the font lwona and now a change
to the font Kurier and now to most recently the
font Antykwa Poltawskiego, which doesn't look like
Helvetica.

The file extension can be specified using the
optional argument Extension and a directory that is

not in the normal search path using the Path option.

In this case, however, only the specified font style
is activated; in the following example, \bfseries
does not display bold because no corresponding bold

variant was declared or was not found by fontspec.

\usepackage{fontspec}
\setmainfont{BertholdwWalbaumBook.ttf}

A test with the Berthold Walbaum font:\par
A completely normal text in the old beautiful
font, which was \bfseries embedded as TrueType.

A test with the Berthold Walbaum font:
A completely normal text in the old beau-

tiful font, which was embedded as TrueType.

The bold variant can be assigned using the op-

tional argument BoldFont:

tb135voss-4.tex

tb135voss-5.tex

298

TUGboat, Volume 43 (2022), No. 3

Listing 2: Searching for a font with a special shape

$ luafindfont -i 4 "myriad & semibold"

No.

1
2
3
4
5.
6
7
8.

Filename Symbolic Name Path
MyriadPro-Semibold.otf
MyriadPro-SemiboldCond.otf
MyriadPro-SemiboldCondIt.otf
MyriadPro-SemiboldIt.otf
MyriadPro-SemiboldSemiCn.otf

MyriadPro-SemiboldSemiCnIt.otf

MyriadPro-SemiboldSemiExt.otf

Font: myriadpro
Fonttype otf(system) --> | Regular | Bold | Italic | BoldItalic |

MyriadPro-SemiboldSemiExtIt.otf

myriadpro
myriadpro
myriadpro
myriadpro
myriadpro
myriadpro
myriadpro
myriadpro

/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/
/Users/voss/Library/Fonts/MyriadPro/

Listing 3: Printing OpenType features

In the following example, the fonts are only found

$ luafindfont -o 2f "myriad & semibold"

(output from Listing 2 omitted)

Running otfinfo -f for font no.2
otfinfo -f "/Users/voss/Library/Fonts/MyriadPro/

aalt
case
cpsp
dnom
fina
frac
kern
liga
Tnum
numr
onum
ordn
pnum
sinf
sups
tnum
zero

Access All Alternates
Case-Sensitive Forms
Capital Spacing
Denominators
Terminal Forms
Fractions

Kerning

Standard Ligatures
Lining Figures
Numerators

Oldstyle Figures
Ordinals
Proportional Figures
Scientific Inferiors
Superscript

Tabular Figures
Slashed Zero

MyriadPro-SemiboldCond.otf"

using the base name BertholdimagoBQ, whereby this
base name itself is not a font name. Therefore, a
definition must also be made for UprightFont.

BertholdImagoBQ-Book.otf
BertholdImagoBQ-BookItalic.otf
BertholdImagoBQ-MediumItalic.otf
BertholdImagoBQ-Medium.otf

\usepackage{fontspec}

\setmainfont{BertholdImagoBQ} [
UprightFont=*-Book,
ItalicFont=x-BookItalic,
BoldItalicFont=+-MediumItalic,
BoldFont=*-Medium]

A test with the Berthold Imago font:\par
A completely normal text in the beautiful
new font, which was integrated as
\textbf{OpenType}. \textit{The font as
Italic and now additionally

\bfseries as a bold variant}

\usepackage{fontspec}

A test with the Berthold Imago font:
A completely normal text in the beautiful new

“‘?;::ﬁ::g::i?erth"ldwalba”mB“k} font, which was integrated as OpenType. The font
Extensione. ttf, as ltalic and now additionally as a bold variant
BoldFont=BertholdWalbaumMediumBook]

A test with the Berthold Walbaum font: 5 Font families

A completely normal text in the beautiful old font, With the previous examples, the main font was de-

which was \bfseries integrated as TrueType. fined in each case, which can also be changed later by

; further calls; thus \setromanfont is rarely used, since

A test with the Berthold Wfilbaum font': it generally corresponds to the main font. The old

A Compl?tely normal text in the beautiful syntax with \setmainfont[{options)]1{{font name)}

old font, which was integrated as TrueType. is still possible for all macros for reasons of compati-

bility.

Entering the fonts via a name can be simplified In general, defining the fonts and their associ-
when using LualATEX if you work with the wildcard *. ated features is very time-consuming if the naming
Then the part of the name that is the same for all of the fonts is not organized in such a way that
variants needs to be specified only for the base name. the fontspec package can do the assignment itself.

Herbert Vofs

tb135voss-6.tex

TUGboat, Volume 43 (2022), No. 3

299

Listing 4: Font list of the first example pdf

$ pdffonts tbl35voss-1.pdf

name type encoding emb sub uni object ID
EKHFKG+Cambria CID Type 0OC Identity-H yes yes yes 8 0
DSBAVG+DejaVuSerif CID TrueType Identity-H yes yes yes 9 0
CELWVW+ArialMT CID TrueType Identity-H yes yes yes 10 0

There are many packages that relieve the user of this
work. As of this writing, CTAN lists 61 packages
which do all the font setting internally. Here are
some of the more commonly-used ones (capitalized
according to the .sty filename, as distributed):
accanthis, Alegreya, bitter, cantarell,
CharisSIL, Chivo, CormorantGaramond,

crimson, CrimsonPro, dejavu-otf, droidsans,
droidserif, ebgaramond, garamondlibre,
gfsneohellenicot, imfellEnglish,

kpfonts-otf, lato, lexend, libertinus-otf,
librebaskerville, LibreBodoni, librecaslon,
linguisticspro, marathi, newpxtext,
newtxtext, noto, noto-serif, opensans,
plex-otf, plex-serif, quattrocento, roboto,
Rosario, sourceserifpro

The complete list, with links, is available at
https://hvoss.org/Books/fontpackages.html. For
more information about any package, you can visit
https://ctan.org/pkg/{name).

We already differentiate between the TEX en-
gines used and independently load the required font
formats. Also, all font packages also load fontspec
by default. As a final example, we show the main
part of the package file Alegreya.sty:

Font package

[...]
\ifAlegreya@otf
\RequirePackage{fontspec}
\else
\RequirePackage{fontenc, fontaxes,mweights}
\fi

\ifAlegreya@otf
\setmainfont[
Numbers = {\Alegreya@figurealign,
\Alegreya@figurestyle},
UprightFont = *-\Alegreya@regstyle ,
ItalicFont = x-Italic,
BoldFont = *-\Alegreya@boldstyle ,

BoldItalicFont = *-\Alegreya@boldstyle Italic ,
1{Alegreya}
[...]

By virtue of this work in the package, the user
need only write the \usepackage command shown
below. In contrast, we use another font, Anonymous-
Pro, for the typewriter text, for which there exists no
font package and thus we have to use \setmonofont
explicitly.

\usepackage{Alegreya,AlegreyaSans}
\setmonofont[FakeStretch=0.8,
Scale=MatchLowercase]{AnonymousPro}

The normal font is \textsc{Alegreya}, which is

also possible as \textbf{bold}.\par

\sffamily The sans serif is \textsc{Alegreya Sans},
which is also available

in \textbf{bold}.\par

\ttfamily And the mono font is Anonymous Pro, which
is yet again available as a \textbf{bold font}.\par
\addfontfeature{FakeStretch=0.65}We

can further condense the mono font;

the \textbf{bold version} gets the same treatment.

The normal font is ALEGREYA, which is also pos-
sible as bold.

The sans serif is ALEGREYA SANS, which is also avail-
able in bold.

And the mono font is Anonymous Pro, which is yet
again available as a bold font.

We can further condense the mono font; the bold version gets
the same treatment.

¢ Herbert Vof
Wasgenstrafie 21
14129 Berlin, Germany
herbert (at) dante dot de
https://hvoss.org/

Using OpenType and TrueType fonts with XgIATEX and LualATEX

tb135voss-7.tex

https://hvoss.org/Books/fontpackages.html

300

New directions in math fonts

Hans Hagen, Mikael P. Sundqvist

1 Introduction

After trying to improve math rendering of OpenType
math fonts, the authors have ended up with a mix of
improving the engine and fixing fonts runtime, and
we are rather satisfied with the results so far.

However, as we progress and also improve the
more structural and input-related features of Con-
TEXt, we wonder why we aren’t more drastic when
it comes to fonts. The OpenType specifications are
vague, and most existing OpenType math fonts use
a mixture of the OpenType features and the old TEX
habits, so we are sort of on our own. The advantage
of this situation is that we feel free to experiment
and do as we like.

In another article we discuss our issues with Uni-
code math, and we have realized that good working
solutions will be bound to a macro package anyway.
Also, math typesetting has not evolved much after
Don Knuth set the standard, even if the limitations
of those times in terms of memory, processing speed
and font technologies have been lifted for quite a
while. And right from the start Don invited users to
extend and adapt TEX to one’s needs.

Here we will zoom in on a few aspects: font
parameters, glyph dimensions and properties and
kerning of scripts and atoms. We discuss OpenType
math fonts only, and start with a summary of how we
tweak them. We leave a detailed engine discussion to
a future article, since that would demand way more
pages, and could confuse the reader.

2 Tweaks, also known as goodies

The easiest tweaks to describe are those that wipe
features. Because the TEX Gyre fonts have many bad
top accent anchors (that is, the anchors sit above
the highest point of the shape) the wipeanchors
tweak can remove them, and we do that per specified
alphabet.

7

In a similar fashion we wipeitalics (italic cor-
rections) from upright shapes. Okay, maybe they
can play a role for subscript placement, but then
they can also interfere, and they do not fit with the
OpenType specification. The wipecues tweak zeros
the dimensions of the invisible times and friends so
that they don’t interfere, and wipevariants gets rid
of bad variants of specified characters.

The fixers is another category, and the names
indicate what gets fixed. Tweaks like these take lists

Hans Hagen, Mikael P. Sundqvist

doi.org/10.47397/tb/43-3/tb135hagen-mathchange

TUGDboat, Volume 43 (2022), No. 3

of code points and specific properties to fix. We
could leave it to your imagination what

fixaccents fixanchors fixellipses
fixoldschool fixprimes fixradicals
fixslashes

do, but here are some details.

Starting with fixaccents: Inconsistencies in
the dimensions of accents make them jump all over
the place so we normalize them. We support hori-
zontal stretching at the engine level.

atb+c+td=u+v+wFx+y

This required only a few lines of code, thanks to
scaling features that were already present.
fixanchors: Anchors can be off so we fix these
to look better, especially on italic shapes. We make
sure that the automated sizing works consistently,
as this is driven by width and overshoot.
fixellipses: Several kind of ellipses can be
inconsistent with each other as well as with periods
(both shape- and sizewise) so we deal with that.
fixoldschool: TEX (TFM) fonts have a limited
set of widths, heights, and depths. We need to fix
for instance fences of various size because we want
to apply kerns to scripts on the four possible corners,
for which we need to know the real height and depth,
fixprimes: Discussing primes would take many
paragraphs so we stick to mentioning that they are
a mess. We now have native prime support in the
engine, and we assume properly dimensioned symbols
to be used.

fixradicals: TFM dimensions for the parts of
a radical (e.g., square root) sign are, shall we say,
unusual. Let’s fix them.

fixslashes: Slashes are used for skewed frac-
tions so we’d better make sure they are set up right.

The replacealphabets tweak is a nice goodie
of another kind. We use this to provide alternative
script (roundhand) and calligraphic (chancery) alpha-
bets (we have both natively in ConTEXt, although
Unicode combines them in one alphabet). Many
available OpenType math fonts come with one of the
two alphabets only, some with roundhand and some
with chancery. For the record: this tweak replaces
the older variants tweak, which filtered scripts from
a stylistic font feature.

We also use the replacealphabets tweak to
drop in Arabic shapes so that we can do bidirec-
tional math. In practice that doesn’t truly boil down
to a replacement but more to an addition. The add-
mirrors features accompanies this, and it is again a
rather small extension to the engine to make sure we
can do this efficiently: when a character is looked up
we check a mirror variant when we are in r2l mode,

https://doi.org/10.47397/tb/43-3/tb135hagen-mathchange

TUGboat, Volume 43 (2022), No. 3

just like we look up a smaller variant when we’re in
compact font mode (a ConTEXt feature).

HN_Cs_\ Cs=Ys 3

Another application of replacealphabets is to
drop in single characters from another font. We use
this for instance to replace the ‘not really an alpha’
in Bonum by one of our own liking. Here we show
the Bonum math italic ‘a’ and its original alpha,
together with the modified alpha:

ata+a

For this we ship a companion font. On our disks
(and in the distribution) you can find, in the directory
/tex/texmf-fonts/fonts/data/cms/companion:

(Y # 3) S

RalphSmithsFormalScript-Companion.otf
TeXGyreBonumMath-Companion.otf
XITSMath-Companion.otf

These are efficient drop-ins that are injected
by the replacealphabets, some under user control,
some always. We tried to limit the overhead, and
bidirectional math could be simplified, which also
had the benefit that when one does tens of thousands
of bodyfont switches a bit of runtime is gained.

There are more tweaks: addactuarian creates
the relevant actuarial symbols which is a right-sided
radical (the engine has support for two-sided radi-
cals). Tt takes a bit of juggling with virtual glyphs
and extensible recipes, but the results are rewarding.

2 -1
x:T

In a similar fashion we try to add missing ex-
tensible arrows with addarrows, bars with addbars,
equals with addequals and again using the radical
mechanism fourier notation symbols (like hats) with
addfourier. That one involves subtle kerning be-
cause these symbols end up at the right top of a
fence-like symbol.

Trg#h(&) = (f*g*h) (&)

This was one of the reasons to introduce a more
advanced kerning mechanism in the engine, which is
not entirely trivial because one has to carry around
more information, since all this is font- and character-
bound, and when wrapped in boxes that gets hard
to analyze. The addrules tweak makes sure that
we can do bars over and under constructs properly,
and addparts is there to add extensible recipes to
characters.

Some of these tweaks are not new and are also
available in MKIV, but more as features (optionally
driven by the goodie file). An example is addscripts
that is there for specially positioned and scaled signs

301

(high minus and such) but that tweak will proba-
bly be redone as part of “deal with all these plus
and minus issues”. The (dedicated to Alan Braslau)
addprivates tweak is an example of this: we add
specific variants for unary minus and plus that users
can enable on demand, which in turn of course gives
class-specific spacing, but we promised not to discuss
those engine features here.

2 1 1
J |(x+2)7 - (x+2)2 | ax
1

There is a handful of tweaks that deal with fixing
glyph properties (in detail). We mention: dimen-
sions and accentdimensions that can reposition in
the bounding box, fix the width and italic correction,
squeeze and expand, etc. The kernpairs tweak adds
kern pairs to combinations of characters, while the
kerns tweak provides a way to add top left, bottom
left, top right and bottom right kerns—and those
really make the results look better so we love it!

The margins tweak sets margin fields that the
engine can use to better calculate accent position-
ing over the base character. The same is true for
setovershoots that can make accents lean over a
bit. The staircase feature can be used to add the
(somewhat complicated) OpenType kerns. From all
this you can deduce that the engine has all types of
kerning that OpenType requires, and more.

Accents as specified in fonts can be a pain to
deal with, so we have more tweaks for them: copy-
accents moves them to the right slots and extend-
accents makes sure that we can extend them. Not
all font makers have the same ideas about where
these symbols should sit and what their dimensions
should be.

The checkspacing tweak fixes bad or missing
spacing related to Unicode character entries in the
font, because after all, we might need them. We need
to keep MathML in mind, for instance, which means:
processing content that we don’t see and that can con-
tain whatever an editor puts in. The replacements
feature replaces one character by another from the
same font, while substitutes replaces a character
by one from a stylistic feature.

Relatively late we added the setoptions feature
which was needed to control the engine for specific
fonts. The rendering is controlled by a bunch of
options (think of kerning, italic correction, and such).
Some are per font, many per class. Because we can
(and do) use mixed math fonts in a document, we
might need to adapt the engine-level options per font,

New directions in math fonts

302

and that is what this tweak does: it passes options
to the font so that the engine can consult them
and prefer them over the ‘global’ ones. We needed
this for some fonts that have old school dimensions
for extensibles (like Lucida), simply because they
imitated Computer Modern. Normally that goes
unnoticed, but, as mentioned before, it interferes
with our optional kerning. The fixoldschool tweak
sort of can fix that too so setoptions is seldom
needed. Luckily, some font providers are willing to
fix their fonts!

We set and configure all these tweaks in a so-
called goodie file, basically a runtime module that
returns a Lua table with specifications. In addition
to the tweaks subtable in the math namespace, there
is a subtable that overloads the font parameters: the
ones that OpenType specifies, but also new ones that
we added. In the next section we elaborate more on
these font-bound parameters.

3 Font parameters

At some point in the upgrading of the math machin-
ery we discussed some of the inconsistencies between
the math constants of the XITS and STIX fonts. Now,
one has to keep in mind that XITS was based on a
first release of STIX that only had Type 1 fonts so
what follows should not to be seen as criticism, but
more as observations and reason for discussion, as
well as a basis for decisions to be made.

One thing we have to mention in advance: we
often wonder why weird and/or confusing stuff in
math fonts goes unnoticed. We have some ideas:

e The user doesn’t care that much how math
comes out. This can easily be observed when
you run into documents on the Internet or posts
on forums. And publishers don’t always seem
to care either. Consistency with old documents
sometimes seems to be more important than
quality.

e The user switches to another math font when
the current one doesn’t handle its intended math
domain well. We have seen that happen and it’s
the easiest way out when you have little control
anyway (for instance when using online tools).

e The user eventually adds some skips and kerns
to get things right, because after all TEX is also
about tweaking.

e The user doesn’t typeset math that is partic-
ularly complex. It’s mostly inline math with
an occasional alignment (also in text style) and
very few multi-level displays (with left and right
fences that span at most a fraction).

We do not claim to be perfect, but we care
for details, so let’s go on. Table 1 shows the math

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 3

constants as they can be found in the STIX (two)
and XITS (one) fonts. When you typeset with these
fonts you will notice that XITS is somewhat smaller,
so two additional columns show the values used to
compensate for the axis height and accent base height.
For the relevance column: (1) ‘mandatory’ means a
design-related value the font designer must supply;
(2) ‘optional’ means apparently redundant values
that would normally be identical; (3) a blank cell
(the vast majority) means a value likely needed to
be configured at the macro/document level.

As you can see in the table, very few values are
the same. So, what exactly do these constants tell
us? You might even wonder why they are there at all.
Just think of this: we want to typeset math, and we
have an engine that we can control. We know how we
want it to look. So, what do these constants actually
contribute? Plenty relate to the height and depth of
the nucleus and/or the axis. The fact that we have
to fix some in the goodie files, and the further fact
that we need more variables that control positioning,
makes for a good argument to just ignore most of the
ones provided by the font, especially when they seem
somewhat arbitrary. Can it be that font designers
are just gambling a bit, looking at another font, and
starting from there?

The relationship between TEX'’s math font pa-
rameters and the OpenType math constants is not
one-to-one. Mapping them onto each other is pos-
sible but font dependent. However, we can assume
that the values of Computer Modern are leading.

The AxisHeight, AccentBaseHeight and
FlattenedAccentBaseHeight are set to the
x-height, a value that is defined in all fonts. The
SkewedFractionVerticalGap also gets that value.
Other variables relate to the em-width (or \quad),
for instance the SkewedFractionHorizontalGap
that gets half that value. Of course these last
two then assume that the engine handles skewed
fractions.

Variables that directly map onto each other are
StretchStackGapBelowMin — bigopspacingl,
StretchStackTopShiftUp — bigopspacing3,
StretchStackGapAboveMin — bigopspacing?2,
StretchStackBottomShiftDown — bigopspacing4.
However, these clash with other mappings:
UpperLimitGapMin — bigopspacingl,
LowerLimitGapMin — bigopspacing2,
UpperLimitBaselineRiseMin — bigopspacing3,
LowerLimitBaselineDropMin — bigopspacing4.
While in traditional fonts these are the same, in
OpenType they can be different. Should they be?

Internally we use different names for variables,
simply because the engine has some parameters that

TUGboat, Volume 43 (2022), No. 3 303

Table 1: OpenType math parameters, compared; bold indicates an unchanged value.
See text for explanation of relevance.

constant STIX XITS base axis relevance
AccentBaseHeight 450 480 480 464 optional**
AxisHeight 250 258 267 258 mandatory
DelimitedSubFormulaMinHeight 1500 1325 1600 1548
DisplayOperatorMinHeight 1450 1800 1547 1496
FlattenedAccentBaseHeight 662 656 706 683 optional**
FractionDenominatorDisplayStyleGapMin 198 150 211 204
FractionDenominatorDisplayStyleShiftDown 700 640 47 722
FractionDenominatorGapMin 66 68 70 68
FractionDenominatorShiftDown 480 585 512 495
FractionNumeratorDisplayStyleGapMin 198 150 211 204
FractionNumeratorDisplayStyleShiftUp 580 640 619 599
FractionNumeratorGapMin 66 68 70 68
FractionNumeratorShiftUp 480 585 512 495
FractionRuleThickness 66 68 70 68 optional
LowerLimitBaselineDropMin 600 670 640 619
LowerLimitGapMin 150 135 160 155
MathLeading 150 150 160 155
MinConnectorOverlap 50 100 53 52 mandatory
OverbarExtraAscender 66 68 70 68
OverbarRuleThickness 66 68 70 68 optional*
OverbarVerticalGap 198 175 211 204
RadicalDegreeBottomRaisePercent 70 55 75 72 mandatory
RadicalDisplayStyleVerticalGap 186 170 198 192
RadicalExtraAscender 66 78 70 68
RadicalKernAfterDegree —-5556 =335 -592 -573
RadicalKernBeforeDegree 277 65 295 286
RadicalRuleThickness 66 68 70 68
RadicalVerticalGap 82 85 87 85
ScriptPercentScaleDown 75 70 80 7
ScriptScriptPercentScaleDown 60 55 64 62
SkewedFractionHorizontalGap 300 350 320 310
SkewedFractionVerticalGap 66 68 70 68
SpaceAfterScript 41 40 44 42
StackBottomDisplayStyleShiftDown 900 690 960 929
StackBottomShiftDown 800 385 853 826
StackDisplayStyleGapMin 462 300 493 477
StackGapMin 198 150 211 204
StackTopDisplayStyleShiftUp 580 780 619 599
StackTopShiftUp 480 470 512 495
StretchStackBottomShiftDown 600 590 640 619
StretchStackGapAboveMin 150 68 160 155
StretchStackGapBelowMin 150 68 160 155
StretchStackTopShiftUp 300 800 320 310
SubSuperscriptGapMin 264 150 282 272
SubscriptBaselineDropMin 50 160 53 52
SubscriptShiftDown 250 210 267 258
SubscriptTopMax 400 368 427 413
SuperscriptBaselineDropMax 375 230 400 387
SuperscriptBottomMaxWithSubscript 400 380 427 413
SuperscriptBottomMin 125 120 133 129
SuperscriptShiftUp 400 360 427 413
SuperscriptShiftUpCramped 275 252 293 284
UnderbarExtraDescender 66 68 70 68
UnderbarRuleThickness 66 68 70 68 optional*
UnderbarVerticalGap 198 175 211 204
UpperLimitBaselineRiseMin 300 300 320 310
UpperLimitGapMin 150 135 160 155

New directions in math fonts

304

OpenType math does not. So for bigopspacing5,
we have 1imit_above_kern and 1limit_below_kern.
A couple of parameters have different values for
(cramped) displaystyle:
FractionDelimiterSize — delim2,
FractionDelimiterDisplayStyleSize — deliml,
FractionDenominatorShiftDown — denom?2,
FractionDenominatorDisplayStyleShiftDown
— denoml, and their numerator counterparts from
num2 and numi. The Stack* parameters also use
these. The subl, sub2, supl, sup2, sup3, supdrop
parameters can populate the Sub* and Super* pa-
rameters, also in different styles.

The rest of the parameters can be defined in
terms of the default rulethickness, quad or x-height,
often multiplied by a factor. For some we see the
1/18 show up, a number we also see with muskips.
Some constants can be set from registers, such as
SpaceAfterScript which is just \scriptspace.

If you look at the LuaTEX source you will find
a section where this mapping is done in the case
of a traditional font, that is: one without a math
constants table. In LuaMetaTEX we don’t need to do
this because font loading happens in Lua. So we sim-
ply issue an error when the math engine can’t resolve
a mandatory parameter. The fact that we have a par-
tial mapping from math constants onto traditional
parameters and that LuaTEX has to deal with the
traditional ones too make for a somewhat confusing
landscape. When in LuaMetaTEX we assume wide
fonts to be used that have a math constants table,
we can probably clean up some of this.

We need to keep in mind that Cambria was
the starting point, and it did borrow some concepts
from TEX. But TEX had parameters because there
was not enough information in the glyphs! Also,
Cambria was meant for Word, and a word processor
is unlikely to provide the level of control that TEX
offers, so it needs some directions with respect to
e.g. spacing. Without user control, it has to come
up with acceptable compromises. So actually the
LuaMetaTEX math engine can be made a bit cleaner
when we just get rid of these parameters.

So, which constants are actually essential? The
AxisHeight is important and also design-related.
By definition, this is where the minus sits above the
baseline, and this is usually true even in practice. It
is used for displacements of the baseline so that for
instance fractions nicely align. When testing scripts
anchored to fences we noticed that the parenthesis
in XITS had too little depth while STIX had the
expected amount. This relates to anchoring relative
to the math axis.

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 3

Is there a reason why UnderbarRuleThickness
and OverbarRuleThickness should differ? If not,
then we only need a variable that somehow tells
us what thickness fits best with the other top and
bottom accents. It is quite likely the same as the
RadicalRuleThickness, which is needed to extend
the radical symbol. So, here three constants can be
replaced by one design-related one. The parameter
FractionRuleThickness can also be derived from
that, but more likely is that it is a quantity that
the macro package sets up anyway, maybe related to
rules used elsewhere.

The parameters MinConnectorQOverlap and
RadicalDegreeBottomRaisePercent also relate to
the design although one could abuse the top accent
anchor for the second one. So they are important.
However, given the small number of extensibles, they
could have been part of the extensible recipes.

The parameters AccentBaseHeight and
FlattenedAccentBaseHeight might relate to the
margin that the designer put below the accent as
part of the glyph, which is kind of a design-related
constant. Nevertheless, we fix quite a lot of accents
in the goodie files because they can be inconsistent.
That makes these constants somewhat dubious too.
If we have to check a font, we can just as well set
up constants that we need in the goodie file. Also,
isn’t it weird that there are no bottom variants? (In
OpenType; Knuth didn’t need them for TAOCP.)

We can forget about MathLeading as it serves no
purpose in TEX. The DisplayOperatorMinHeight
is often set wrong so although we fix that in the
goodie file it might be that we just can use an internal
variable. It is not the font designer who decides
that anyway. The same is true for the parameter
DelimitedSubFormulaMinHeight.

If we handle skewed fractions, SkewedFraction-
HorizontalGap and SkewedFractionVerticalGap
might give an indication of the tilt but why do we
need two? It is design-related though, so they have
some importance, when set right.

The rest can be grouped, and basically we can
replace them by a consistent set of engine parameters.
We can still set them up per font, but at least we
can then use a clean set. Currently, we already have
more. For instance, why only SpaceAfterScript
and not one for before, and how about prescripts
and primes? If we have to complement them with
additional ones and also fix them, we might as well
set up all these script-related variables.

For fractions, the font provides:
FractionDenominatorDisplayStyleGapMin,
FractionDenominatorDisplayStyleShiftDown,
FractionDenominatorGapMin,

TUGboat, Volume 43 (2022), No. 3

FractionDenominatorShiftDown,
FractionNumeratorDisplayStyleGapMin,
FractionNumeratorDisplayStyleShiftUp,
FractionNumeratorGapMin,
FractionNumeratorShiftUp. We might try to come
up with a simpler model.

Limits have:
LowerLimitBaselineDropMin,

LowerLimitGapMin,
UpperLimitBaselineRiseMin,
UpperLimitGapMin. Limits are tricky anyway as

they also depend on abusing the italic correction for
anchoring.

Horizontal bars are driven by:
OverbarExtraAscender,

OverbarVerticalGap,

UnderbarExtraDescender,

UnderbarVerticalGap, but for e.g. arrows we are
on our own, so again not such a useful set.

Then radicals; we need some more than these:
RadicalDisplayStyleVerticalGap,
RadicalExtraAscender,
RadicalKernAfterDegree,
RadicalKernBeforeDegree,

RadicalVerticalGap. Because we definitely need
to check and fix these, there is no gain having them
in the font.

Isn’t it more a decision by the macro package
how script and scriptscript should be scaled? Cur-
rently we listen to ScriptPercentScaleDown and
ScriptScriptPercentScaleDown, but maybe it re-
lates more to usage.

We need more control than just SpaceAfter-
Script and an engine could provide it more consis-
tently. It’s a loner.

How about StackBottomShiftDown,
StackBottomDisplayStyleShiftDown,
StackDisplayStyleGapMin,

StackGapMin,

StackTopDisplayStyleShiftUp,
StackTopShiftUp? And aren’t these more for the
renderer to decide: StretchStackBottomShiftDown,
StretchStackGapAboveMin,
StretchStackGapBelowMin,
StretchStackTopShiftUp?

This messy bit can also be handled more conve-
niently, so what exactly is the relationship with the
font design of: SubSuperscriptGapMin,
SubscriptBaselineDropMin,
SubscriptShiftDown,

SubscriptTopMax,
SuperscriptBaselineDropMax,
SuperscriptBottomMaxWithSubscript,
SuperscriptBottomMin,

305

SuperscriptShiftUp,
SuperscriptShiftUpCramped?

Just for the record, here are the (font-related)
ones we added so far. A set of prime-related con-
stants similar to the script ones:
PrimeBaselineDropMax,

PrimeRaisePercent,
PrimeRaiseComposedPercent,
PrimeShiftUp,
PrimeShiftUpCramped,
PrimeSpaceAfter,
PrimeWidthPercent.

We also added SpaceBeforeScript just because
we want to be symmetrical in the engine where we
also have to deal with prescripts.

These we provide for further limit positioning:
NoLimitSupFactor, NoLimitSubFactor;
these for delimiters: DelimiterPercent,
DelimiterShortfall;
and these for radicals in order to compensate for
sloping shapes: RadicalKernAfterExtensible,
RadicalKernBeforeExtensible because we have
double-sided radicals.

Finally, there are quite some (horrible) accent
tuning parameters: AccentBaseDepth,
AccentBottomOvershoot,
AccentBottomShiftDown,

AccentExtendMargin,
AccentFlattenedBaseDepth,
AccentSuperscriptDrop,
AccentSuperscriptPercent,
AccentTopOvershoot,

AccentTopShiftUp,
FlattenedAccentBottomShiftDown,
FlattenedAccentTopShiftUp, but we tend to move
some of that to the tweaks on a per accent basis.

Setting these parameters right is not trivial,
and also a bit subjective. We might, for instance,
assume that the math axis is set right, but alas,
when we were fixing the less and greater symbols in
Lucida Bright Math, we found that all symbols were
designed for a math axis of 325, instead of the given
value 313, and that difference can be seen. If you
look closely, the points on the greater than sign and
the braces are slightly below the minus sign in “Old
Lucida” on the left, and aligned completely on the
right. (The greater than sign is also larger in size.
See the accompanying article on Lucida for more
examples and discussion of this particular font.)

1
2> — a— 2> — —
1+ x 1+x

Old Lucida New Lucida

New directions in math fonts

306

The assumption is that the axis goes through
the middle of the minus. Luckily it was relatively
easy to fix these two symbols (they also had to be
scaled, maybe they originate in the text font?) and
adapt the axis. We still need to check all the other
fonts, but it looks like they are okay, which is good
because the math axis plays an important role in
rendering math. It is one of the few parameters that
has to be present and right. A nice side effect of this
is that we end up discussing new (ConTEXt) features.
One can for instance shift all non-character symbols
down just a little and lower the math axis, to get a
bit more tolerance in lines with many inline fractions,
radicals or superscripts, that otherwise would result
in interline skips.

A first step in getting out of this mess is to
define all these parameters in the goodie file where
we fix them anyway. That way we are at least not
dependent on changes in the font. We are not a word
processor so we have way more freedom to control
matters. And preset font parameters sometimes do
more harm than good. A side effect of a cleanup can
be that we get rid of the evolved mix of uppercase and
lowercase math control variables and can be more
consistent. Ever since LuaTEX got support for Open-
Type, math constants’ names have been mapped and
matched to traditional TEX font parameters.

4 Metrics, especially italic corrections

By “metrics”, we refer to the dimensions and other
properties of math glyphs. The origin of digital math
fonts is definitely Computer Modern and thereby the
storage of properties is bound to the TFM file format.
That format is binary and can be loaded fast. It
can also be stored in the format, unless you're using
LuaTEX or LuaMetaTEX where Lua is the storage
format. A TFM file stores per character a width,
height, depth and italic correction. The file also
contains font parameters. In math fonts there are
extensible recipes and there is information about
next-in-size glyphs. The file has kerning and ligature
tables too.

Given the times TEX evolved in, the format is
rather compact. For instance, the height, depth
and italic correction are shared and indices to three
shared values are used. There can be only 16 distinct
heights, 16 depths and 64 italic corrections. That
way much fits into a memory word.

The documentation tells us that “The italic cor-
rection of a character has two different uses. (a) In
ordinary text, the italic correction is added to the
width only if the TEX user specifies ‘\/’ after the
character. (b) In math formulas, the italic correction

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 3

is always added to the width, except with respect to
the positioning of subscripts.”

It is this last phenomenon that gives us some
trouble with fonts in OpenType math. The fact that
traditional fonts cheat with the width and that we
add and selectively remove or ignore the correction
makes for fuzzy code in LuaTEX, although splitting
the code paths and providing options to control all
this helps a bit. In LuaMetaTEX we have more
control but also expect an OpenType font. In Open-
Type math there are italic corrections, and we even
have the peculiar usage of it in positioning limits.
However, the idea was that staircase kerns do the
detailed relative positioning.

Before we dive into this a bit more, it is worth
mentioning that Don Knuth paid a lot of attention
to details. The italic alphabet in Computer Modern
math uses nearly the same shapes as the CM text
italic but metrics are quite different, as shown be-
low. We have also met fonts where it looked like
the text italics were used, and the math metrics han-
dled via more excessive italic corrections, sometimes
combined with staircase kerns that basically were
corrections for the side bearing. This is why we al-
ways come back to Latin Modern and Cambria when
we investigate fonts: one is based on the traditional
TEX model, with carefully chosen italic corrections,
and the other is based on the OpenType model with
staircase kerning. They are our reference fonts.

Latin Modern Roman (text) italic:
abcdefghijklmnopqrstuvwryz
Latin Modern Roman math italic:

abcde fghijkimnopgrstuvwxyz

In ConTEXt MKIV we played a lot with italic
correction in math and there were ways to enforce,
ignore, selectively apply it, etc. But, because fonts ac-
tually demand a mixture, in LuaMetaTEX we ended
up with more extensive runtime patching of them.
Another reason for this was that math fonts can have
weird properties. It looks like when these standards
are set and fonts are made, the font makers can do
as they like as long as the average formula comes
out right, and metrics to some extent resemble a
traditional font. However, when testing how well a
font behaves in a real situation there can be all kinds
of interferences from the macro package: inter-atom
kerning, spacing correction macros, specific handling
of cases, etc. We even see OpenType fonts that
seem to have the same limited number of heights,
depths and italic corrections. And, as a consequence
we get for instance larger sizes of fences having the

TUGboat, Volume 43 (2022), No. 3

same depth for all the size variants, something that is
pretty odd for an OpenType font with no limitations.

The italic correction in traditional TEX math
gets added to the width. When a subscript is at-
tached to a kernel character it sits tight against that
character: its position is driven by the width of the
kernel. A superscript on the other hand is moved over
the italic width so that it doesn’t overlap or touch the
(likely) “sticking out bit” of the kernel. This means
that a traditional font (and many OpenType math
fonts are modelled after Computer Modern) have to
find compromises of width and italic correction for
characters where the subscript is supposed to move
left (inside the bounding box of the kernel).

The OpenType specification has some vague
remarks about applying italic correction between the
last in a series of slanted shapes and operators, as well
as positioning limits, and suggests that it relates to
relative super- and subscript positioning. It doesn’t
mention that the correction is to be added to the
width. However, the main mechanism for anchoring
scripts are these top and bottom edge kerns. This is
why in fonts that provide these, we are unlikely to
find italic correction unless it is used for positioning
limits.

It is for that reason that an engine can produce
reasonable results for fonts that either provide italics
or provide kerns for anchoring: having both on the
same glyph would mean troubles. It means that
we can configure the engine options to add italic
correction as well as kerns, assuming distinct usage
of those features. For a font that uses both we need to
make a choice (this is possible, since we can configure
options per font). But that will certainly not lead to
math that is always nicely typeset. In fact, without
tweaks many fonts will still look right because in
practice they use some mixture. But we are not
aiming at partial success, we want all to look good.

Here is another thing to keep in mind (although
now we are guessing a bit). There is a limited number
of heights and depths in TEX fonts possible (16),
but four times as many italic corrections can be
defined (64). Is it because Don Knuth wanted to
properly position the sub- and subscripts? Adding
italic correction to the width is pretty safe: shapes
should not overlap. Choosing the right width for a
subscript needs more work because it’s more visual.
In the end we have a width that is mostly driven by
superscript placement! That also means that as soon
as we remove the italic correction things start looking
bad. In fact, because upright math characters also
have italic correction the term ‘italic’ is a bit of a
cheat: it’s all about script positioning and has little
to do with the slope of the shapes.

307

4.1 Spacing

One of the reasons why for instance spacing between
an italic shape and an upright one in TEX works out
okay is that in most cases they come from a different
font, which can be used as criterion for keeping the
correction; between a sequence of same-font charac-
ters it gets removed. However, in OpenType math
there is a good chance that all comes from the same
font (at least in ConTEXt), unless one populates
many families as in traditional TEX. We have no
clue how other macro packages deal with this but
it might well be the case that using many families
(one for each alphabet) works better in the end. The
engine is shape- and alphabet-agnostic, but one can
wonder if we should add a glyph property indicat-
ing the distinctive range. It would provide engine
level control over a run of glyphs (like multiplying
a variable represented by a greek alpha by another
variable represented by an upright b).

But glyph properties cannot be easily used here
because we are still dealing with characters when
the engine transforms the noad list into a node list.
So, when we discussed this, we started wondering
how the engine could know about a specific shape
(and tilt) property at all, and that brought us to
pondering about an additional axis of options. We
already group characters in classes, but we can also
group them with properties like tilted, dotless,
bold. When we pair atoms we can apply options,
spacing and such based on the specific class pair, and
we can do something similar with category pairs.

It boils down to, for instance, a new \mccode
that binds a character to a category. Then we add a
command like \setmathcategorization (analogue
to \setmathspacing) that binds options to pairs of
categories. An easier variant of this might be to let
the \mccode carry a (bit)set of options that then get
added to the already existing options that can be
bound to character noads as we create them. This
saves us some configuration. Deciding what suits
best depends on what we want to do: the fact that
TEX doesn’t do this means that probably no one
ever gave it much thought, but once we do have this
mechanism it might actually trigger demand, if only
by staring at existing documents where characters
of a different kind sit next to each other (take this
‘a’ invisible times ‘x’). It would not be the first time
that (in ConTEXt) the availability of some feature
triggers creative (ab)usage.

4.2 Moving towards kerns

Because the landscape has settled, because we haven’t
seen much fundamental evolution in OpenType math,
because in general TEX math doesn’t particularly

New directions in math fonts

308

evolve, and because ConTEXt in the past has not
been seen as suitable for math, we can, as mentioned
before, basically decide what approach we follow. So,
that is why we can pick up on this italic correction in
a more drastic way: we can add the correction to the
width, thereby creating a nicely bounded glyph, and
moving the original correction to the right bottom
kern, as that is something we already support. In
fact, this feature is already available, we only had to
add setting the right bottom kern. The good news
is that we don’t need to waste time on trying to get
something extra in the font format, which is unlikely
to happen anyway after two decades.

It is worth noticing that when we were exploring
this as part of using MetaPost to analyze and visual-
ize these aspects, we also reviewed the wipeitalics
tweak and wondered if, in retrospect, it might be a
dangerous one when applied to alphabets (for digits
and blackboard bold letters it definitely makes sense):
it can make traditional super- and subscript anchor-
ing less optimal. However, for some fonts we found
that improper bounding boxes can badly interfere
anyway: for instance the upright ‘f” in EB Garamond
sticks out left and right, and has staircase kerns that
make scripts overlap. The right top of the shape
sticks out a lot and that is because the text font
variant is used. We had already decided to add a
moveitalics tweak that moves italic kerns into the
width and then setting a right bottom kern that com-
pensates it that can be a pretty good starting point
for our further exploration of optimal kerns at the
corners. That tweak also fixes the side bearings (neg-
ative 1lx) and compensates left kerns (when present)
accordingly. An additional simplifykerns tweak
can later migrate staircase kerns to simple kerns.

So, does all this free us from tweaks such as
dimensions and kerns? Not completely. But we
can forget about the italic correction in most cases.
We have to set up fewer lower right kerns and maybe
correct a few. It is just a more natural solution. So
how about these kerns that we need to define? After
all, we also have to deal with proper top kerns, and
like to add kerns that are not there simply because
the mentioned compromise between width, italic cor-
rection, and their combination was impossible. More
about that in the next section.

5 Kerning

In the next pictures we will try to explain more
visually what we have in mind and are experimenting
with as we write this. In the traditional approach
we have shapes that can communicate the width,
height, depth and italic correction to the engine so
that is what the engine can work with. The engine

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 3

also has the challenge of anchoring subscripts and
superscripts in a visually pleasing way.

/"N /| .

two characters

width only with italic

In this graphic we show two pseudo-characters.
Each shown bounding box indicates the width as
seen by the engine. An example of such a shape is
the math italic ‘f’, and as it is used a lot in formulas
it is also one of the hardest to handle when it comes
to spacing: in nearly all fonts the right top sticks
out and in some fonts the left part also does that.
Imagine how that works out with scripts, fences and
preceding characters.

When we put two such characters together they
will overlap, and this is why we need to add the italic
correction. That is also why the TEX documentation
speaks in terms of “always add the italic correction
to the width”. This also means that we need to
remove it occasionally, something that you will notice
when you study for instance the LuaTgX source,
that has a mix of traditional and OpenType code
paths. Actually, compensating can be done either by
changing the width property of a glyph node or by
explicitly adding a kern. In LuaMetaTEX we always
add real kerns because we can then trace better.

The last graphic in the above set shows how we
compensate the width for the bit that sticks out. It
also shows that we definitely need to take neighboring
shapes into account when we determine the width
and italic correction, especially when the latter is
not applied (read: removed).

L]
[]

kernel subscript superscript

Here we anchored a super- and subscript. The
subscript position is tight to the advance width, again
indicated by the box. The superscript however is
moved by the italic correction and in the engine
additional spacing before and after can be applied
as well, but we leave that for now. It will be clear
that when the font designer chooses the width and
italic correction, the fact that scripts get attached
has to be taken into account.

two characters width only

TUGboat, Volume 43 (2022), No. 3

In this graphic we combine the italic correction
with the width. Keep in mind that in these examples
we use tight values but in practice that correction
can also add some extra right side bearing (white
space). This addition is an operation that we can
do when loading a font. At the same time we also
compensate the left edge for which we can use the
x-coordinate of the left corner of the glyph’s real
bounding box. The advance width starts at zero and
that corner is then left of the origin. By looking at
shapes we concluded that in most cases that shift
is valid for usage in math where we don’t need that
visual overlap. In fact, when we tested some of that
we found that the results can be quite horrible when
you don’t do that; not all fonts have left bottom
kerning implemented.

The dot at the right indicates the old italic
correction. Here we let it sit on the edge but as
mentioned there can be additional (or maybe less)
italic correction than tight.

i

subscript superscript

Finally we add the scripts here. This time we
position the superscript and subscript at the top and
bottom anchors. The bottom anchor is, as mentioned,
the old italic correction, and the top one currently
just the edge. And this is what our next project
is about: identify the ideal anchors and use these
instead.

In the ConTEXt goodie files (the files that tweak
the math fonts at runtime) we can already set these
top and bottom anchors and the engine will use them
when set. These kerns are not to be confused with
the more complicated staircase kerns. They are much
simpler and lightweight. The fact that we already
have them makes it relatively easy to experiment
with this.

It must be noted that we talk about three kinds
of kerns: inter-character kerns, corner kerns and
staircase kerns. We can set them all up with tweaks
but so far we’ve only done that for the most sig-
nificant ones, like integrals. The question is: can
we automate this? We should be careful because
the bad top accent anchors in the TEX Gyre fonts
demonstrate how flawed heuristics can be. It’s inter-
esting to remark that the developers of these font
used MetaPost and are highly qualified in that area.
And for us using MetaPost is also natural!

The approach that we follow is somewhat in-
teractive. When working on the math update we

309

like to chat (with Zoom) about these matters. We
discuss and explore plenty and with these kerns we
do the same. Because MetaPost produces such nice
and crisp graphics, and because Metafun is well-
integrated into ConTEXt we can link all these sub-
systems and just look at what we get. A lot is about
visualization: if we discuss so-called ‘grayness’ as
related to kerning, we end up with calculating areas,
then look at what it tells us and as a next step figure
out some heuristic. And of course we challenge each
other into new trickery.

Q

We are sure that getting this next stage in the
perfection of math typesetting in ConTEXt and Lua-
MetaTEX will take quite some time, but the good
news is that all machinery is in place. We also have
to admit that it might not all work out well, so we
end up sticking to what we have now. But at least
we had the fun then. It is also a nice example of both
applying mathematics and programming graphics.

That said, if it works out well, we can populate
the goodie files with output from MetaPost, tweak
a little when needed, and that saves us some time.
One danger is that when we try to improve rendering
the whole system also evolves which in turn will give
different output, but we can always implement all
this as features because after all ConTEXt is very
much about configuration. And it makes for nice
topics for articles and talks too!

The kerns discussed in the previous paragraphs
are not the ones that we find in OpenType fonts.
There we have ‘staircase’ kerns that stepwise go up or
down by height and kern. So, one can have different
kerns depending on the height and sort of follow the
shape. This permits quite precise kerning between
for instance the right bottom of a kernel and left
top of a subscript. So how is that used in practice?
The reference font Cambria has these kerns but close
inspection shows that these are not that accurate.
Fortunately, we never enter the danger zone with
subscripts, because other parameters prevent that.
If we look at for instance Lucida and Garamond,
then we see that their kerns are mostly used as side
bearings, not as staircase kerns.

New directions in math fonts

310
J [J o
U+1D6FD U+003A4 U+1D4CC U+1D6B8 U+1D70C

In these figures you see a few glyphs from Cam-
bria with staircase kerns and although we show them
at a small size, you will notice that some kern bound-
aries touch the shape. As subscripts never go that
high it goes unnoticed but it also shows that sticking
to the lowest boundary makes sense.

We conclude that we can simplify these kerns,
and just transform them into our (up to four) corner
kerns. It is unlikely that Cambria gets updates and
that other fonts become more advanced. One can
even wonder if multiple steps really give better results.
The risk of overlap increases with more granularity
because not every pair of glyphs is checked. Also,
the repertoire of math characters will likely not grow
substantially, or include shapes that differ much from
what we can look at now. Reducing these kerns to
simple ones, that can easily be patched at will in a
goodie file, has advantages. We could even simplify
the engine that way.

6 Conclusion

So, how can we summarize the above? The first
conclusion is that we can only get good results when
we runtime patch fonts to suit the engine and our
(ConTEXt) need. The second conclusion is that we
should seriously consider to drop (read: ignore) most
math font parameters, and/or to reorganize them.
There is no need to be conforming, because these pa-
rameters are often not that well implemented (thumb
in mouth). The third conclusion, or perhaps obser-
vation, is that we should get rid of the excessive
use of italic correction, and go for our new corner
kerns instead. Last, we can conclude that it makes
sense to explore how we can use MetaPost to analyze
the shapes in such a way that we can improve inter-
character kerning, corner kerns and maybe even, in
a limited way, staircase kerns.

And, to come back to accents: very few char-
acters need a top kern. Most can be handled with
centered anchors, and we need tweaks for margins
and overshoot anyway. The same is true for many
other tweaks: they are there to stay.

This is how we plan to go forward:

o We pass no italic corrections in the math fonts to
the engine, but instead we have four dedicated
simple corner kerns, top and bottom anchors,
and we also compensate for a negative left side
bearing. We should have gone that route earlier

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 3

(as a follow-up on a MKIV feature) but were still
in some backward compatibility mindset.

e The LuaMetaTEX math engine might then be
simplified by removing all code related to italic
correction. Of course it hurts that we spent
so much time on that over the years. We can
anyway disable engine options related to italic
correction in the ConTEXt setup. Of course the
engine is less old school generic then but that is
the price of progress.

e A default goodie file is applied that takes care of
this when no goodie file is provided. We could
do something in the engine, but there is no real
need for that. We can simplify the mid-2022
goodie files because we have to fix fewer glyphs.

o If we end up needing italic corrections again
(that is: backtrack) then we can use the (new)
\mccode option code that can identity sloped
shapes. But, given that ignoring the correction
between sloped shapes looks pretty bad, we can
as well forget about this. After all, italic correc-
tion was never so much about correcting italics,
but more about anchoring scripts.

e Staircase kerns can be reduced to simple corner
kerns and the engine can be simplified a bit
more. In the end, all we need is true widths and
simple corner kerns.

o We reorganize the math parameters and get rid
of those that are not truly dependent on the
font design. This also removes a bit of overlap.
This will be done as we document.

o Eventually we can remove tweaks that are no
longer needed in the new setup, which is a good
thing as it also saves us some documenting and
maintenance.

All this will happen in the perspective of Con-
TEXt and LuaMetaTEX but we expect that after a
few years of usage we can with confidence come to
some conclusions that can trickle back into the other
engines so that other macro packages can benefit
from a somewhat radically different, but reliable,
approach to math rendering, one that works well
with both old and new fonts.

¢ Hans Hagen
Pragma ADE

o Mikael P. Sundqvist
Department of Mathematics
Lund University
Box 118
221 00 Lund
Sweden
mickep (at) gmail dot com

TUGboat, Volume 43 (2022), No. 3

Patching Lucida Bright Math
Hans Hagen, Mikael P. Sundqvist

1 Introduction

During the last year we have been working on the
typesetting of mathematics in ConTgXt LMTX. This
system is using OpenType fonts, and in particular
Unicode math fonts. In the last decade several such
math fonts have been created, many of them by con-
verting old fonts from the Type 1 format. Lucida
Bright Math! is one of these fonts, though the de-
signers, Charles Bigelow and Kris Holmes, made sig-
nificant additions and changes when developing the
OpenType version. It comes in two weights, regular
and bold.

While working through the math engine we have
been running tests with essentially all the freely
available OpenType math fonts available, and we
have noticed that, besides being different in the ap-
proach to italic corrections, kerning and metrics,
they all come with small issues. This is not so sur-
prising, given that the fonts typically have thousands
of glyphs, many parameters, and the specification of
the format is often vague.

We fixed many common font issues in so-called
goodie files, and the patching takes place at runtime.
(See the accompanying article in this issue for much
more about this.) We have finally come to a point
where we believe that we have a model where most
of the fonts look OK, independent of whether they
are old converted TgX fonts controlled by italic cor-
rections or new fonts driven by staircase kerns. We
consider Lucida Bright Math to be one of the better
fonts, both in the sense that the design is beautiful
and that we did not have to tweak it so much to get
it look right.

Nevertheless, we found some flaws in the font,
and reported a few of them on the Lucida mailing
list. They were put on the list of corrections to be
fixed for the next Lucida release. In the meantime,
we began to discuss the possibility to do font fixes
directly in the font editor FontForge. Combined with
the possibility to debug with the available visual
helpers in ConTgXt LMTX, we realized that we had a
rather effective work flow for editing and fixing. The
problem-solving part and the direct payoff when we
could see things getting corrected live on screen also
made the process a joy. Below we give an overview
of the fixes we did. We hope that the Lucida users
out there will benefit from these changes.

I Read more about this font at tug.org/TUGboat/tbh37-2/
tb116bigelow-Tucidamath.pdf

doi.org/10.47397/tb/43-3/tb135hagen-Tucida

311

After the fixing we need fewer tweaks in Con-
TgXt for Lucida, but we also have to make sure that
tweaks could be applied per font version, because
even with TUG’s unique update policy it might take
a while before all users have the new version.

2 Correcting the math axis

This is what Microsoft writes? about the math axis

(our emphasis):
“In math typesetting, the term axis refers to
a horizontal reference line used for position-
ing elements in a formula. The math axis is
similar to but distinct from the baseline for
regular text layout. For example, in a sim-
ple equation, a minus symbol or fraction rule
would be on the axis, but a string for a vari-
able name would be set on a baseline that
is offset from the axis. The axisHeight value
determines the amount of that offset.”

Let us look at the minus sign.?
j 1 | i
The minus sign to the left is not centered vertically
on the math axis. The value of the math axis in
Lucida Math Bright has been set to 313, but the
minus was centered on 325. At first we thought that
this might have been a problem with the minus sign,
but when looking at more glyphs, we realized that
a large majority of the ones that one could argue
should be aligned vertically around the math axis

were in fact aligned to the height 325. We show
below first some of the most common symbols

+ — X =+ — X =

and some others, less often used

X =>—F 11 =>—F 1

In fact, almost all symbols that one could argue
should be placed vertically centered on the math
axis are centered on 325. We conclude that the value
313 is not correct for this font, it should simply be
325. Thus, we changed the math axis to 325. This
had some, not too big, consequences. We needed

2 Tearn.microsoft.com/en-us/typography/opentype/
spec/math#mathconstants-table

3 Here, and in the continuation, we show in our examples the
output before our edits (on the left or above) between a pair of
red rules (dark gray on paper) and the edited version (right or
below) between green ones (medium gray). The red and green
boxes indicate the height of the math axis. The gray rule in the
background is centered at the height of the math axis. Orange
(light gray) boxes show bounding boxes of glyphs (with an extra
line for the baseline, if the glyph has a non-zero height and
depth). The glyph shape itself is black.

Patching Lucida Bright Math

https://tug.org/TUGboat/tb37-2/tb116bigelow-lucidamath.pdf
https://tug.org/TUGboat/tb37-2/tb116bigelow-lucidamath.pdf
https://learn.microsoft.com/en-us/typography/opentype/spec/math#mathconstants-table
https://learn.microsoft.com/en-us/typography/opentype/spec/math#mathconstants-table
https://doi.org/10.47397/tb/43-3/tb135hagen-lucida

312

to adapt vertically the parentheses, since originally
they were aligning vertically on the old math axis (i.e.,
they were correct before). We also needed to align
integrals (some of them were in fact not centered at
the math axis before).

(a) [bl{ch (a)lblich

In practice this meant that many glyphs needed
to be raised by 12 units in FontForge. We emphasize
again that this was done to have a perfect vertical
alignment with the minus and plus signs, and the
other symbols that live symmetrically around the
math axis. This is striking for the braces

—2 11 —2
1+ x 1+ x
and for the angle brackets
N ZaN ™ ZaN
(D, P +(D, P
but the difference is less obvious for the round
parentheses

klll_l_ kl

and the square brackets
Lb]:

lal @ [b]ilal

3 Aligning around the math axis

d +

As mentioned, the different parentheses and similar

glyphs were centered around the old math axis 313.

We have shifted them up 12 steps so that they are
now aligned with the corrected math axis. Below we
give a few examples of glyphs that were shifted (all
of them were of course reported to TUG).

QOO) 0000)
sfo - of o

4 Modifying glyph sizes

Our first mail to the Lucida mailing list was about
the < and >. We noticed that their size was different

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3

from other similar relation symbols, like the equal
sign =. This becomes a problem when one is aligning
equations on different lines, since then one usually
aligns on these characters, and if they are of different
width, the result will not look good. This is how it
could look in the old font:

f(x) =e"

> 14+ X

If you look carefully at the e and the 1, they are
not horizontally aligned with each other, and the
reason for that is simply that the bounding box of
> is smaller than the bounding box of =. We added
a temporary fix to ConIgXt (in the goodie file for
Lucida) where we scaled these glyphs. But it is better
to fix them in the fonts. After fixing the font, the
example looks like this.

f(x)=e¢e*
> 14+ Xx

We not only changed the bounding box of the
glyphs, but also scaled the glyph horizontally so that
it had the same width as the equal sign (the glyph,
not the bounding box!). We also scaled it vertically
so that it became centered on the math axis. When
that was done, we made sure that it ended up with
the same side bearing as the equal sign.

<> 1< >

It might help to see these symbols together with
some other similar ones.

Ee<<=>>> >,
IEe<<=2>->=

Lucida Bright Math also has some alternative,
in fact smaller, versions of some glyphs. (They are
the operators from the original Type 1 fonts; the
font designers increased the operator size in Open-
Type based on their observations of usage and user
requests, but some users prefer the original size, so
both are available.) They are available by activating
the ss03 style alternative, “small operators”. Here,
the problem is that the equal sign has no alternate,
so the big version is used.

TUGboat, Volume 43 (2022), No. 3

The previous less than and greater than fit well
with the alternate stylistic set ss03. We thus added
new slots at the end of the font for that purpose.
Also, the equal sign lacked a version in ss03, so we
added it. Note that the symbols in ss03 are not in
general centered vertically around the math axis.

IKS=22>0 1<=S==22>

FontForge has a nice view where it is easy to
browse the glyphs one by one with the position pre-
served. That makes it very clear when there are dif-
ferences in following glyphs that should be similar.
While browsing in this manner in the slots 0x2295
to 0x229D (various circles with decorations inside)
we noticed that the last one had different dimen-
sions than the other. This was the case both for the
ordinary glyphs

NS IIAZICICIOISIS!
SPASIRAZICICIOISIS]

and for the smaller variants in ss03.

IPORVOO@®O O
IPORXVOEO®E O

As you can see, the last one was a bit small,
and is fixed. One more such symbol that stood out,
0x2A29, the minus sign with a comma on top (who
uses that?):

5 Artifacts in the integral glyphs

While going over the shifting of the parentheses and
integrals, we noticed two glyphs that had defects.
It was the display versions of 0x222F (\oiint) and
0x2230 (\oiiint), and in both cases it was the oval
part of the symbol that was incorrect.

CC CCC cC CCC

JJ JJJ JJ JJJ

We realized that the glyphs had some extra
points added that messed them up. We simply re-
moved the extra points, made some point a corner
point and tuned the control points to agree with the
other corresponding ones in the glyph.

313

6 Dots, dots, dots

We also found some inconsistent combinations of
glyphs that include dots (or, squares, as they are
in Lucida). If we look at 0x02234 to 0x0223B, for
example, we see that first four are different from the
final four.

[] [] [NI N |] n | B |]]
— NN/
Il n [] [N | [] LN | L] II
[] [] [NI N |] n | BN |]]
— — — N
Il u u | I |] LB L} II

We first decided to make the first four of these
adopt the spacing of the last four. It was mainly the
ratio symbol (0x2236, the third in the list) that made
us decide that, since we agreed that the two squares
in it are simply too far away from each other (remem-
ber, this symbol is used in the \colon construction).
We then ended up with this.

u | [N e | u n | B | u u
—— — N
Il |]] " m |] nn u II
]] [N e |]] L o | u]
— N/
II n n - m n - m n II

As there are so many symbols, we eventually
found out that our local changes introduced new
inconsistencies.

We therefore decided to ditch our first changes,
but instead of throwing them away, we added the
glyphs as a new set of style alternates, ss06. Thus,
these glyphs stay unchanged (note that the new
choice of math axis also agree with them):

We are still not completely happy with the ra-
tio, and prefer the version from the newly added
alternate set (below shown to the right).

|f:|R—’|R||f:|R—’|R|

While discussing the ratio, we looked also at the
normal colon (0x3A) and semicolon (0x3B) charac-
ters, and we noticed that their side bearings were
not symmetrical. We thus fixed that, and made them
consistent with the period and the comma.

Patching Lucida Bright Math

314

Finally, we also saw that the ellipses on the
baseline (0x22EF) are wider spaced than the ones on
the math axis (0x2026). We decreased the right side
bearing of 0x22EF so that became consistent with
similar constructions.

EEE
I | | | | I

We added yet another style alternative, ss07,
with a version of Ox22EF with the small squares
spaced in the same way as the other similar glyphs.

|k:1,...,n| |k:1,...,nl

One can still question the fact that the squares
in the ellipses are smaller than the squares in the
comma and the period.

|k:1,...,7’l k=1,...,n|

7 Extensible recipes

We did not want to touch the extensible recipes.
But then we saw that the top and bottom pieces
of the round parentheses, when just too large for
the largest variants, clash into each other with bad
results.

The problem becomes more apparent if we use
transparent colors.

Note that in the fixed version, the largest variant
is still used in the left example, while the first exten-
sible is used in the right one. This means, and that is
unavoidable, that the parentheses are slightly taller
than the content. This can of course also happen
when we use the variants.

() (H), () (HNN).

So, how should the extensible recipe be built?
Let us look at the left parenthesis. It consists of three
parts, the “left parenthesis upper hook” (0x239B),

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3

the “left parenthesis extension” (0x239C) and “left
parenthesis lower hook” (0x239D).

L\

There is a table in the font, a recipe, that de-
cides how the extensible is to be built. For the left
parenthesis, the first and the third are always used
once, and then there can be as many middle ones
as needed (including zero). Looking at Table 1 we
see that the size of the glyphs are 1648 (top and
bottom) and 570 (the middle one). Since the top
and bottom glyphs are needed, the minimum height
plus depth will be 2 x 1648 = 3296. Or, that is what
one could imagine. But there is a font parameter
MinConnectorOverlap, set to 40 in Lucida Bright
Math. It is supposed to be the minimal overlap of
the glyphs. This means that the true minimal height
is 3256. This can be compared with the height plus
depth of the largest variant of the left parenthesis,
1686 + 1061 = 2747.

Table 1: Original extensible values.

Glyph Extender StartlLen EndLen FullLen
uni239D false 549 549 1648
uni239C true 190 190 570
uni239B false 549 549 1648

The biggest problem is not the values in the ta-
ble, but the fact that the top and bottom parts do not
have ends that can overlap aesthetically. No matter
how little we overlap, the pieces will not fit perfectly
with each other, or with the rectangular middle piece,
since they are not rectangular themselves at the end.
Thus, we wanted to add a rectangular part to the first
and the last pieces. But then we got another prob-
lem. If we just added a rectangular piece, the glyphs
would be too large, and the extensibles would kick
in too late. After some trial and error, we decided to
scale the original top and bottom parts just slightly,
and then to add a rectangular piece of height 100.
We changed the height of the extensible part to 200.
Inspired by the TgX Gyre fonts, we ended up with the
values in Table 2.

Table 2: Updated extensible values.

Glyph Extender StartlLen EndLen FullLen
uni239D false 0 100 1583
uni239C true 200 200 200
uni239B false 100 0 1583

TUGboat, Volume 43 (2022), No. 3

The top and bottom pieces are allowed to over-
lap by 100 units with each other (or with the middle
piece), exactly the size of the added rectangle. For
maximum flexibility, the middle piece is allowed to
overlap 200 in both directions. Let us look at a few
examples.

In the first case (to the left), the content is high
enough to trigger the extensible in the unfixed font,
but not in the fixed one. In the next, the content is
precisely sufficiently high to trigger the extensible
also in the fixed font. Observe that the parenthe-
ses are slightly bigger than the content. The grayer
area shows the overlap, and it corresponds approx-
imately to the value 100 in Table 2. If we increase
the content a bit more we still get no middle piece,
but the overlap is now very small. The size now fits
the content well. Finally, with slightly larger rule,
the new version adds a rectangular middle piece. If
you look carefully, you will see that almost all of it is
overlapping with the other two pieces. The unfixed
font still has no middle piece.

A similar situation is present for symbols that
scale horizontally, and in particular for the parenthe-
ses. We decided to scale equally as much as for the
vertical parentheses, and then also add a rectangular
piece.

| T
O

o
~

315

An analogous change was made to the horizon-
tal up and down braces.

D G D G
r \ | N |

I
r N A

N J N - J

The attentive reader may notice that the side
bearings of the glyphs are set to zero. We could
not find any other math font with a non-zero side
bearing for these glyphs. That makes sense, since
they only complicates the calculations.

.} ﬂj +nj. .Ll +. —I—nj.

L[] L]
[SR [G

A character in an OpenType font can have two
variant lists, two extensible recipes and two extra
italic corrections, meant to support both horizon-
tal and vertical extensibles. Only a few fonts have
these extra italic corrections set, and we have only
observed them on integral signs, and we haven’t
seen corrections set on horizontal extensibles at all.
The (vertical) italic correction is used for positioning
the subscript and limits (on n-ary operators).

Lucida is one of those fonts that has an exten-
sible integral. Although the LuaMetaTgX engine will
use the maximum width of a snippet, to be coher-
ent with the other fonts with extensible integrals,
we have made sure that in the updated Lucida all
snippets have the same width, as shown in the exam-
ple below (width of middle and bottom pieces now
matches width of top piece). We did not reset the
corrections on individual snippets, because these

are ignored anyway.
by b

Ja Ja

Patching Lucida Bright Math

316

8 The radical symbol

Our last stop is the radical symbol, and the reason
to stop here can be seen in the following simple
expression:

The radical symbol and the horizontal rule do
not fit together. When we were looking at the vari-
ants of the radical symbol, we became surprised by
two things.

W J . .MN .

We first noted that the base glyph and the vari-
ants look different. Next, we realized that the first
variant will probably never kick in, since it has the
same size as the base glyph. We decided to move
the first variant into the base glyph, to get a consis-
tent look, and to modify the size of the first variant
slightly. In the following set of examples we see that
the new size is used (second from left) in the fixed
version, while we get the slightly larger radical for
the unfixed one.

/X2 A X3 AT
WXz X3 T

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3

Regarding the mismatch between the radical
and the horizontal rule, this turned out to not be
a problem in the font (except for the old radical
base character). It was instead related to a backend
related snapping feature in ConTgXt, used to prevent
loading fonts in too many sizes due to rounding
erTors.

This is comparable to cases where TgX’s scal-
ing of 1000 means 1.000 with three digit precision,
although that often goes unnoticed because it hap-
pens consistently in the whole document. The mis-
match doesn’t happen when we operate in PostScript
points (bp) that are natural to both OpenType fonts
and PDF, but it does when we use TgX points (pt)
which means that when going to PDF’s points we
lose some accuracy. The difference between 0.9963
and 0.9954 is noticeable to the sensitive eye when
you blow up these composed glyphs for testing, and
we can’t tolerate that, can we? So we now go for
more precision at the cost of (possibly) some font
sizes. There is currently an experimenting mode
in ConTgXt, the compact font mode, where any font
is loaded just once, anyway, but that has to be dis-
cussed elsewhere.

¢ Hans Hagen
Pragma ADE

¢ Mikael P. Sundqvist
Department of Mathematics
Lund University
Box 118
221 00 Lund
Sweden
mickep (at) gmail dot com

TUGboat, Volume 43 (2022), No. 3

Ventrella’s terdragon in METAPOST

Linus Romer

Abstract

This article shows how to create a vector graphic
similar to the terdragon described by Ventrella (2019)
in METAPOST.

1 Generating the fractal path
The fractal used for the terdragon is based on the

following recursive replacement pattern on a triangu-

lar grid. Reverse arrows indicate segments that are
rotated by 180°:

LN
JUNANS

This pattern can be implemented as a recursive
macro with recursion depth n:

vardef dragon(expr a,g,n) =
save p,b,c,d,e,f; path p;
if n > 0:
pair b,c,d,e,f;
1/3[a,gl; ¢ = 2/3[a,gl;
b .5[a,gl+sqrt(3)/2*((c-e) rotated 90);
d = cte-b; f = gte-b;
p = dragon(a,b,n-1)
& reverse dragon(c,b,n-1)
& dragon(c,d,n-1) & dragon(d,e,n-1)
& dragon(e,c,n-1) & dragon(c,f,n-1)
& reverse dragon(g,f,n-1);

e

else:
p=a-—g;
fi
p % the returned path
enddef;

Using draw dragon((0,0),(300,0),4); you will
get the following figure:

doi.org/10.47397/tb/43-3/tb136romer-terdragon

317

2 Rounding the vertices to curves

In the previous picture many of the vertices are
revisited at different travel times on the path. This
self-contacting behaviour can be avoided in different
ways. In order to keep the number of path points
small, weighted averages between neighbour vertices
are used to draw smooth Bézier curves through them:

def roundcorners expr p =
point O of p
for i = 1 upto length(p)-1:
. tension 1.2
(.64*(point i of p)
+ .18x(point i-1 of p)
+ .18*(point i+l of p))
endfor
. tension 1.2 ..
enddef;

The tension 1.2 and the weights 0.64 and 0.18 are
somewhat arbitrary. The following figure is produced
by:

draw roundcorners dragon((0,0),(300,0),4);

point length(p) of p

It can now be observed that this terdragon variation
is self-crossing.

3 Stroking the path dynamically

A dynamic stroking of the path is achieved by making
the stroke width proportional to the distance between
the points:

vardef dynamicdraw expr p =
save n,l,r,s;
pair 1[01,r[];
numeric n; n = length(p);
for i = 0 upto n:
1[i] - rlil
= unitvector(direction i of p rotated 90)
* (length(point max(1,i) of p
- point max(i-1,0) of p)
+ length(point min(n,i+1) of p
- point min(i,n-1) of p))
* .08;
r[i] + 1[i] = 2*point i of p;

Ventrella’s terdragon in METAPOST

https://doi.org/10.47397/tb/43-3/tb135romer-terdragon

318

endfor
£ill 1[0]{direction O of p}
for i=1 upto n:

. tension 1.2 ..
endfor

1[i]{direction i of p}

for i=n downto O:
. tension 1.2 ..

endfor ..

enddef;

r[i]{-direction i of p}
tension 1.2 .. cycle;

The width scale 0.08 may be changed according to
one’s personal taste.

Replacing draw by dynamicdraw changes the
last figure to the following:

If desired, a vector drawing program like Inkscape

may be used to fill the enclosed areas with colour.

After rotating a coloured (though grayscaled for the
printed TUGboat) terdragon with recursion depth 3
six times, with respect to its left end, you will get
the following figure:

3”‘4 <)
.50 e A8
S0l R
"&'
e\ I P
g ~9~g~$ \T¢

.A 5‘-5"5"..9 &

ELoTi
ESPINT)
NN
i &
%

For more information about the terdragon, please
see the references, among numerous other books and
articles.

Linus Romer

TUGDboat, Volume 43 (2022), No. 3

References

Ventrella, Jeffrey. Brainfilling Curves — A Fractal
Bestiary. Eyebrain Books, 2012.

Ventrella, Jeffrey. “Portraits from the Family
Tree of Plane-filling Curves”. In Proceedings
of Bridges 2019: Mathematics, Art, Music,
Architecture, Education, Culture, edited by
S. Goldstine, D. McKenna, and K. Fenyvesi,
pages 123-130, Phoenix, Arizona. Tessellations
Publishing, 2019. Available online at
archive.bridgesmathart.org/2019/
bridges2019-123.pdf.

¢ Linus Romer
Ahornstrasse 8
Uznach, 8730
Switzerland

https://archive.bridgesmathart.org/2019/bridges2019-123.pdf
https://archive.bridgesmathart.org/2019/bridges2019-123.pdf

TUGDboat, Volume 43 (2022), No. 3

An introduction to GNU 3DLDF

Laurence Finston

Abstract

This article is an introduction to GNU 3DLDF. GNU
3DLDF is a package for three-dimensional drawing
with METAPOST and METAFONT output. It imple-
ments a language based on the METAFONT language
with many additional data types and operations. It
is designed for general technical drawings and a par-
ticular focus is intersections of geometrical figures.

Introduction

GNU 3DLDF is a package for three-dimensional draw-
ing with METAPOST and METAFONT output. It
implements a language based on the METAFONT
language with many additional data types and oper-
ations.

METAFONT is a program for font design; its
output is run-length encoded (i.e., compressed) bit-
maps which may be converted to a form suitable for
display on computer monitors or for printing. Since
METAFONT was completed in 1984, scalable fonts
have become the de facto standard, so METAFONT’s
bitmap format, though still usable, and despite the
nice features of METAFONT fonts, unfortunately may
be considered largely obsolete. In current TEX distri-
butions, PostScript or OpenType versions of Knuth’s
Computer Modern fonts, originally programmed in
METAFONT, are used by default.

METAPOST is a modified version of METAFONT
that produces output in the form of PostScript code.
While METAFONT is specifically designed for the
purpose of font design, METAPOST may be used
for technical drawings in general. However, while it
includes some features not present in METAFONT, it
has not diverged very far.

A first example

The following example is intended to give a first
impression of 3DLDF. It shows a circle rotated and
shifted in 3D space while at the origin, a set of arrows
point in the directions of the positive and negative
x-, y- and z-axes. The drawing is projected using
the perspective projection, so that the arrows repre-
senting the z-axis are foreshortened.

Save the following 3DLDF code in a file named
minimal.ldf (downloadable reference given at the
end):

doi.org/10.47397/tb/43-3/tb135finston-3d1df

319

verbatim_metapost "prologues := 3;"
& "outputtemplate := \"}%j%3c.eps\";";
numeric frame_wd, frame_ht;

path frame;
frame_wd := frame_ht := 2cm;
frame := (-frame_wd, -frame_ht)

-- (frame_wd, -frame_ht)
-- (frame_wd, frame_ht)
-- (-frame_wd, frame_ht)
-- cycle;
pen medium_pen;
medium_pen := pencircle
scaled (.375mm, .375mm, .375mm);
pickup medium_pen;
focus f£;
set f with_position (-20cm, 20, -50)
with_direction (-20cm, 20, 10)
with_distance 70;

beginfig(1);
circle c;
¢ := (unit_circle scaled (icm, 0, 1cm)

rotated (50, 30, 0))
shifted (2.25cm, .75cm, 2cm);

draw frame shifted (icm, 1cm);
draw c;
label("c", get_center c);
drawdblarrow (-.5cm, 0, 0) —— (.5cm, 0, 0);
drawdblarrow (0, -.5cm, 0) -- (0, .5cm, 0);
drawdblarrow (0, 0, -.5cm) -- (0, 0, .5cm);
label.top("x", (.5cm, 0));
label.rt("y", (0, .5cm));
label.lft("z", (0, 0, .5cm));

endfig with_focus f;

verbatim_metapost "end";

end;

Run the following commands:

3dldf minimal.ldf
mpost -numbersystem="double" minimal.mp

This is the result (minimal001.eps):

Fig. 1.

An introduction to GNU 3DLDF

320

It is a “standalone” Encapsulated PostScript file
(EPS) that can be viewed in a PostScript viewer
such as Ghostview or Evince (Document Viewer) or
included in a TEX file by means of the \epsffile
macro defined by the epsf.tex file.

Save the following TEX code in minimal .tex:
\input epsf

\nopagenumbers \headline={}

%% DIN A4 Portrait
\special{papersize=210mm, 297mm}
\hsize=210mm \vsize=297mm
\parindent=0pt \parskip=0pt
\baselineskip=0pt

\advance\voffset by -1in
\advance\hoffset by -1lin
\advance\hoffset by .75cm
\advance\voffset by lcm
\def\epsfsize#1#2{#1}
\leftline{\epsffile{minimalO01.eps}}
\bye

Run the following commands to create a PDF file
containing the figure:

tex minimal.tex

dvipdfmx minimal.dvi

MetaPost output can also be read directly by pdfTEX
and LuaTEX (the {1}{1} are scale factors):

\input supp-pdf
\convertMPtoPDF{minimal001.eps}{1}{1}

Motivation

In the 1980s I learned to make perspective drawings
in the traditional way by hand, which is a tedious
and error-prone procedure. In 1991, I had access to
the computer-aided design (CAD) software AutoCAD
and was excited by the possibility of using it to
make “three-dimensional” drawings. Simultaneously,
I had begun to learn to program in the computer
language C.

Like a number of other interactive computer
programs, such as Emacs or GIMP, AutoCAD imple-
ments a command interpreter in a language based
on LISP. In the case of AutoCAD, it’s called “Auto-
LISP”. I soon discovered that I preferred “program-
ming” my drawings rather than constructing them
by pointing and clicking with a mouse.

In 1996, after several years of experience with
TEX, I first used METAFONT for a project involving
TEX for which I required some special characters. I
enjoyed it and quickly discovered METAPOST and
began using it for drawings. Soon I had the idea that
it would be nice to have a 3D version of METAPOST,
especially since AutoCAD was (and still is) very
expensive and at the time required special equipment.

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

Some time later, I learned C++ for a job. At
first I was reluctant but then I discovered that I liked
the language and since then, had it in the back of my
mind that I'd like to use it for some future project.

In 2002, I finally had the opportunity to do this
and began to realize my idea of a “3D METAPOST”
using C++. In 2003, 3DLDF was accepted into the
GNU Project of the Free Software Foundation and I
have continued to develop it since then.

The relationship of 3DLDF to METAFONT
and METAPOST

As stated above, 3DLDF implements a language
based on the METAFONT language. A 3DLDF pro-
gram should therefore have a familiar “look and feel”
to users of METAFONT and/or METAPOST. How-
ever, the implementation of 3DLDF has nothing to
do with that of METAFONT or METAPOST. The
latter were originally programmed with WEB in Pas-
cal under the constraints on computer hard- and
software that applied in the late 1970s to the mid
1980s. The “official” distributions of METAFONT
and METAPOST use a version converted from Pascal
to C using web2c (https://tug.org/web2c). How-
ever, the new versions remain close to the originals
and have not been rewritten to reflect changes in
computer hard- and software since the time when
they were created. METAPOST only has added a fea-
ture enabling arithmetical calculations with a higher
precision than in the original [4, Appendix A, “High-
precision arithmetic with MetaPost”, p. 78].

METAFONT implements a command interpreter
or just interpreter. There are many programs of this
type and two tasks they require are lexical scanning
or just scanning and parsing. METAFONT imple-
ments these functions with hand-written, optimized
code intended by their author, Donald Knuth, to
demonstrate the “Art of Computer Programming”
(the title of his magnum opus, [6]) by efficiently solv-
ing a complex task under very strict constraints with
respect to storage space and execution time.

While I can appreciate METAFONT as a work
of technical mastery or even art, I don’t consider
it an example of the best way to write a computer
program in the 2000s or 2020s, when the constraints
that applied when METAFONT was developed have
simply ceased to exist and when computers and pro-
gramming tools can be found on nearly every desktop
or even in most people’s pockets.

For this reason and as a matter of practicality,
I’ve programmed 3DLDF using C++ along with the
very comprehensive C++ Standard Library and other
software libraries such as the GNU Scientific Library

https://tug.org/web2c/

TUGDboat, Volume 43 (2022), No. 3

and the pthreads library. For parsing, I use the
package GNU Bison. One of the files Bison produces
is a text document describing the grammar rules of
the language implemented by the parsing function
in Backus-Naur format. This is familiar to readers
of The TEXbook and The METAFONTbook, where
Knuth uses it to describe the grammar rules of the
TEX and METAFONT languages, respectively.

For the main scanner, I do not use the Flex
package often used for this purpose, although I do
use it for other tasks within 3DLDF. The reason
is that 3DLDF attempts to duplicate METAFONT’s
scanning procedure which operates according to a
different principle than Flex. It is also particularly
simple to implement as it requires only a single token
of “lookahead” [7, ch. 6, “How METAFONT Reads
What You Type”, p. 49ff.].

If T were to have an idea how to perform a par-
ticular programming task in a new and more efficient
manner, I believe it would be more useful if I were to
contribute it to an existing software library or make
it available in some other way, rather than simply
incorporating it into a “monolithic” program. In
fact, 3DLDF is implemented as a shared or unshared
library and linked with a file (“compilation unit”)
containing a main function. The library may just as
easily be linked with other main functions.

Main differences between METAFONT,
METAPOST and 3DLDF

Since METAPOST is a development of METAFONT
and remains so close to it, in the following I will
generally refer only to METAFONT and in most cases,
what I say will apply equally to METAPOST, unless
otherwise noted or it refers to features not present
in METAPOST, such as those involving digitization
[7, ch. 24, “Discreteness and Discretion”, p. 195ff.].

If, on the other hand, I refer to METAPOST, it
will be because I'm referring to features specific to
METAPOST and not present in METAFONT.

Most of the differences between METAFONT and
3DLDF are consequences of the addition of the third
dimension. Other differences are due to the fact that
METAFONT was specifically designed for the needs of
type designers while 3DLDF is intended for general
technical drawing. Finally, some are due to my own
personal preferences.

A difference one must bear in mind is that
METAFONT, METAPOST and 3DLDF each have dif-
ferent canonical units: In METAFONT, they are pix-
els, in METAPOST PostScript points, a.k.a. “big
points” (bp) and in 3DLDF they are centimeters
(cm). It is worth noting that in TEX, there are

321

no canonical units and it will cause an error if a
dimension is specified without units:
\dimenO=5\relax

I Illegal unit of measure (pt inserted).

[...]

?h

Dimensions can be in units of em, ex, in, pt,
pc, cm, mm, dd, cc, bp, or sp; but yours is

a new one!

\relax is needed because otherwise TEX will wait
for further input containing the dimension specifier.

Equations and assignments. METAFONT sup-
ports programming in a “declarative” rather than an
“Imperative” style [7, p. 87]. This idea would appear
to have been “in the air” at the time Knuth created
METAFONT. However, in my opinion, like the New
Math, it has not stood the test of time [2, pp. 1-2].

While for METAFONT, Knuth expresses a pref-
erence for the use of equations rather than assign-
ments, unfortunately this is currently not possible
for 3DLDF. METAFONT is able to keep track of de-
pendencies and solve equations once sufficient data
is available [9, ch. 28, “Dynamic linear equations”,
§585; ch. 29, “Dynamic nonlinear equations”, §618]
and [10].

I would like to implement this feature, but at
the present time I don’t know how to go about it nor
whether it would be possible with 3D data. Nor do I
consider this to be a priority. However, since I may
vet do so, the = operator is reserved for equations, as
in METAFONT, and := must be used for assignments.

3DLDF does implement “declarative” forms of
operations, such as transformations:
path q;
q:=(0, 0,0 -- (1,1, 1

rotated (10, 15, 20);

However, for users who aren’t afraid of hurting
the computer’s feelings, corresponding “imperative”
operations are available as well:
rotate q (10, 15, 20);

In addition, 3DLDF implements the operators
for assignment plus an arithmetical operation +=, -=
*x=_and /= for different variable types, as appropriate.
For example, all of them are available for numerics,
+= for vector-type variables (see “Vector-type ob-
jects”, p. 328) and *= for applying transformations
to points, paths, etc.:
point p; p := (1, 2, 3);
point_vector pv; pv += p;
transform t;

t := identity scaled (3, 4, 5);
pv0 *= t;
show pvO;

An introduction to GNU 3DLDF

322

results in:

point:

World coordinates:

(3.0000000, 8.0000000, 15.0000000, 1.0000000)

These “imperative” operators make it possi-

ble to avoid clumsy constructions such as q := q
rotated (10, 20, 30) (which do also work, how-
ever).

Incidentally, the operators for assignment plus
an arithmetical operation described above break the
parsing rules of METAFONT. However, they were
easy to implement and have never caused any prob-
lems.

Projections. For a 3D graphics program to be use-
ful, the objects for which three-dimensional data
are stored must be projected onto a two-dimensional
plane for display on a computer screen or printing.
3DLDF implements two kinds of projection: parallel
projection onto one of the major planes (x-y, x-z
or y-z) and the perspective projection. In fact, it’s
possible to project a drawing onto an arbitrary plane
by transforming the desired plane so that it comes
to lie in a major plane, transforming the objects to
be drawn in the same way, and then projecting them
onto the latter plane. Other projections of inter-
est, but not yet implemented, are projections onto
a cylinder, sphere or other curved surfaces and the
Mercator projection and other projections used for
maps.

Though parallel projections are extremely use-
ful, even for 3D drawings, it is the perspective projec-
tion that is most closely associated with 3D graphics.
It essentially simulates the effect of instantaneously
photographing a scene with a camera or viewing it
with one immobile eye. The result of the perspective
projection is as if a line were drawn from each point
in a scene to a focus represented by single point (the
camera lens or the lens of an eye) and the intersec-
tion of this line with a plane (the plane of projection
or picture plane). This plane may be imagined to be
between the focus and the scene (the normal proce-
dure), behind the scene or behind the focus, in which
case the image appears upside-down, as in a camera
obscura or the retina.

In addition to the position of the focus, the
direction of view and the distance from the focus to
the plane of projection must be specified and the
“upwards” direction calculated. In 3DLDF, this data
is stored in an object of type focus. To change the
upwards direction, the focus may be rotated about
the line from the position through a point lying in
the direction of view from the position.

Laurence Finston

TUGboat, Volume 43 (2022), No. 3

focus f; set f with_position (-10cm, 20, -50)
with_direction (-10cm, 20, 10)
with_distance 70;

show f;

—>

focus:

position:

World coordinates:

(-10.0000000, 20.0000000, -50.0000000, 1.0000000)

direction:

World coordinates:

(-10.0000000, 20.0000000, 10.0000000, 1.0000000)

up:

World coordinates:

(-10.0000000, 21.0000000, -50.0000000, 1.0000000)

distance == 70.00000000.

axis ==
angle == 0.00000000

Pairs and points

The most basic “drawable” object type in META-
FONT is the pair, which is used to represent a point
in the plane. It consists of two numerical values, an
x- and a y-coordinate:

pair p; % METAFONT

p = (lcm, 2cm);

In 3DLDF, pair is replaced by the object type
point, which is used to represent a point in three-
dimensional space:
point p; % 3DLDF
p := (lcm, 2cm, 3cm);

From the point of view of a user, a point has
three coordinates, x, y and z. However, in fact,
points have an additional fourth coordinate, namely
w. Such a set of coordinates is called homogeneous.
The w-coordinate is normally 1 but will usually be
1 when the point is projected using the perspec-
tive projection, as described in the previous section.
In addition, the fourth coordinate is needed in order
to be able to multiply the point with a 4 x 4 matrix,
which shall occupy our attention below.

In 3DLDF, points have four sets of coordinates,
“world”, “perspective”, “user” and “view”, of which
currently only “world” and “perspective” are in use.

METAFONT’s pairs and 3DLDF’s points are
also used to represent the difference between two
points in (2D or 3D) space, that is, the result of
subtracting one point from another:
pair a, b; %% METAFONT
show a - b;
>> (-xpart b+xpart a,-ypart b+ypart a)
a= (2, 3);
b= (1, 2);
show a - b;

TUGDboat, Volume 43 (2022), No. 3

>> (1,1)

point a, b, c; %% 3DLDF
a := (2, 3);

b := (1, 2);

c :=a-b;

show c;

H

point:

World coordinates:
(1.0000000, 1.0000000, 0.0000000, 1.0000000)

The result of subtracting one point from another
is called a wvector, which has a magnitude and a direc-
tion, but no location in space. pairs in METAFONT
and points in 3DLDF are used to represent both
points in (2D or 3D) space and vectors, and the same
object may be interpreted as a point or a vector,
depending on circumstances.

In 2D, the magnitude is the distance to a point
with the same x- and y-coordinates, i.e., \/x2 + y?
and similarly in 3D, with the added z-coordinate, i.e.,
v/x2 4+ 12 + 22 and the direction is that indicated by
a line from the origin to that point. Such vectors are
of great importance in 3D graphics. They should not
be confused with the data type vector in C++ or
other uses of the term. A wunit vector may be created
by dividing the x-, y- and z-coordinates of a point
by the magnitude (input will be directly followed by
output from now on):
point p[];
po := (2, 2, 2);

n := magnitude pO;

show n;

>> 3.4641

pl := (2/n, 2/n, 2/n);

show pi;

point:

World coordinates:

(0.5773503, 0.5773503, 0.5773503, 1.0000000)
show magnitude pil;

>> 1

Since unit vectors are needed so often, 3SDLDF im-
plements the unit_vector operator for this purpose:
P2 := unit_vector pO;
show p2;
point:
World coordinates:
(0.5773503, 0.5773503, 0.5773503, 1.0000000)
show magnitude p2;
>> 1

In METAFONT programs, instead of using pairs,
it is the convention to use z for representing points,
e.g., z = (4pt, 5pt);. This convention is imple-
mented by means of a vardef macro [7, p. 277]:
vardef z@#=(xQ#,y0#) enddef

323

There is no correspondence to this macro in
3DLDF. For one thing, since points already have a
z-coordinate, z would be a poor choice for the default
name for points and there is no other obvious choice,
since “p” would be equally appropriate for paths
and possibly even for polygons or parabolze (to say
nothing of polyhedra or paraboloids). Therefore,
in 3DLDF, explicitly declared points must always
be used to represent points in space (and vectors).

Transformations

METAFONT implements the transformations shifting
(translation), scaling and rotation by means of the
object type transform, which consists of 6 numerical
elements:

transform t; %% METAFONT code

show t;

>> (xpart t,ypart t,xxpart t,xypart t,

yxpart t,yypart t)

A pair may be “transformed” like this:

pair a, b; %/ METAFONT code

a= (1, 2);

transform t;

t = identity scaled (2, 4);

show t;

>> (0,0,2,0,0,4)

b = a transformed t;

show b;

>> (2,8)

The identity transformation is needed as a starting
point for other transformations and looks like this:
show identity; %% METAFONT

>> (0,0,1,0,0,1)

In 3D, transformations are represented by 4 x 4
matrices of numerical values, which are called trans-
formation matrices. Therefore, even if the perspec-
tive projection wasn’t needed, points would have to
have 4 coordinates in order that they may be mul-
tiplied with transformation matrices. The identity
matrix in 3DLDF looks like this:

show identity;

transform:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In 3DLDF, the syntax with transformed is
supported. However, it also implements the opera-
tion “multiplication with assignment”, so that the
operator *= may be used to perform a matrix multi-
plication on a point:
point p;

p := (1, 2, 3);
transform t;

An introduction to GNU 3DLDF

324

t := identity scaled (2, 3, 4);
show t;
transform:

2

0

0

0
p *=t;
show p;
point:
World coordinates:
(2.0000000, 6.0000000, 12.0000000, 1.0000000)

O O w o
o b O O
= O O O

Paths

While pairs in METAFONT and points in 3DLDF
are the basic building blocks of drawings, paths are
an essential element of any font or technical drawing:
Without paths, all you have is a scatter plot.

In METAFONT, pairs and paths are the only
“drawable” types. Font design tends to use free-form
curves, so Knuth clearly didn’t consider it necessary
to define data types for algebraic curves, for example.
plain METAFONT does define quartercircle, half-
circle, fullcircle and unitsquare, but these are con-
stants of type path. METAFONT doesn’t store any
additional information about them, such as their cen-
ters or radii. It also defines superellipse as a macro.

3DLDF, on the other hand, is intended for gen-
eral technical drawing. Many technical drawings
consist solely of straight lines and where curves are
used, by far most often they are circles, circular arcs,
ellipses and elliptical arcs. Ellipses play a special
role because circles appear elliptical in perspective.
A common tool for technical drawing is (or was)
stencils for drawing perspective ellipses.

Other curves occur frequently in drawings for
special purposes: helices (non-planar) for represent-
ing screw threads, epi- and hypocycloids for gear
teeth [1, pp. 53-55], parabole for trajectories, cate-
naries for hanging chains or ropes, Cartesian ovals
for optics, etc. There are many interesting algebraic
curves that appear in illustrations of works on ge-
ometry but are as rare as hen’s teeth in technical
drawings.

Among the plane figures consisting of straight
lines, triangles, squares and rectangles are the most
common, while other regular polygons are occasion-
ally used.

Because of their importance in technical draw-
ings and because the subject particularly interests
me, in addition to path, 3DLDF defines the following
object types.

For representing polygons:

e triangle

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

e rectangle
e polygon
e reg_polygon (regular polygon)
For the conic sections, 3SDLDF implements the
following types:
e circle
e ellipse
e parabola
e hyperbola
In addition, and unlike METAFONT, 3DLDF defines
superellipse as an object type.
3DLDF also has types for solid geometric figures.
Figures consisting of straight lines:
e cuboid
e polyhedron

Figures with a simply curved surface:

e cone
e cylinder
Quadric surfaces:
sphere
ellipsoid
paraboloid
hyperboloid

In addition, 3DLDF implements many pre-

defined constants of these types:
unit_square unit_pentagon unit_circle
unit_ellipse unit_cuboid unit_sphere
unit_ellipsoid ...
The planar figures unit_ellipse, etc., are construc-
ted in the x-z plane:
beginfig(2);

ellipse e;

e := unit_ellipse scaled (2cm, 0, lcm);

draw e;
endfig with_projection parallel_x_z;

Fig. 3.

Ultimately, the solid figures consist of planar
paths, a polyhedron of polygons, a sphere of
circles, an ellipsoid of ellipses, etc., and additional
information is stored for the center, foci, axis lengths
or other salient features of the figure.

They may be used in technical drawings for wire-
frame constructions. 3DLDF doesn’t implement any
form of surface hiding or rendering. In the case of
cuboids or polyhedra, surface hiding may be done

TUGDboat, Volume 43 (2022), No. 3

“by hand”. For drawings that aren’t too complex,
this may work well enough:

cuboid c[];
rectangle r[];

cO := unit_cuboid scaled (1.5, 1.5, 1.5);
cl := cO0;
c2 := c0;
rotate c1 (0, 30);
shift c1 (-1.5cm, 0);
draw ci;
for i = 0 upto 5:
r[i] := get_rectangle(i) ci;
endfor;

rotate c2 (0, -30);
shift c2 (1.5cm, 0);

draw c2;
for i = 0 upto 5:

r[i+6] := get_rectangle(i) c2;
endfor;

unfilldraw r6;
unfilldraw r9;
unfilldraw ri10;

<>
N

Fig. 4.

Lz

For curved surfaces, such as spheres or ellipsoids,
this isn’t possible, as finding the curve that represents
the edge of a curved surface from a particular point
of view is non-trivial. Please notice the left and right
edges where the nearly horizontal circles appear to
extend slightly past the nearly vertical ones.
sphere s;

s := unit_sphere scaled (2.5, 2.5, 2.5);
rotate s (10, 11, 10);
draw s;

Fig. 5.

325

In the long run, the best solution for this prob-
lem would be to have 3DLDF produce output in a
form suitable as input for a specialized rendering
program, such as Blender (https://blender.org).

Path details. In METAFONT, paths are imple-
mented as Bézier curves, which are a kind of spline
curve. They may be specified in various ways, but
are ultimately stored in the form [7, p. 13]:
p=zp .. controls ug and vy .. 21 {etc.)
Zp—1 controls u,—1 and v,, .. 2z,

As in this example:

tracingonline := 1; % METAFONT
path p;

p = fullcircle xscaled 2 yscaled 3;
show p;

>> Path at line 4:
(1,0)..controls (1,0.39784)
and (0.89465,0.77939)

..(0.70712,1.06068) ..
controls (0.51959,1.34198)
and (0.26523,1.5) ..(0,1.5)

Bézier curves are invariant under the affine
transformations translation (shifting), rotation, and
scaling, as long as they are scaled by the same amount
in all dimensions [7, p. 132].

Unfortunately, Bézier curves are not invariant
under the non-affine perspective projection, which is
essential for 3D graphics. There is a generalization of
the Bézier curve, that is, another spline curve, that is
invariant under this projection, namely non-uniform
rational B-splines or NURBs. With Bézier curves,
conceptually, the control points exert a “pull” on
the path and the amount of “pull” is equal for all of
the control points. NURBs, on the other hand, have
an additional “weight” parameter which makes it
possible to “weight” the control points individually,
so that they can exert different amounts of “pull”.
A Bézier curve is therefore equivalent to a similar
NURB where all of the weights are 1.

One of the most important features of META-
FONT is that, given a set of points on a path, it will
attempt to draw the “most pleasing” curve through
it [7, ch. 3, “Curves”, p. 13ff.]. It provides a set of
operations for the user to influence the shape of the
curve by giving “hints”: dir, tension, atleast, etc.

NURBs are not yet implemented in 3DLDF, al-
though this is planned. paths are stored as the
points on the path and connectors, also known as
path joins, may be specified in the same way as in
METAFONT, i.e., with control points, tension, dir,
{point}, {(z,v)}, {(z,y,2)}, and atleast. They
are not converted to the form using “controls”, as
above, within 3DLDF but rather the connectors are

An introduction to GNU 3DLDF

https://blender.org/

326

written verbatim to the output (METAPOST and
METAFONT code), except that any points referred
to are transformed along with the path whenever a
transformation, including the projection upon out-
put, is applied to the path. They therefore will only
produce correct results for 2D objects that lie in the
plane of projection, or a plane parallel to it, when a
parallel projection is being used.

When METAFONT or METAPOST is run on the
3DLDF output, it will attempt to draw the “most
pleasing” curve through the points on the path, ac-
counting for any hints given with dir, tension, etc.
However, METAFONT and METAPOST’s idea of the
“most pleasing” curve is based purely on the two-
dimensional points on the path: They don’t “know”
that they represent the projection of a three-dimen-
sional curve and the results are likely to be neither
pleasing nor correct, unless the path is constrained
by containing a sufficient number of points. In the
special case that a parallel projection is used and
the path lies in the plane of projection or a plane
parallel to it, the result will, however, be correct,
as it will be equivalent to just using METAFONT or
METAPOST in the first place.
circle c;
set c with_center origin with_diameter 4

with_point_count 8;
rotate ¢ (-10, 0);
draw c;

Fig. 6.

circle c; % same, but with more points

set c with_center origin with_diameter 4
with_point_count 64;

rotate ¢ (-10, 0);

draw c;

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

9y 20 16 12
32 0

0 P 2 96

Fig. 7.

When projecting a 3D path using the perspective
projection, tension, dir, {(z,y)} and atleast are
very likely to produce erroneous results, especially if
an insufficient number of points have been specified.
If the path is constrained sufficiently, this may not
be noticeable; however, if any of these hints are used,
the best practice is to replace the connectors with
.. before outputting the path, e.g.:
path p;

p := origin{up} .. {right}(1, 1){left}
.. {down}(2, 0);

clear_connectors p;

Pt ..

Usually, there is no need to use hints, unless it
is intended to use a parallel projection; nevertheless,
the situation might arise, especially when working
with METAFONT or METAPOST code “borrowed”
from another source, such as the original sources for
Computer Modern or any PostScript font accessed
by means of the glyph command.

The situation is somewhat different with con-
trol points. Control points may be specified by the
user and paths obtained by calling METAPOST from
within 3DLDF will always contain them (unless they
are subsequently removed).

Intersections. In METAFONT, since all paths are
constructed in the same way, intersections are found
by a method particular to Bézier curves (not de-
scribed in The METAFONTbook). Furthermore, since
METAFONT doesn’t “know” that two paths pg —-
p1 and po —— ps represent straight lines, their inter-
section is only found if it lies on the line segments
they represent, not if the lines that contain them
intersect.

In contrast to METAFONT, 3DLDF does “know”
that a path like (0,0) -- (1,1) represents a straight
line, that a circle represents a circle, and so on, and
this is of importance in functions that attempt to
find the intersections of objects in a drawing.

In addition, 3DLDF does find the intersection
point of two lines (within reason) rather than just the
intersection points of the line segments. Not within

TUGDboat, Volume 43 (2022), No. 3

reason would be two lines that are almost parallel so
that their intersection point lies outside the region
where the computer could calculate it reliably.
point p[];

path qll;

q0 := origin -- (2cm, 2cm);

ql := (0, 2cm) -- (2cm, 0);

draw qO0;

draw qil;

pO0 := g0 intersectionpoint qil;

Po

Fig. 8.

q0 := origin -- (2cm, 2cm);

ql := (3cm, 0) -- (2.5cm, 2cm);
draw qO0;

draw qil;

pO := g0 intersectionpoint qil;

Fig. 9.

In this example, the result of intersection-
point is stored in a point. In fact, the result is really
an object of a compound type named bool_point
(not present in METAFONT) consisting of a boolean
and a point. In the case of the intersectionpoint
operation, the boolean part of the bool_point in-
dicates whether the point (if found) lies on one or
both of the line segments.

If the lines do not intersect, the point returned
in the bool_point is INVALID_POINT whose coordi-
nates are the triple (INVALID_REAL, INVALID_REAL,
INVALID_REAL). Actually, neither INVALID_POINT
nor INVALID_REAL are “invalid” from the point of

327

view of the hardware or C++: INVALID_REAL is sim-
ply an arbitrary numerical value used within 3DLDF
for testing whether an operation has succeeded or
not. In fact, it is the largest float value available on
a given computer.

The ability of 3DLDF to find the intersections
of lines is useful as a way of compensating for its
inability to interactively solve linear equations like
METAFONT. In the latter, intersections are typi-
cally found using the “nullary” operation whatever,
which is defined in plain.mf and plain.mp as a
vardef macro [7, p. 264]:
path q; % METAPOST
q0 = origin -- (2cm, 2cm);
ql = (3cm, 0) -- (2.5cm, 2cm);
draw qO;
draw qil;
z0 = whateverorigin, (2cm, 2cm);
z0 = whatever(3cm, 0), (2.5cm, 2cm);
dotlabel.lft (btex z_0 etex, z0);

Zoe

Fig. 10.

Intersections in 3DLDF. Finding the intersec-
tions of algebraic curves and surfaces in the plane
and in 3D space is a focus of 3DLDF and a particular
interest of mine. In some cases this is straightfor-
ward, whereas in others it is less so, or would involve
higher mathematics currently beyond my abilities.
Depending on the objects, their intersections may
be points, curves, planes or curved surfaces.

The routines for finding intersections as in the
previous examples all use the algebraic formuls
for the objects involved. Omne problem with this
approach is that calculations involving real values
(floats, doubles or long doubles) on a computer
are not exact, so that there are always rounding
errors. These in turn may cause intersections that
exist to not be found. In particular, transforming
objects by means of matrix multiplication tends to
introduce rounding errors. For numerical a, b and
€, the solution is not to compare a = b, but rather
lla| — [b]| < € where € is some small value appropriate
to the circumstances.

An introduction to GNU 3DLDF

328

Another problem is that transformations may
cause objects to “go out of shape”. 3DLDF places
no restrictions on the transformations that may be
applied to a drawable object (point, path, circle,
etc.). This feature would be useful, for example,
when projecting a geometrical object like a circle
onto a curved surface: The resulting figure will not
be circular, but it retains the object type circle and
its “center” will be the projection of the center of
the original object onto the surface.

In order to deal with this problem, 3SDLDF im-
plements tests for whether objects of a given type
still fulfill the definition of that type. For example,
objects may be tested for circularity with the op-
erator is_circular, for whether they are elliptical
with is_elliptical, etc. In contrast, the operations
is_circle, is_ellipse, etc., test for the object type:
beginfig(11);
circle c[];
cO := unit_circle;
cl := cO sheared (1, 1.5, 1.25);
draw cO;
draw ci;
show is_circle cO;
>> true
show is_circle cl;
>> true
show is_circular cO;
>> true
show is_circular ci;
>> false
endfig with_projection parallel_x_z;

C1

Co

Projection: Parallel x-z

Fig. 11.

Vector-type objects

In METAFONT, arrays may be declared like this:
numeric n[];
path pl[1(]1;

Now, the user can assign values to the variables
n{suffir) and p{suffix)(suffiz):

tracingonline := 1; % METAFONT
n0 = 10;

n[n0 - 5] = 6;

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

show nO;
>> 10
show n[n0 - 5];
>> 6
a = 3;
plal [n0] = origin ..
show p[3]1[10];
>> Path at line 10:
(0,0)..controls (-0.11444,0.59329)
and (0.40671,1.11444)

..(1,1)..controls (1.33333,0.66667)

and (1.66667,0.33333)

..(2,0)..controls (1.78766,-1.10071)

and (0.21234,-1.10071) ..cycle
METAFONT makes it possible to declare variables
using various combinations of tags and suffizes in a
very flexible way [7, ch. 7, “Variables”, p. 53ff.]. This
works in exactly the same way in 3DLDF. However,
continuing the previous example, in METAFONT, a
variable n would be completely independent of n0O,
n[n0 - 5], etc.:
numeric n[];
*n0 := 10;
*n := b5;
*show nO;
>> 10
show n;
>> 5

(1, 1), -- (2, 0) .. cycle;

To access all the variables of the form n{suffiz),
they must be accessed individually. A loop may be
used, but then the suffixes must follow a pattern
suitable for use as a loop index:
for i = 0 upto 5:

nl[i] = 2i;

show n[i];
endfor;
>> 0
>>
>>
>>
>>
>> 10

0 O N

In order to make it more convenient to access
all of the members of an array, 3DLDF implements
the notion of vector-types. In this case, the term
vector is used in the sense common in the context of
computer programming, namely for one-dimensional
arrays.

For most types, such as boolean, transform,
point, path, etc., there is a corresponding vector-
type: boolean_vector, transform_vector, point_
vector, path_vector, etc. For some more rarely-
used or specialized types, there is no corresponding
vector-type.

TUGDboat, Volume 43 (2022), No. 3

There are operations that take vector-type ob-
jects as their arguments and operate on all of the ob-
jects on the vector. In addition, the operator += may
be implemented for a vector-type, where appropriate.
For example, it adds a path to a path_vector:
path_vector pv;
pv += (1, 1) -- (2, 2);
pv += origin .. (1, 1, 1)

(3.5, 0, 10);

(-1, 2, 2)

show pv;

>> path_vector:

size of vector: 2

0:

type: PATH_TYPE

surface_hiding_ctr: O

decomposition_level: 0

points.size() ==

connector_type_vector.size() ==

points:

(1.00000000, 1.00000000, 0.00000000) --
(2.00000000, 2.00000000, 0.00000000) ;

etc.

1:

type: PATH_TYPE

surface_hiding ctr: O

decomposition_level: 0

points.size() ==

connector_type_vector.size() ==

points:

(0.00000000, 0.00000000, 0.00000000)
(1.00000000, 1.00000000, 1.00000000)
(-1.00000000, 2.00000000, 2.00000000)
(3.50000000, 0.00000000, 10.00000000) ;

etc.

Vector-type variables can also be used as the
return types for operations so that operations may
return more than one object. For example, the oper-
ation (ellipse tertiary) intersectionpoints (ellipse
secondary) returns 0 to 4 points:

ellipse el[];

e0 := unit_ellipse scaled (2cm, 0, 1lcm);

el := e0 rotated (0, 45) shifted
(.25cm, 0, -.125cm);

rotate e0 (0, -20);

draw eO;

draw el;

point_vector P;

P := e0 intersection_points el;

show size P;

>> 4

329

Py

P

Fig. 12.

It is not possible to declare an array of vector-
type objects.

Output and labels

In METAFONT, output is caused by the shipout
primitive, which “ships out” a character. Normally, it
is not called directly by the user, but rather indirectly
by the endchar macro defined in plain.mf, which
calls the macro shipit, which in turn calls shipout
with currentpicture as its argument.

In METAPOST, endfig calls shipout, causing
PostScript code to be written to the output file [4,
p. 46].

In 3DLDF, endfig causes current_picture to be
written to the METAPOST output and endchar
causes it to be written to the METAFONT output.
However, in addition, the output operator will cause
the picture given as its argument, which may be
current_picture, to be output in the form of META-
POST or METAFONT code to be written to the corre-
sponding output file if called between beginfig and
endfig on the one hand or beginchar and endchar
on the other. This is useful for performing a primi-
tive kind of surface hiding by hand and for creating
figures or characters using more than one projection.

output doesn’t clear the picture passed to it as
an argument, so it may be output again, by output,
endfig and/or endchar. If it should be cleared, it
must be cleared explicitly using the clear command.
beginfig(1);

draw unit_circle scaled (2cm, 0, 2cm);

output current_picture with_projection
parallel_x_z;

clear current_picture;

draw unit_ellipse scaled (3cm, 0, 2cm)
rotated (90, 0);

(etc.)

endfig with_focus f;

An introduction to GNU 3DLDF

330

In METAFONT, labels are only used when devel-
oping a font and disappear in the final output. The
placement is also usually determined by METAFONT
and not by the user. They are therefore less impor-
tant than in METAPOST and 3DLDF, since labels
are an essential part of technical drawings.

In 3DLDF, labels work as in METAPQOST, with
only a few differences. METAPOST typesets labels
by default using TEX. The -tex option may be used
to set the name of the program to be called, e.g.,
-tex=latex.

In METAPOST, a plain string is typeset in
the default font. On my system, this is Computer
Modern Roman 10pt (cmr10), but it could be any
PostScript font. To use TEX macros in the labels,
btex ... etex or the macro TEX must be used.
If METAPOST is called with the -troff argument,
then troff is used to typeset material surrounded
by btex and etex (or verbatimtex and etex). The
first argument to label or dotlabel may be a string
or a picture. See [4, ch. 8, “Integrating Text and
Graphics”] for more information.

3DLDF passes the text in labels to METAPOST
largely unchanged, so how they are handled depends
on how METAPOST is called by the user after 3D-
LDF has run. However, btex and etex are always
added to the beginning and end, respectively, of the
label text. If any user found this undesirable, it
would be easy to add an option to suppress this. A
picture is not permitted as the first argument to
label or dotlabel, but a number may be used, e.g.,
dotlabel(0, p0).

In 3DLDF, a picture contains two kinds of
items: 1) drawable ones, namely points, paths,
objects derived from path such as circle and el-
lipse and solids, such as sphere and ellipsoid and
2) labels. When a picture is output, the drawable
items are output first, followed by the labels, so that
the latter aren’t overwritten. The latter effect can be
achieved by use of the output command to output
a picture containing labels prior to endfig.

In 3DLDF programs, label commands may also
appear between beginchar and endchar. When a
picture is output, any labels on it are ignored. Thus
the METAFONT output of 3DLDF will never contain
labels, even when mode is proofing. To test the
appearance of a character, it’s best to produce a cor-
responding METAPOST figure, where one has the ad-
vantage of METAPOST’s superior labelling facilities.

Labels in 3DLDF are purely two-dimensional
items. Conceptually, they always lie in the plane
of projection. The point specified as the second
argument of label or dotlabel is projected like all
of the other points on the picture and the label

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

is placed in relation to its projection. The point
may be transformed but the label itself may also
be transformed separately. If rotation is desired, it
should be rotated about the z-axis. Shifting and
rotating make sense; other translations are likely to
produce undesirable results.

Calling METAPOST from within 3DLDF

Having numerous object types to store information
about algebraic curves and surfaces has certain ad-
vantages compared to storing them simply as spline
curves, e.g., the ability to access their centers, foci,
normals, radii, etc. On the other hand, it’s nice to
be able to find the intersections of arbitrary curves
and surfaces, even free-form ones. Since 3DLDF does
not yet implement NURBSs, this is unfortunately not
possible for the general case of intersections of ar-
bitrary objects in 3D. However, for the special case
of coplanar objects, it is possible by means of call-
ing METAPOST (not METAFONT!) “indirectly” from
within 3DLDF.

METRAPOST is called instead of METAFONT be-
cause in METAPOST, the type used for arithmeti-
cal calculations may be specified using the option
-numbersystem, allowing for almost arbitrary pre-
cision. In METAFONT, calculations are performed
using 32-bit fixed-point numbers, with a strict limit
on the magnitude of a (numerical token), namely
< 4096 [7, pp. 50 and 63].

METAFONT implements many operations on
paths, as described in The METAFONTbook. Be-
cause 3DLDF only stores the points on a path and
the connectors (or path joins), and does not calculate
the “in-between” points, it is not possible to imple-
ment any of the operations that depend on this data.
However, in the case of planar paths, it is possible to
access these operations by calling METAPOST from
within 3DLDF.

The operations in question are the following,
where n stands for a numerical value, ¢ for a numer-
ical “time” value, p for a pair and ¢ for a path:

p = direction ¢ of g;

t = directiontime p of ¢;

po = directionpoint p; of g;
p = point t of ¢;

p = subpath (¢, t1) of g;

p = qo intersectiontimes q1;
p = qo intersectionpoint ¢;;

The operation angle on a pair can be useful in
combination with operations on paths:
e n = angle p;
e n = angle direction ¢ of p;

TUGDboat, Volume 43 (2022), No. 3

Some of these operations have correspondences
in 3DLDF for arbitrary (3D) paths, but they don’t
necessarily have exactly the same meaning or work
the same way. In some cases, the names of the
3DLDF operations for operating on planar paths
by calling METAPOST differ from the names of the
corresponding operations in METAFONT names in
order to avoid name clashes.

In the following listing, m and u are integers, v
is a numeric_vector and w is a point_vector.

e gy := get_metapost_path ¢; (options)

e v := direction_metapost of ¢ (options)

e n :=angle_direction_metapost n of g (options)
e v := ¢ intersectiontimes ¢ (options)

e v := ¢ intersectiontimes_all ¢ (options)

e p := ¢ intersectionpoint_metapost ¢ (options)
e w :=q intersectionpoints_metapost ¢ (options)
e gy :=resolve ¢; (m,n) to u (options)

e g1 :=subpath (n,n) of ¢

e ¢o := ¢1 normalized (options)

Commands:

e call_metapost (string expression) (

(path vector variable optional)

(point vector variable optional)

(numeric vector variable optional)) (options)
e call_tex (string expression) ,

(numeric vector variable) (save optional)
e normalize (path variable) {options)

In order for this to work, the 3DLDF path must first
be put into the x-y plane. Then, a corresponding
METAPOST path is created, the desired operations
are performed on it, and the generated data is re-
turned. In the case of points, they must be trans-
formed by the inverse of the transformation that
placed the path into the x-y plane.

circle c[];

transform t[];

cO0 := unit_circle scaled (icm, 0, 1cm)
rotated (90, 0);

t0 := (identity rotated (0, 60, 20))
shifted (1.9cm, 1cm);

cO *= t0;

cl := cO normalized save;

draw cO;

draw cl;

331

o

28

24

Fig. 13.

ellipse el[];

transform t[];

e0 := unit_ellipse scaled (1.75cm, 0, 1.25cm)
rotated (90, 0);

t0 := (identity rotated (0, 60, 20))
shifted (1.9cm, 1cm);

e0 *= t0;
el := e0 normalized save;
draw eO;

draw el with_color dark_gray;

12

16

20

Fig. 14.

Further information and getting help

This article is merely intended to provide an in-
troduction to GNU 3DLDF and to make it possible
for the reader to make a start on using it, if de-
sired. 3DLDF is a large and complex program and
to cover its use and the ideas behind it comprehen-
sively would require considerably more space. Many

An introduction to GNU 3DLDF

332

topics touched upon here could be enlarged upon in
subsequent articles.

Unless one already knows METAFONT or META-
POST, the best way to learn 3DLDF is to start with
METAPOST, A User’s Manual [4]. For a deeper un-
derstanding of METAFONT, METAPOST and 3DLDF,
The METAFONTbook is indispensable. After this,
for learning 3DLDF itself, the GNU 3DLDF website
provides further information and many examples of
code and the generated graphics:
https://www.gnu.org/software/3d1df.

The mailing list help-3d1df@gnu.org is avail-
able for users for discussion or to ask for help. See
https://www.gnu.org/software/3d1df/
#Mailing_lists for instructions on how to sub-
scribe.

Unfortunately, the last edition of The SDLDF
User and Reference Manual (https://www.gnu.org/
software/3d1df/#Documentation) is from 2006 and
sadly out-of-date. At that time, 3DLDF was not yet
interactive, as I had not yet implemented the scan-
ning and parsing routines. It was more of a software
library and drawings had to be created by writing
C++ code to be linked to the latter. While it provides
a good starting point for anyone who wants to know
how 3DLDF works internally, it, of course, doesn’t
document the many features I've added since 2006.

Links
The GNU 3DLDF website:
https://www.gnu.org/software/3d1df

The author’s personal website:
https://laurence-finston.de
METAPOST on the Web:
https://tug.org/metapost.html

CTAN, METAFONT package page:
https://www.ctan.org/pkg/metafont

Bibliography

[1] Cundy, H. Martyn and A.P. Rollet.
Mathematical Models. Oxford: Oxford University
Press, 1961.

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

[2] Gardner, Martin. Mathematical Carnival.
New York: The Mathematical Association of
America, 1989.

[3] Gongalves, L. N. FEATPOST and a Review

of 8D METAPOST Packages. In TEX, XML,

and Digital Typography. TUG 2004. Lecture

Notes in Computer Science, vol. 3130,

p. 112ff. Berlin, Heidelberg: Springer, 2004.
https://doi.org/10.1007/978-3-540-27773-6_8

[4] Hobby, John D. and the MetaPost development
team. METAPOST, A User’s Manual. 2020.
https://tug.org/metapost

[5] Jones, Huw. Computer Graphics through Key
Mathematics. London, UK: Springer-Verlag
Limited, 2001.

[6] Knuth, Donald E. The Art of Computer
Programming. Boston: Addison Wesley Publishing
Company, 2019.

[7] Knuth, Donald E. The METAFONT book.
Reading, Massachusetts: Addison Wesley
Publishing Company, 1986.

[8] Knuth, Donald E. The TEXbook. Reading,
Massachusetts: Addison Wesley Publishing
Company, 1986.

[9] Knuth, Donald E. METAFONT: The Program.
Computers & Typesetting, vol. D. Reading,
Massachusetts: Addison Wesley Publishing
Company, 1986.

[10] Ramsey, Norman. A Simple Solver for Linear
FEquations Containing Nonlinear Operators.
https://www.cs.tufts.edu/ "nr/noweb/
examples/solver.html

[11] Wikipedia. Non-uniform rational B-spline.
https://en.wikipedia.org/wiki/
Non-uniform_rational_B-spline

¢ Laurence Finston
Germany
Laurence.Finston@gmx.de

https://www.gnu.org/software/3dldf/
https://www.gnu.org/software/3dldf/#Mailing_lists
https://www.gnu.org/software/3dldf/#Mailing_lists
https://www.gnu.org/software/3dldf/#Documentation
https://www.gnu.org/software/3dldf/#Documentation
https://www.gnu.org/software/3dldf/
https://laurence-finston.de/
https://tug.org/metapost.html
https://www.ctan.org/pkg/metafont
https://doi.org/10.1007/978-3-540-27773-6_8
https://www.cs.tufts.edu/~nr/noweb/examples/solver.html
https://www.cs.tufts.edu/~nr/noweb/examples/solver.html
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

TUGDboat, Volume 43 (2022), No. 3

A graphical ellipse envelope construction
with GNU 3DLDF

Laurence Finston

Abstract

This article demonstrates the use of GNU 3DLDF for
a graphical solution of the problem of constructing
the envelope of an ellipse and an approximation to
the curve itself.

Introduction

Before the universal availability of computers and
graphics software, technical drawings had to be made
by hand by draftsmen and -women, who were skilled
professionals. Making a technical drawing of even
moderate complexity was time-consuming, painstak-
ing and error-prone work, requiring much knowledge
and patience and the ability to endure frustration.
Erasures were difficult and a single error of concep-
tion or execution could render useless the work of
many hours.

Well into the 20" century, graphical methods
for constructing curves were of importance for the
creation of technical drawings. In addition, such con-
structions were of central importance in the mathe-
matics of the ancient Greeks, especially those con-
structions that only made use of a straight edge and
dividers, with the added restriction that the use of
the dividers for measuring lengths was forbidden.

Even today, with computers and 3D graphic
software, graphical methods of constructing geomet-
ric figures retain their fascination and continue to
provide insight and diversion to those who appreci-
ate elegant and ingenious solutions to mathematical
puzzles. In fact, the use of computers greatly in-
creases the pleasure of creating technical drawings,
due to their speed, accuracy and the ease of making
corrections.

This article demonstrates the use of GNU 3D-
LDF for a graphical solution of the problem of con-
structing an ellipse found in Lockwood’s A Book of
Curves, p. 13 [2]. GNU 3DLDF is a package for three-
dimensional drawing with METAPOST and METRA-
FONT output. It implements a language based on
the METAFONT language with many additional data
types and operations. More information can be found
on the GNU 3DLDF website:
https://www.gnu.org/software/3d1df/LDF.html

The following figures are two-dimensional, so it
would have been possible to create them using META-
POST alone. They do use several features of 3DLDF

333

that are not present in METAPOST, but it could
easily be adapted. For example, rotation about the
z-axis could be replaced by calls to reflectedabout.

Constructing an ellipse envelope

Draw a circle ¢ with center C' (fig. 1). AA’ is a
diameter of ¢ and S a point on AA’. The distance
CS should be > %C’A. Q@s5, Q10 and Q2 are points
on the perimeter of ¢ such that /A'SQ; = 25°,
LA'SQ1y = 50° and ZA'SQo = 100°. Rs, Rig
and Ry are points on the perimeter of ¢ such that
ZSQ5R5 = ZSQloRlo = ZSQQ()RQO = 90°. Sl is S
rotated around C' by 180°. That is, if zg = —k,
z's = k. S and S’ are the foci of the ellipse.

With fixed S, as points Q,, R, for 1 < z <
N —1, N = 72 are added, whereby @Q, and R, are
on the same side of AA’, their intersections will form
an envelope describing an ellipse e with foci S and
S’ and major axis AA’.

Q@20
Q10
Qs
Rao
}12?10
A S C S’ A?

Fig. 1.

As points @, and R, are added, it becomes
clear that the intersections of the lines), R, quickly
form an envelope revealing the outline of the ellipse.
(see fig. 2).

If this figure were to be drawn by hand, two
lines would have to be drawn for each of the Q. R,
pairs and the right angles /5@, R, would have to be
obtained. Placing a set square accurately so that Q)
and R, were both squarely on the perimeter thirty
times would be quite a challenge.

A graphical ellipse envelope construction with GNU 3DLDF

doi.org/10.47397/tb/43-3/tb13bfinston-ellipse

https://www.gnu.org/software/3dldf/LDF.html

334

Plate 1. A selection of set squares.

Assuming this feat was accomplished, the next
step would be to trace the curve of the ellipse. This
could be done with a flexible curve or a French curve.
I personally have never had good results with either
of these tools, especially where the curvature was
small.

Plate 2. A set of French curves and a flexible curve.

On the other hand, when tracing a curve ap-
proximating the ellipse using points on the envelope
using a computer, it doesn’t suffice to intuitively
recognize the rough shape of the ellipse. While it is
not necessary to find all of the intersection points
that are closest to the ellipse, it is necessary to find
a sufficient number of them to trace a good approx-
imation to the latter and to ensure that all of the
points chosen are as close as possible to the ellipse.

Figure 2 shows the intersection points pag =
Q29R29 () Q28 R2s and p3p = Q30 R30 [Q29 R29. The
intersection points used are thus p, = Q. R,)
Qi 1Ry 1 for x > 1.

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

In figure 2, pog lies in the first quadrant of the
ellipse, while x,,, lies in the second. It is not strictly
speaking necessary to find the intersection points p,
for = > 29, since the intersection points in the first
quadrant may simply be rotated about the x- and
y-axes in order to obtain points close to the ellipse in
the remaining three quadrants of e. Unless by chance,
they will not, however, be the same points that would
be found by continuing to find the intersection points
of the lines Q. R,.

By hand, this would be no less work than finding
P1...pog in the first place, but with the computer it
is the work of a moment.

Q35 is already very close to A and Q35 R35 is not
too far from being vertical. Qsg, in fact, coincides
with A, Q36R36 is vertical and the intersection point

P36 = Q36 R36 ﬂ Q35 R35 doesn’t exist.

Fig. 2.

Figure 3 shows the result of continuing to find
Q. and R,, up to Q71 and Ry (Qr2, or generally
Qn = A) and draw the lines @, R,. In this figure,
some portions of the lines that converge at S have
been erased so that the dots and labels may be
seen and to avoid a large, unsightly splotch of ink
around S.

S’ is the reflection of S about the y-axis. S and
S’ are the foci of the ellipse. The major axis is AA’
but the minor axis is not so easy to determine. It is
twice the distance from C to a point w on the ellipse
on the line through C' perpendicular to AA’, to the
left of pog and to the right of psg, which are both
close to the ellipse, but not actually on it. I will have

TUGDboat, Volume 43 (2022), No. 3

to give some thought to how to determine w without
“cheating”.

To execute this drawing in pen-and-ink would
be a nightmare.

Fig. 3.

Figure 4 shows the intersection points p1g, p15,
...p7o. Clearly, the length of arc p,_1p, increases
as p, approaches A and decreases again as it passes
it and approaches A’ again.

The N points A, A’ and p, for 0 < =z < N,
N = 72, x # 36 would normally be sufficient for
creating an ellipse object in 3DLDF, if we were to
consider them to be close enough to the ellipse to be
usable, unless it were to be projected with extreme
foreshortening, which requires there to be enough
points on a path to prevent it from “going out of
shape” when the projected path is passed to META-
POST for displaying or printing, as explained in the
article “An Introduction to GNU 3DLDF” (pp. 319-
332 in this issue).

It would nevertheless be somewhat unsatisfying
to have such different arc lengths depending on the
position on the circle of the points used for generating
the envelope and using points that were only close
to the ellipse inside of actually on it for the path.
Instead, 3DLDF uses the parametric equation for
an ellipse to generate the path for objects of type
ellipse, i.e.,

(z,y) = (acos(t),bsin(t)) for 0 <t <27,

Using the intersection points p, = Q.R:)
Q:-1R._1 appears to produce nearly correct re-
sults. It would seem that the intersection point of
a line Q, R, with its adjacent lines Q,_1R,_1 and

335

Qa+1Ra+1 are closer to C' than its intersection points
with other lines 0, R, and would hence produce the
closest approximation to an ellipse. However, I would
have to think about whether I could prove this with
my limited mathematical skills.

As examples of the positions of other intersec-
tion points, g43 is the intersection point Q10R10[)
Q25 Ro5 and lies close to the perimeter of the ellipse
and g44 is the intersection point Qs Rs [@30 R30 and
lies outside c.

P4o

Fig. 4.

Figure 5 shows all of the intersection points
P1...p35, P37...P71, plus A and A’, with A’ and the
points with odd indices in red and A and the ones
with even indices in blue.

A graphical ellipse envelope construction with GNU 3DLDF

336

TUGboat, Volume 43 (2022), No. 3

Fig. 5.

Figure 6 shows the quarter ellipse gy containing
points A and the intersection points p; ...pag. This
figure also shows that Q29 R29 and Q39 R30 intersect
at pso.

Fig. 6.

Figure 7 shows the completed approximation
to an ellipse e, consisting of the combination of the
paths qg, q1’ and g3’ where ¢;’ is the reflection of ¢q
about the y-axis with the order of the points reversed
and g3’ is qoq1’ reflected about the x-axis and with
the order of the points reversed.

Laurence Finston

Fig. 7.

The annotated GNU 3DLDF code

The following listings contain only the parts of the
3DLDF program for the figures in this article that are
of particular interest. Labels, “bookkeeping chores”
and other items have been left out in the interest of
comprehensibility. The full code may be found here:
https://www.gnu.org/software/3d1df/
ellipses.html#Constructions

Let’s start with some basic declarations:
point pll;

point R[];

point Q[];

point all;

point d[];

path qll;

circle c[];

numeric n[];

boolean b[];
bool_point_vector bpv;
picture v[];

Everything here is just the same as it would
be in METAFONT except for point p[] and the
other point array declarations, circle c[] and
bool_point_vector bpv. point is the 3D equiv-
alent of pair and circle is a type in 3DLDF similar
to a path, except its radius is stored as part of
the object and there are special operations that ap-
ply to circles that don’t apply to paths, such as
get_center and the predicate is_circular.

Of course, as mentioned above, the figures in this
article do not require any 3D calculations and could

https://www.gnu.org/software/3dldf/ellipses.html#Constructions
https://www.gnu.org/software/3dldf/ellipses.html#Constructions

TUGDboat, Volume 43 (2022), No. 3

as easily have been created using METAPOST with a
few changes. Nonetheless, in 3DLDF, points in space,
whether two-dimensional or three-dimensional, are
represented by objects of type point and the type
pair doesn’t exist.

bool_point is a type in 3DLDF that combines a
boolean and a point in a single object. bool_point
objects may be returned as the result of operations,
such as intersection_point, whereby the boolean
part indicates whether a particular condition is true
or false, e.g., whether the point lies on one or both
of the paths.

bool_point_vector is a 3DLDF type contain-
ing multiple bool_point objects. It is a so-called
“yector-type”. The latter are similar to arrays, e.g.,
bool_point [], except that a vector-type object may
be returned as the result of an operation or operated
upon as a single object, whereas these things aren’t
possible for arrays.

cO0 := unit_circle scaled (3cm, 0, 3cm)

rotated (90, 0);

draw cO;

point C;

C := origin;

point A;

A := get_point 16 cO;

point Aprime;

Aprime := get_point 0 cO;
draw A -- Aprime;
point S;

S := mediate(A, C, .2);

unit_circle is a predefined constant of type
circle. Unlike METAFONT, where the “canonical”
unit is the pixel and METAPQOST, where it is the
PostScript point or big point (1bp = 1/72in), in 3D-
LDF, the canonical unit is the centimeter and thus
unit_circle has radius (not diameter!) lem. And
unlike fullcircle, which has 8 points in METRA-
FONT, unit_circle has 32, thus point 16 of ¢g is at
the halfway point around the circle.

32 points is normally about enough to prevent a
circle from “going out of shape” when it is projected
with a moderate amount of foreshortening. See “An
Introduction to GNU 3DLDF” in this issue.

There are three other differences with respect
to METAFONT in this section of the code:

e All of the assignments are actual assignments
using := rather than equations using =. Un-
fortunately, 3DLDF doesn’t (yet?) share META-
FONT’s “amazing ability to deduce explicit val-
ues from implicit statements” [1, p. 83].

e get_point is the equivalent in 3DLDF of point
in METAFONT, as in (pair primary) — point
(numeric expression) of (path primary) [1, p. 73].

337

In 3DLDF, as previously mentioned, the symbol
point is a “declarator” used to declare point
objects and its use as an operator would have
caused conflicts in the grammar generated by
the parser generator GNU Bison.

e Nor did Bison allow METAFONT’s syntax for the
mediation operation, e.g., .5[p0, pl] because
it would have conflicted with the other uses of
brackets. Therefore, the operator mediate must
be used instead.

In 3DLDF, as in METAFONT, A’ would have
been a valid name for a variable. However, I generally
don’t use such variable names and I thought it would
be potentially confusing, so I used Aprime instead.

numeric j;

j = 0;

As in METAFONT, j could just have been used
without explicitly declaring it as a numeric. Doing
so is considered good programming style, although it
may be overkill here and I have some doubts about
whether every member of the “programming style
police” actually has practical experience writing com-
puter programs.

numeric N, k;
N := 72;
K := 360/N;
for i = 0 upto 100:
Q[i] := Aprime rotated (0, 0, 0 + (i * K));
d[j] Q[i] shifted (0, 0, 1);
d[j+1] := S rotatedaround (Q[i], d[j]) 90;
bpv := (Q[i] -- d4[j+1])
intersection_points cO;

a0 := bpv0;

al := bpvl;

if xpart a0 > xpart al:
a2 := al;

else:
a2 := al;

fi

R[i] := a2;

j =2

endfor;

The loop in this section of the code is where
the real action of the program begins. @, is found
by rotating A’ about C, the perpendicular to SQ,
through @, is found and R, is found as the in-
tersection point of the perpendicular with ¢y with
the greatest x-coordinate. A circle and a line, that
is, a path with two points and a simple connector,
that is, one without any modifiers that would cause
it to diverge from a straight line, can have 0 to 2
intersections.

A graphical ellipse envelope construction with GNU 3DLDF

338

Please note that this loop finds the points Q)
in a different way than in the description in sec-
tion “Constructing an ellipse envelope” on page 333.
However, it is completely arbitrary how these points
are found.

Again, in most ways, the 3DLDF code would
mostly be valid in METAFONT, but there are several
important differences:

In METAFONT, rotation is about a 2D point,
either the origin, with plain rotated, or about an
arbitrary point with rotatedaround. In 3DLDF,
rotation is about the x-, y- and z-axes with rotated
and about an axis specified as two points with the
operator rotated_around.

METAFONT provides the primitive operation
intersectiontimes and a related macro named
intersectionpoint, both of which return a single
pair as their result. Therefore, if two paths intersect
more than once, information about only one of the
intersections is returned.

For 3DLDF, where geometric figures play a much
greater role than in METAFONT, this behavior would
not be acceptable, so bool_point_vectors are used
as the type of the return values for the various oper-
ations that return intersection points or times.

The a0 := bpv0 and al := bpvl statements
show that bool_points can be assigned to points,
whereby the boolean component of the bool_point
is discarded. For many but not all operations in 3D-
LDF, bool_points may be used in place of points.

It is worth noting that the intersection points
of lines with each other and lines with circles in this
program are not found as in METAFONT. There, all
paths are implemented as Bézier curves and intersec-
tion times and points are found with a routine that
applies to all Bézier curves, irrespective of shape.

In 3DLDF, the intersections of lines with each
other and with other geometric figures, such as cir-
cles, are used by combining and solving the implicit
equations of the figures. However, since there are
no restrictions on the transformations that can be
applied to objects in 3DLDF, they must be tested to
ensure that the equations still apply. For this pur-
pose, 3DLDF implements the predicate operations
is_linear, is_circular, is_elliptical, etc.

Here is the next portion of code we’ll consider:

q0 += ..;

ql += ..;

q0 += Aprime;

This, unlike what we’ve seen before, would not
be valid METAFONT code. 3DLDF implements the
operators +=, -=, *= and /= for the operations assign-
ment with addition, subtraction, multiplication and
division, respectively. While 3DLDF for the most

Laurence Finston

TUGDboat, Volume 43 (2022), No. 3

part shares METAFONT’s scanning rules, these op-
erators break these rules, as = belongs to category
1, + and - to category 3 and * and / to category 4
[1, pp. 50-51]. However, this was easy to implement
and has never caused any problems.

Here, the connector . . is put onto paths q0 and
q1 (which start out without any points) and Aprime
is put onto qO as its first point.

for i = 1 upto (N - 1):

if i <> 36:
plil := @] -- R[]
intersection_point (Q[i-1] -- R[i-11);
b[i] := p[i] rotated (0, 180);
if i < 30:
q0 += plil;
ql += b[i];
fi
else:
message "Skipping p36.";
fi
endfor;
v0 := current_picture;

A second loop finds the N — 2 = 70 intersection
points p; = QzRy () Qu-1Ryz—1 for 1 < 2z < N,
x # 36. Qs35R36 is skipped, because Q36 coincides
with A and thus Qs36R36 [) @35R35 doesn’t exist.

The intersection points are appended to q0. In
addition, they are rotated 180° about the y-axis
and appended to q1. Since ellipses are symmetrical
about their major and minor axes, I only have to find
the intersection points in the upper right quadrant
of ¢y and can rotate them into the other quadrants
instead of finding the intersection points in the latter,
although that would certainly be possible with the
construction described by Lockwood, whereby the
points would be different.

Unlike the convention in TEX and METAFONT,
where the names of macros, variables, etc., are run
together, I favor the use of the underline charac-
ter in variable names. However, currentpicture
may be used as a synonym for current_picture,
rotatedaround for rotated_around, withpen for
with_pen and similarly for many other names of
operators and predefined variables and constants.

Thus far, I have left out most of the drawing
and labelling commands. However, the following are
of special interest:

undrawdot Sprime with_pen pensquare
scaled (.65cm, .65cm, .65cm);
dotlabel.bot("$S’$", Sprime);
undrawdot S with_pen pencircle
scaled (.25cm, .25cm, .25cm);
drawdot S with_pen dot_pen;

TUGDboat, Volume 43 (2022), No. 3

About S and S’: undrawdot uses a large circular
or square pen, respectively, to clear out a space so
that the labels may be seen and, the case of S, to
avoid a large splotch of black ink. In addition, a
selection of lines is drawn over the white space to
show that the lines @, R, converge at S.

q2 := q0 .. reversed qil;

g3 := g2 rotated (180, 0);

q4 := q2 .. reversed qg3;

q4 += cycle;

drawarrow g0 with_color red

with_pen medium_pen;
draw q0 .. reversed ql ..
. Aprime .. cycle
with_pen pencircle
scaled (2.5mm, 2.5mm, 2.5mm);

undraw q0 .. reversed ql .. reversed q3

. Aprime .. cycle
with_pen pencircle
scaled (1.5mm, 1.5mm, 1.5mm);

drawarrow q0 with_color red;

drawarrow reversed ql with_color dark_green;

drawarrow reversed q3 with_color blue;

This is the code that draws the constructed
approximation to an ellipse e,. I've included the
drawing commands here because, together with the
erasures above, this is a good example of technical
drawing tasks that are trivial with the computer but
would be difficult to execute by hand and likely to
cause much wailing and gnashing of teeth.

To create the black outlines of e, it is first
drawn using a large pencircle of 2.5mm diameter.
To compare, in technical drawings, 0.5mm is the
size used most. For example, acrylic templates for
drawing shapes are designed for use with technical
pens with 0.5mm nibs. (Other commonly available
sizes are 0.25mm, 0.7mm and 1mm.) In this article,
the “standard” pen size is 0.333mm. Then, the
middle of the curve is cleared out by undrawing it
with a pencircle of diameter 1.5mm. Finally, the
paths qg, ¢1’ and g3’, whereby the latter two are
simply ¢; and g3 reversed, are drawn in color and
with arrows using a pencircle of diameter 0.5mm.

reversed q3

339

In METAFONT, pencircle would be scaled us-
ing a single numeric value while pensquare would
be scaled using two. In 3DLDF, a drawing command
copies an object such as a path, associates the copy
with any items such as pens or colors that are spec-
ified in the command and puts them all together
onto a picture, current_picture by default. The
pens are only used when endfig or output causes
METAFONT or METAPOST code to be written to an
output file. They are therefore purely 2D objects.
While they may be scaled using three numerical val-
ues, in fact only the x- and y-coordinates are used
and the z-coordinate is ignored, even when the object
is projected using the parallel projection onto the
x-z plane.

Since this may change in the future, it is safest
to specify all three dimensions when scaling a pen.

Acknowledgements. Many thanks to Denis Roegel
and Bogustaw Jackowski for improving this article
with their corrections and suggestions.

References

[1] Knuth, Donald E. The METAFONTbook.
Reading, Massachusetts: Addison Wesley
Publishing Company, 1986.

[2] Lockwood, E.H. A Book of Curves. Cambridge,
UK: Cambridge University Press, 1961.

¢ Laurence Finston
Germany
Laurence.Finston@gmx.de

A graphical ellipse envelope construction with GNU 3DLDF

19012

infinite

4078

39709

1761

1369

infinite

340

Updates to “Automatically removing
widows and orphans with lua-widow-control”,
TUGboat 43:1

Max Chernoff

A request from Zpravodaj, the journal of the Czech/
Slovak TEX group, to republish the subject article
led to these updates. The section numbers here
correspond to those in the original article.

3.3 Clubs

In the original article, I discussed the origin of the
typographical terms “widow”, “orphan”, and “club”.
The first two terms are fairly well-known, but I had

this to say regarding the third:

The TEXbook never refers to “orphans” as
such; rather, it refers to them as “clubs”. This
term is remarkably rare: I could only find a
single source published before The TEXbook —
a compilation article about the definition of
“widow” — that mentions a “club line” [..]

I spent a few hours searching through Google
Books and my university library catalogue,
but I could not find a single additional source.
If anyone has any more information on the def-
inition of a “club line” or why Knuth chose to
use this archaic Scottish term in TEX, please
let me know!

Conveniently, Don Knuth—the creator of TEX —

read my plea and sent me this reply:

I cannot remember where I found the term
“club line”. Evidently the books that I scoured
in 1977 and 1978 had taught me only that
an isolated line, caused by breaking between
pages in the midst of a paragraph, was called
a “widow”; hence TEX78 had only “\chpar4”
to change the “widowpenalty”. Sometime
between then and TEX82 I must have come
across what appeared to be an authoritative
source that distinguished between widows at
the beginning of a paragraph and orphans or
club lines at the end. I may have felt that the
term “orphan” was somewhat pejorative, who
knows?

So this (somewhat) resolves the question of where
the term “club” came from.

9 Options

The overview to the section stated

that:
Plain TEX/OpTEX Some options are set by

modifying a register, while others must be set

“options”

Max Chernoff

doi.org/10.47397/tb/43-3/tb135chernoff-1luc

TUGDboat, Volume 43 (2022), No. 3

manually using \directlua.
However, this is no longer true. Now, commands
are provided for all options in all formats, so you
no longer need to use ugly \directlua commands
in your documents. The old commands still work,
although they will likely be removed at some point
in the future.

9.5 Penalties

\brokenpenalty now also exists as a IATEX and
ConTEXt key. lua-widow-control will pick up on
the values of \widowpenalty, \clubpenalty, and
\brokenpenalty regardless of how you set them, so
the use of these dedicated keys is entirely optional.
9.6 \nobreak behaviour
The Plain/OpTEX command is now:
\lwcnobreak{(value)}

9.8 Draft mode

Since v2.2.0, lua-widow-control has a “draft mode”

which shows how lua-widow-control processes
pages.

Plain TEX/OpTEX \lwcdraft 1

INTEX \lwcsetup{draft}
ConTEXt \setuplwc [draft=start]

Draft mode has been used for typesetting this
article. It has two main features:

First, it colours lines in the document according
to their status. Any remaining widows and orphans
will be coloured red, any expanded paragraphs will
be coloured green, and any lines moved to the next
page will be coloured blue.

Second, this draft mode shows the paragraph
costs at the end each paragraph, in the margin.

This draft mode leads to a neat trick: if you
don’t quite trust lua-widow-control, or you're writing
a document whose final version will need to be com-
pilable by both pdfIATEX and Lual4TEX, you can
load the package with:

\usepackage [draft, disable]
{lua-widow-control}

This way, all the widows and orphans will be
coloured red and listed in your log file. When you
go through the document to try and manually re-
move the widows and orphans — whether through
the \looseness trick or by rewriting certain lines —
you can easily find the best paragraphs to modify
by looking at the paragraph costs in the margins.
If you're less cautious, you can compile your docu-
ment with lua-widow-control enabled as normal and
inspect all the green paragraphs to see if they look

32617

17589

31907

infinite

infinite

2659

16115

infinite

infinite

https://doi.org/10.47397/tb/43-3/tb135chernoff-lwc

infinite

1354

infinite

infinite

infinite

infinite

infinite

infinite

TUGDboat, Volume 43 (2022), No. 3

acceptable to you.
You can also toggle the paragraph colouring and
cost displays individually:

Plain TEX/ \lwcshowcosts 1

OpTEX \lwcshowcolours 0

IMTEX \lwcsetup{showcosts=true}
\lwcsetup{showcolours=false}

ConTEXt \setuplwc [showcosts=start]

\setuplwc [showcolours=stop]

To demonstrate the new draft mode, I have
tricked lua-widow-control into thinking that every
column in this article ends in a widow, even when
they actually don’t. This means that lua-widow-
control is attempting to expand paragraphs on
every column. This gives terrible page breaks and
often creates new widows and orphans, but it’s
a good demonstration of how lua-widow-control
works.

10 Presets

The original article stated that “presets are IXTEX-
only”. However, lua-widow-control now supports pre-
sets with both ITEX and ConTEXt using the follow-
ing commands:

WTEX \lwcsetup{(preset)}

ConTEXt \setuplwc[{preset)]
11 Compatibility
This quote:

It doesn’t modify [...], inserts/floats,

isn’t strictly true since v2.1.2 since lua-widow-control
now handles moving footnotes.
This statement is also no longer true:

there are a few issues with ConTEXt [...] lua-
widow-control is inevitably more reliable with

Plain TEX and IATEX than with ConTEXt.

All issues with ConTEXt —including grid snapping —
have now been resolved. lua-widow-control should be
equally reliable with all formats.

11.1 Formats

In addition to the previously-mentioned formats/en-
gines, lua-widow-control now has preliminary support
for LuaMetaIl4TEX and LuaMetaPlain.! Aside from
a few minor bugs, the LuaMetalATEX and LuaMeta-
Plain versions work identically to their respective
Lual&TEX versions. With this addition, lua-widow-
control now supports seven different format/engine

1 github.com/zauguin/luametalatex

341

combinations.

11.3 Performance

Earlier versions of lua-widow-control had some mem-
ory leaks. These weren’t noticeable for small docu-
ments, although it could cause slowdowns for docu-
ments larger than a few hundred pages. However, I
have implemented a new testing suite to ensure that
there are no memory leaks, so lua-widow-control can
now easily compile documents > 10000 pages long.

13.4 Footnotes

Earlier versions of lua-widow-control completely ig-
nored inserts. This meant that if a moved line had
associated footnotes, lua-widow-control would move
the “footnote mark” but not the associated “foot-
note text”. lua-widow-control now handles footnotes
correctly through the mechanism detailed in the next
section.

13.4.1 Inserts

Before we go into the details of how lua-widow-control
handles footnotes, we need to look at what footnotes
actually are to TEX. Every \footnote command
ultimately expands to something like \insert(class)
{{content)}, where (class) is an insertion class num-
ber, defined as \footins in this case (in Plain TEX
and ITEX). Inserts can be found in horizontal mode
(footnotes) or in vertical mode (\topins in Plain
TEX and floats in IWTEX), but they cannot be inside
boxes. Each of these insert types is assigned a dif-
ferent class number, but the mechanism is otherwise
identical. lua-widow-control treats all inserts identi-
cally, although it safely ignores vertical mode inserts
since they are only ever found between paragraphs.

But what does \insert do exactly? When TEX
sees an \insert primitive in horizontal mode (when
typesetting a paragraph), it does two things: first, it
processes the insert’s content and saves it invisibly
just below the current line. Second, it effectively
adds the insert content’s height to the height of the
material on the current page. Also, for the first insert
on a page, the glue in \skip(class) is added to the
current height. All this is done to ensure that there
is sufficient room for the insert on the page whenever
the line is output onto the page.

If there is absolutely no way to make the
insert fit on the page—say, if you placed an
entire paragraph in a footnote on the last line of
a page—then TEX will begrudgingly “split” the
insert, placing the first part on the current page
and “holding over” the second part until the next
page.

There are some other TEXnicalities involving

Updates to lua-widow-control

14788

10149

902

https://github.com/zauguin/luametalatex

infinite

2596

infinite

19462

2230

961

342

\count(class) and \dimen(class), but they mostly
don’t affect lua-widow-control. See Chapter 15 in
The TgXbook or some other reference for all the
details.

After TEX has chosen the breakpoints for a para-
graph, it adds the chosen lines one by one to the
current page. Whenever the accumulated page height
is “close enough” to the target page height (normally
\vsize) the \output token list (often called the “out-
put routine”) is expanded.

But before \output is called, TEX goes through
the page contents and moves the contents of any
saved inserts into \vboxes corresponding to the in-
serts’ classes, namely \box(class), so \output can
work with them.

And that’s pretty much it on the engine side.
Actually placing the inserts on the page is reserved
for the output routine, which is defined by the for-
mat. This too is a complicated process, although
thankfully not one that lua-widow-control needs to
worry about.

13.4.2 LuaMetaTEX

The LuaMetaTEX engine treats inserts slightly differ-
ently than traditional TEX engines. The first major
difference is that insertions have dedicated regis-
ters; so instead of \box(class), LuaMetaTEX has
\insertbox(class); instead of \count(class), Lua-
MetaTEX has \insertmultiplier(class); etc. The
second major difference is that LuaMetaTEX will
pick up inserts that are inside of boxes, meaning
that placing footnotes in things like tables or frames
should mostly just work as expected.

There are also a few new parameters and other
minor changes, but the overall mechanism is still
quite similar to traditional TEX.

13.4.3 Paragraph breaking

As stated in the original article, lua-widow-control
intercepts TEX’s output immediately before the
output routine. However, this is after all the
inserts on the page have been processed and boxed.
This is a bit of a problem because if we move
a line to the next page, we need to move the
associated insert; however, the insert is already
gone.

To solve this problem, immediately after TEX
has naturally broken a paragraph, lua-widow-control
copies and stores all its inserts. Then, lua-widow-
control tags the first element of each line (usually a
glyph) with a LuaTEX attribute that contains the
indices for the first and last associated insert. lua-
widow-control also tags each line inside the insert’s
content with its corresponding index so that it can

Max Chernoff

TUGDboat, Volume 43 (2022), No. 3

be found later.

13.4.4 Page breaking

Here, we follow the same algorithm as in the original
article. However, when we move the last line of the
page to the next page, we first need to inspect the
line to see if any of its contents have been marked
with an insert index. If so, we need to move the
corresponding insert to the next page. To do so,
we unpack the attributes value to get all the inserts
associated with this line.

Using the stored insert indices and class, we can
iterate through \box(class) and delete any lines that
match one of the current line’s indices. We also need
to iterate through the internal TEX box hold_head —
the box that holds any inserts split onto the next
page —and delete any matching lines. We can safely
delete any of these lines since they are still stored in
the original \insert nodes that we copied earlier.

Now, we can retrieve all of our previously-stored
inserts and add them to the next page, immediately
after the moved line. Then, when TEX builds that
page, it will find these inserts and move their contents
to the appropriate boxes.

16 Known issues
The following two bugs have now been fully resolved:

e When running under LuaMetaTEX, the log may
contain [...]

o TEX may warn about overfull \vboxes |...]

The fundamental limitations previously listed
still exist; however, these two bugs along with a few
dozen others have all been fixed since the original
article was published. At this point, all known bugs
have been resolved; some bugs certainly still remain,
but I'd feel quite confident using lua-widow-control
in your everyday documents.

There is, however, one new issue:

e lua-widow-control won’t properly move footnotes
if there are multiple different “classes” of inserts
on the same line. To the best of my knowledge,
this shouldn’t happen in any real-world docu-
ments. If this happens to be an issue for you,
please let me know; this problem is relatively
easy to fix, although it will add considerable
complexity for what I think isn’t a real issue.

o Max Chernoff
mseven (at) telus dot net
https://ctan.org/pkg/lua-widow-control

988

16404

infinite

5547

2502

infinite

TUGDboat, Volume 43 (2022), No. 3

Can “\parfillskip=0pt” shorten a
short paragraph in plain TEX by two lines?

Udo Wermuth

Abstract

The decisions of TEX when it breaks a paragraph
into lines are based on numerical calculations of bad-
ness values, line demerits, etc. With the help of the
formulas that TEX implements, experts can decide
questions about possible or impossible tasks.

The question in the title compares the number
of lines that TEX produces for a given text, if it is
typeset with plain TEX’s default values, to the num-
ber that one gets with a single change applied to
these defaults: \parfillskip is set to O pt. A prob-
lem of this type cannot be solved by the abovemen-
tioned formulas alone although they help to find an
assumed example in the simplest case of a three-line
paragraph. But this example doesn’t respect plain’s
default values, as they aren’t captured in the formu-
las. Additionally, some assumptions about the TEX
input are needed to show that the answer to the
question in the title is “no” for Computer Modern
Roman fonts of sizes 8 pt, 9pt, 10 pt, and 12 pt.

1 Introduction

In my article about the parameter \parfillskip [7]
a couple of texts that TEX breaks with the defaults
of the plain format in one to three lines demon-
strate how different values for \parfillskip change
the positions of the line breaks. In experiment 4
\parfillskip is set to Opt and a text previously
typeset by TEX in three lines needs only two. There-
fore I name this input a 3/2 text.

I asked myself, does a “normal text” exist that
is typeset by TEX two lines shorter, without any
warning or error, if the parameter \parfillskip is
set to Opt and all other parameters except \hsize
(that was set to the column width of TUGboat)
keep the default values of plain TEX. Thus, my ques-
tion was: Do 3/1 or 4/2 texts exist? Of course, one
can also ask the general question independent of the
number of lines: Is there any paragraph that be-
comes two lines shorter with \parfillskip=0Opt?
This question isn’t answered in this article.

Admittedly the reduction of three lines to a sin-
gle one seems to be very extreme; even 4/2 and 5/3
texts seem to be unlikely. Intuition tells us that it is
not possible. Unfortunately, that gives us no argu-
ments to convince a skeptic. To get five lines of a text
that fits also in three lines we don’t need to extend
the width of the three lines by 167% but only by

343

133% plus a little bit for the fifth line. And we know
that certain conditions increase the stretchability of
glue. For example, after a period the stretchability
is multiplied by 3; see [2, p. 76]. Moreover, in a sec-
ond pass an additional factor of more than 5/4 for
the stretchability is possible because of the higher
tolerance; see [2, p.96]. And, of course, the three
lines might be compressed, i.e., they might be tight
lines, in which the glue shrinks; see [2, p.97]. So our
intuition might not be the best adviser.

Normal texts. I don’t accept every valid TEX in-
put; it mustn’t be too weird. For example, I require
that all glue items stem from spaces or ties, not from
\hskip, \hglue, \leaders, etc., outside of hboxes.
Section 5 states additional common-sense assump-
tions. I admit that the word “normal” describes only
a vague concept, to which the reader must agree.

The \hsize. \hsize can be set but not all val-
ues are accepted. According to [1, p.26] the value
of \hsize should allow the typesetting of justified
paragraphs with 45-75 characters per line or 40-50
for two-column layouts. We assume that each line
of the shorter paragraphs contains ~ 50 characters
including spaces. The justified lines of the longer
paragraphs contain therefore = 25, 33, 37, 40, ...
characters if the paragraph has 3, 4, 5, 6, ... lines.
One can assume that the last line is very short.

Contents. Section 2 shows that it is possible to
get one line with \parfillskip=0pt although oth-
erwise a three-line paragraph is typeset, if the con-
straint that except for \hsize all parameters must
have the plain TEX default is lifted for one more
parameter. So we cannot prove that a 3/1 text is
impossible inside plain TEX with the computations
of TEX alone; we must look at the used fonts too.
Section 3 presents a short introduction to four fonts:
8pt, 9pt, 10pt, and 12pt Computer Modern Ro-
man. A proof that no 3/1 text exists for these fonts
is developed in section 4. Section 5 discusses ways
to extend the arguments. They simplify the calcu-
lations in section 6 to prove with common-sense as-
sumptions about normal texts that no 4/2, 5/3, 6/4,
and 7/5 texts exist for the aforementioned fonts.

Two appendices show how TEX’s calculation
help to find one of the examples in section 2.

Notation. The \hsize value is abbreviated by h.

Whw(T) is the natural width of an input text T.
That is the dimension shown by TEX if T is placed
in box register 0 as an hbox, and then its width is
output by \the\wd0. The dimensions S§(T), Sq (T)
and S; (T) stand for the sum of the natural width,
stretchability, and shrinkability of all glue in T. For

Can “\parfillskip=0pt” shorten a short paragraph in plain TEX by two lines?

doi.org/10.47397/tb/43-3/tb135wermuth-shorten

344

example, the hbox with the text T must be spread
by S; (T) or —S; (T) to get a badness of 100. T might
be one character, for example, Wy (=). And Wy (L)
is the natural width of the interword glue.

Some \fontdimen parameters of the used font
specify the three dimensions of the interword glue.
The \fontdimen number ¢ is abbreviated f,.

The shrinkability as well as the stretchability
of interword glue are determined not only by the
\fontdimen parameters but also by the value of one
of TEX’s special integers: \spacefactor. The quo-
tient \spacefactor/1000 is denoted in this article
by the symbol o.

2 Near 3/1 texts

In this section one more parameter of TEX is allowed
to change: \spaceskip. If nonzero, this glue param-
eter replaces the usual interword glue built from the
font parameters; see page 76 of [2]. The next exam-
ples handle paragraphs that have either three lines
or just one line. Nevertheless, these paragraphs are
not 3/1 texts as the constraints are weakened. One
peculiarity of the examples in this section is that the
used \spaceskip values define interword glue that
can only either shrink or stretch.
Example 1: Description
Set the interword glue not via \fontdimen parameters
but via a nonzero \spaceskip that has no stretchability.
Show that under this condition an English text that TEX
breaks into three lines with the default \parfillskip
can be typeset in a single line if \parfillskip=0pt.
TEX input
\spaceskip=0.9\hsize minus 0.87\hsize
\noindent She is the\penalty66\

granddaughter”of "John’s”oldest friend.

TEX output

e \parfillskip=Opt plus 1fil:

She is the
granddaughter of John’s oldest
friend.

e \parfillskip=0pt:

She is the granddaughter of John’s oldest friend. [
(The rectangle in the gutter or margin at the end of
the single line signals the end of the example.)

The ties and the penalty in the input are impor-
tant to get the result; the \penalty must be between
58 and 66. But the most important setting is the
large shrinkability! Of course, such a \spaceskip
shouldn’t be used for a text. Its shrink ratio, i.e.,
the quotient of the amount of shrinkability and the
natural width of spaces, has the exceptionally high
value of 0.87/0.9 = 0.96666 . . .; I name this ratio cv_.

An analysis based on the length of lines gives a
necessary condition for the shrink ratio to make the

Udo Wermuth

TUGDboat, Volume 43 (2022), No. 3

above construction possible. The shrink ratio must
be larger than 0.5 to move from a line with width
\hsize and the maximum of shrinkability to a line
that has a natural width larger than 2\hsize. A
criterion to prevent TEX from typesetting a three-
line paragraph vs. a one-line paragraph if spaces can
only shrink is therefore to have a shrink ratio of the
interword glue < 0.5.

Example 2: Description
Again, set the interword glue not via \fontdimen pa-
rameters but via a nonzero \spaceskip; this time use
natural width and stretchability only. Show that a text
that TEX breaks in three lines with the plain TEX default
value of \parfillskip can now be typeset in a single line
if \parfillskip=0pt.
TEX input
\spaceskip=5pt plus 87.3pt
\noindent Now we see\penalty-151\
{\tt \string\parfillskipl}’s top
contribution\penalty13\ clearly.

TEX output

e \parfillskip=Opt plus 1fil:

Now we see
\parfillskip’s top contribution
clearly.

e \parfillskip=0Opt:

Now we see \parfillskip’s top contribution clearly. [|
The stretch ratio, .y, in example 2 has the incredi-
ble high value of 87.3pt/5pt = 17.46.

It is much more difficult to find such a text than
for glue that can only shrink. Appendix A demon-
strates how TEX’s formulas for line demerits helped
to find the criteria for the text used by example 2.
The main points of the construction are: 1) the first
line must be very loose, 2) it must break with a
penalty of —151 or less, 3) the second line must be
a “little bit” loose so that 4) the join of second and
third line is decent. See [2, p.97] for a description of
TEX’s fitness classes: very loose, loose, decent, and
tight. (Section 2 of [5] explains them too and its
section 3 shows how to look at TEX’s line-breaking
decisions.) Note, the positive penalty could be zero.

Appendix B proves that, in the case that glue
can only stretch, a; < V2 = 1.41421 ... avoids the
scenario that three lines are typeset by TEX with
the default \parfillskip but only a single line if
\parfillskip=0Opt.

3 Interword glue from fonts

TEX selects the line breaks for the paragraph in a
way that minimizes the so-called total demerits; see
pages 97-98 of [2]. The formula to compute them
involves a constant and three variable parameters:
the badness of each constructed line, the condition

TUGDboat, Volume 43 (2022), No. 3

under which the line break occurs expressed in a
penalty value, and additional demerits that penalize
certain unwanted effects between neighboring lines.
All values are integers.

The constructions in section 2 show that the
total demerits approach doesn’t reflect the available
interword glue from the default font in plain TEX,
cmr10. Its contribution, i.e., the natural width of the
spaces as well as the stretch- and shrinkability, must
be taken into account for our problem.

Of course, the normal interword glue defined
by some \fontdimen parameters of the Computer
Modern Roman fonts can both shrink and stretch
so it is quite a different situation from the examples
in section 2. As mentioned above the shrinkability as
well as the stretchability of spaces are not only de-
termined by the glue but also by the \spacefactor
in front of the glue. TEX has a table of codes, the
\sfcode table, that specifies for every character of a
font how it changes the \spacefactor. The default
value is 1000 but it is lowered to 999 after upper-
case letters and it is raised to 3000 after a period in
plain TEX, for example. The shrink ratio is divided
by o = \spacefactor/1000 and the stretch ratio is
multiplied by this value; see [2, p. 76 and the macro
\nonfrenchspacing on p.351]. Plain TEX uses only
six values different from 0 for o: 0.999, 1, 1.25, 1.5,
2, and 3.

Four \fontdimen parameters of the used font
specify the three dimensions of the interword glue.
Computer Modern Roman fonts in the sizes 12 pt,
10 pt, 9pt, and 8 pt obey the following relationships
[4, p.12 and p. 37].

1. \fontdimen2, f5, is the base natural width for
the interword glue; it’s the width used if o < 2.

2. \fontdimen3, f3, equals fo/2. It specifies the
stretchability.

3. \fontdimen4, f,, is one third of f5. Its value
specifies the shrinkability.

4. \fontdimen7, f7 is also f2/3 and it is added to
form the natural width with fy if o > 2.

For this discussion the contribution to the nat-
ural width of interword glue in the case o > 2, i.e.,
\fontdimen7, is seen as part of Wy, (T), that is, the
natural width of the input text T. It can vanish at a
line break but it doesn’t add stretch- or shrinkability
to the glue. Thus Wy (1) is always fa.

Now it’s possible to transfer the above rules into
a formula for the shrink or stretch ratios.

fa 1
a__f2/0_30' M)
In any case a_ is smaller than 0.5 in plain TEX.
Its maximum is reached with ¢ = 0.999; then it

345

is 1/2.997 = 0.333667. Similarly,
[3 o

ay = X0 =

2 2

has its maximum value 1.5 > /2 with ¢ = 3.

(2)

4 Do 3/1 texts exist?

Before the combination of shrink- and stretchability
is studied further, we show that we need to consider
only the first pass for 3/1 texts.

If the input T can be (a) typeset in one line and
(b) split into three parts to fill more than two lines
then the single line cannot be in the fitness class
very loose. According to the description on page 97
of [2] T in a very loose line obeys:

Waw (T) + S5 (T) < h (3)
where equality holds if and only if the badness of
the line is 100. Obviously, Sy (T) < h.

To get three lines we need a higher badness.
But even for a line with badness 200 (the maximal
tolerance for a second pass; see page 96 of [2]) in
which the stretchability is increased by the factor
V2 ~ 1.25992 it is not possible to stretch T wider
than 2h if h, i.e., the \hsize, is not unreasonably
short. Let’s further assume that the first two lines
end with hyphenated words so that the text T is ex-
tended by two inserted hyphens. (Note all four fonts
have Wiy (1) = Waw(=); see [4, p.37 and p. 143].)
Waw (T) + \S/ES(T(T) +2Waw(-)

= Waw(T) + Sg (T) + (V2 = 1)SF(T) + 2 Waw(-) -
Using (3), v2 — 1 < 0.26, Sf (T) < h, and our as-
sumption that lines have 50 characters — here amply
translated as 2 Wy (=) < 0.5h—we find
W (T) + V2 S5 (T) + 2 Waw (=) < h + 0.26h + 0.5k
< 2h.
We proved:
The fitness class of the single line

(4)

Thus, the single line is typeset in the first pass.
With such a solution the three-line paragraph must
be typeset in the first pass too as TEX has no reason
to execute a second pass. Note this result is also
valid for the examples in section 2.

in a 3/1 text cannot be very loose.

Are there 3/1 texts? Okay, T can fit into one line.
We assume that all of its shrinkability must be used
because then we find the T with the largest width:

Waw(T) — S (T) = h.
Let’s assume that there are vt spaces in T. These

spaces might have different widths, stretchability
and shrinkability as these values are influenced by

Can “\parfillskip=0pt” shorten a short paragraph in plain TEX by two lines?

346

the \spacefactor as explained above. We assume
here that all spaces shrink with a single value:
Wiw(T) — vra— Wiw(u) = h. (5)

To get a 3/1 text, the text T together with its
maximal stretchability must be wider than 2h. We
cannot use more than the maximal stretchability
as TEX typesets in the first pass according to (4)
and underfull lines are excluded. Let’s directly re-
place Si (T) by the term that involves the number
of spaces and one value for the stretchability:

Waw (T) + vroay Wyw(u) >2h=h+h. (6)
In the inequality (6) one h on the right hand
side is replaced by the left hand side of (5)
Waw (T)+vrats Waw(u) > Waw (T) —vra- Wy (u)+h
and simplified to
h
VT W) ™
Next oy and a_ are replaced by their expressions
involving o, i.e., by (1) and (2):
o 1 h
2 VT Waw(u)

Oé++0é_ >

2 30
As there are only six values for o a table suffices
to find the maximum for the left hand side (LHS).

o= 0999 1 1.25 1.5 2 3
LHS ~ 0.8332 0.8333 0.8917 0.9722 1.1667 1.6111

Thus, the maximum for the left hand side is reached
with ¢ = 3. Using this maximum the above relation
reads now 1.6111 > h/(vt Waw(u)) or after moving
vt > 0 to the left hand side:
1 6111};1/ (L)’ ®)
M nw\U

This inequality states that the number vt of spaces
in a text T must exceed the right hand side to get
more than two lines using TEX with plain’s default
settings. Note, (8) doesn’t state that text T is a 3/1
text if the inequality holds; it’s only a necessary con-
dition, i.e., if T is a 3/1 text then (8) holds.

The denominator of the right hand side (RHS)
of (8) can easily be computed for the above listed
Computer Modern Roman fonts.

vt >

font: cmr8 cmr9 cmrl0 cmrl2
Waw(u) /pt = 2.83337 3.08331 3.33333 3.91663
x 1.6111 = 4.56484 4.96752 5.37033 6.31008

The only unknown value is the \hsize h.

Our general assumption about the \hsize is
that a line holds = 50 characters. Thus the number
of spaces in such a line must be less than 50/2 = 25.

Digression. For my article [7] h = 225 pt and the
font was cmr9. As 225/4.96752 ~ 45.3 one needs 46
spaces and therefore 46 punctuation marks in front

Udo Wermuth

TUGDboat, Volume 43 (2022), No. 3

of them and one at the end of the line, plus 46 times
additional white space of width f; as ¢ > 2, and
then there should be some text too. This is impos-
sible. (End of digression.)

The table on page 28 of [1] helps to find the
line length that’s related to a given number of char-
acters for a given font. The table requires as input
the lowercase alphabet length of this font.

font name: cmr8 cmr9 cmrl0O cmrl2
lc alphabet length in pt: 108.4 118.0 127.6 149.9
requires according to [1]
this line width: A/pt = 192 216 240 264
to get this no. of chars: 49 50 52 51

making the RHS of (8) ~ 42.1 43.5 44.7 41.8

The numbers in the last line are much larger than
the half of the corresponding value in the previous
line! Thus, no 3/1 texts exist with the Computer
Modern Roman fonts of sizes 12 pt, 10 pt, 9 pt, and
8 pt if the line width allows = 50 characters.

5 Improvements

The computations in the section 4 applied only argu-
ments about the length of a line when the interword
spaces have to shrink or stretch. The computations
are valid for all input if glue items are spaces. But
one might ask if the computations should be limited
to these arguments as “normal texts” are considered.
Of course, section 4 establishes a clear result
so that the argument doesn’t require an additional
complication. On the other hand, what we learn in
the smallest case might be useful in other cases.

Line breaks I. The single line shrinks so much
that its badness is 100 and thus the total demerits
that TEX computes for this paragraph becomes (104
100)% = 1102 = 12100; see [2, p. 98].

In a three-line paragraph that contains two lines
that stretch so that they each have badness 100, the
total demerits receive from these badness values a
contribution of at least 2 x 11024100; the 100 comes
from the last line. So TEX never considers typeset-
ting the three-line paragraph if there isn’t another
contribution that reduces the total demerits. Such a
contribution can only come from a negative penalty
at a line break; this effect was used in example 2.

Yes, plain. tex contains macros that use a neg-
ative penalty but except for one these macros oper-
ate in vertical mode, not in a paragraph. The excep-
tion is \break that uses \penalty-10000 to force a
line break. (This macro cannot be used in a 3/1 text
as otherwise the single line couldn’t be typeset. In
general this macro splits a paragraph into two parts
that can be considered independently.)

TUGDboat, Volume 43 (2022), No. 3

I think the majority of texts don’t use the prim-
itive \penalty in horizontal mode directly. Usually
it occurs only through the macro executed by the
tilde to prevent a line break. Thus one can ques-
tion that an input with an explicitly stated negative
penalty creates a “normal text”. So, let’s assume
that negative penalties aren’t part of the input.

Thus, the badness of the two complete lines in
a three-line paragraph must be smaller than 100 to
make the paragraph’s total demerits smaller than
the total demerits of the one-line paragraph. With
other words (6) shouldn’t use ay but a smaller value.
Let’s compute the maximum factor ¢ < 1 that has
to be applied to a4 in (6).

We assume that both lines have the same bad-
ness S < 100; then the following inequality must
hold to make TEX typeset the three-line paragraph
with the defaults.

(10 + 100)% > 2(10 +)% + 100

— 0 > (10 + 8 — v/6000)(10 + 3 + v/6000) .

Simple arithmetic transformations and an applica-
tion of the well-known equation a? —b? = (a+b)(a—
b) lead to the last inequality. It can only hold if the
first factor is less than 0 as 8 > 0. Thus

B < V6000 — 10 ~ 77.46 — 10 = 67.46

or 8 < 67, as badness is an integer. (It’s possible to
take one line with badness 67 and one with 68. But if
one line has a much higher badness then the badness
of the other must be reduced more drastically. For
example, if one line has badness 87 then the other
can only have badness 31 and their combined width
is shorter than with nearly equal badness values.)

Page 97 of [2] explains the relationship between
¢ and the badness § as an equation but it’s only an
approximation: ¢ ~ {/5/100. Thus, with 8 = 67 we
get ¢ ~ 0.875.

Using 0.875a4 instead of ay in (7) the table for
the LHS changes:

o= 0999 1 1.25 1.5 2 3
LHS ~ 0.7707 0.7708 0.8135 0.8785 1.0417 1.4236

so that 1.6111 gets replaced by 1.4236; that is, (8)

becomes
h

1.4236 Wi (1) ()
The new value implies a change to the table for the
fonts as the RHS of (x) is larger than the RHS of (8).

VT >

Line breaks II. And one can go even further as
the lines have breakpoints. A line break must occur
either at glue (including kerns and the end of inline
math, if followed by glue) or at a penalty item, for
example, at an explicit hyphen or inside inline math.
A break at a penalty increases the total demerits, a

347

break at glue reduces the number of spaces. Let’s
assume the breaks are at glue. Then inequality (6)
is changed to

Waw(T) — 2f7[0 > 2] + (v1 — 2)pay Waw (L) > 2R
where [0 > 2] = 1 if and only if the relation o > 2

is true; otherwise it’s 0. This leads to the following
replacement of (8):

US> h + 2f7 + 2¢)O{+
T 14236 Wow (1) | 14236 Waw (L) | 1.4236
and as fr/ Wyw(u) = 1/3, ¢ = 0.875, and oy = 3/2

vt > +0.47+1.84

h
1.4236 W (L)
which increases the right hand side compared to ()
by 2.31 spaces.

Distributions I. Another approach for improve-
ment addresses the use of normal texts. The assump-
tion that in such a text all spaces stretch and shrink
by the same amount is of course not very likely. So
instead of having 100% spaces with ¢ = 3 one can
define a less extreme distribution.

I don’t apply the distribution of punctuation
marks in a large corpus as that might not reflect the
special aspects of the short text that we are looking
for. So let’s use a reasonable but also somewhat ex-
treme distribution. For example, 70% of the spaces
have ¢ = 1 and are therefore not preceded by any
punctuation mark; 10% occur with o = 1.25 after
a comma; 5% with ¢ = 1.5 after a semicolon; 5%
with o = 2 after a colon; and 10% with ¢ = 3 after
a period, an exclamation or question mark.

If the left hand side of (7) is split in this way
one gets a new value instead of 1.6111. Using the
values of the table for the LHS of (7) we compute

0.7-0.8333 +0.1-0.8917 4+ 0.05 - 0.9722
+0.05-1.1667 + 0.1 - 1.6111 = 0.940535 (xx)

which increases the right hand side of (8) when used
instead of 1.6111.

Distributions II. Another questionable assump-
tion for a normal text is that between two printed
characters a space is output. A text with spaces
that are always preceded by a punctuation mark can
therefore not contain any letter between the spaces.

Again without citing data from a corpus we as-
sume —somewhat extremely — that the output has
no more than 25% spaces. Thus, a line with 50 char-
acters contains at most 12 spaces or 13 words or
word parts if hyphenation is used in the line.

6 The general case

Let’s extend the analysis to 4/2, 5/3, etc., texts; in
general, to a u/pu — 2 text for p > 3.

Can “\parfillskip=0pt” shorten a short paragraph in plain TEX by two lines?

348

Both paragraphs might be typeset in the second
pass. If one hyphen is inserted the shorter paragraph
can be typeset with maximally tight lines all ending
in a hyphen adding (¢ —4)\doublehyphendemerits
and \finalhyphendemerits to the total demerits.
With breaks at glue and lines that stretch > 50% in
the longer paragraph, its badness values must obey

—3 4 17000
B < \/“—14600 + 2710000+~ 10;
% p—1 1

-1
see section 5, “Line breaks I”. Thus, 0.97 < ¢ <
1.1 < ¥/2 if 4 < u < 11; at best a tiny gain for a.

Therefore we can assume to get the best can-
didates for small p if the longer paragraph needs
the first pass, the shorter the second pass with an
inserted hyphen, and all other line breaks in both
paragraphs are at explicit hyphens to keep the glue.

The formulas (5) and (6) are easily changed

Wi (T) + W (=) — vra- Wiy (L) = (0 — 2)h
Wiw(T) + vrag Waw(u) > (1 —1)h
and lead to an inequality like (8); note Wy (=) =
Whaw (u). Now apply the distributions of the previous
section; that is, with (xx) (8) is replaced by
1 /
T 0.940535 Waw (o) | 0.940535 ° (&)
The denominator of the RHS’ first term computes to

14

font: cmr8 cmr9 cmrl0 cmrl2
Waw(u) /pt = 2.83337 3.08331 3.33333 3.91663
x 0.940535 = 2.66488 2.89996 3.13511 3.68373

which gives the following values for the RHS if used
with h suggested in [1]; see the end of section 4.

font: cmr8 cmr9 cmrl0 cmrl?2
RHS of (8') =~ 73.1 75.6 77.6 72.7

Results: a) As all RHS are > 50 no 4/2 texts
exist. b) The RHS for cmr9 and cmr10 are so large
that no 5/3 text exists for them. ¢) There are no
5/3,6/4, and 7/5 texts for the four fonts if 25% of all
characters are spaces. The shorter paragraph needs
at least 6 lines as the text has 292-312 characters.

Appendix A: Conditions for example 2

We need to work with the calculation that TEX per-
forms to find line breaks. Thus, we need to state
several formulas and do some math. These tasks be-
come much simpler if we have a consistent notation.
We develop it bit by bit in this appendix.

The input line number ¢ is named L, and its
line demerits are represented by A,. This value is
computed from other numbers; see [2, p. 98]:

A, = N+ B,)? +sgn(m)m? + 6, (A1)
where A is the \linepenalty (a constant in the out-
put paragraph), (3, is the badness assigned by TEX to

Udo Wermuth

TUGDboat, Volume 43 (2022), No. 3

this line, sgn(m,) is the signum function that returns
the sign of its argument, 7, is the penalty that occurs
at the line break, and §, is the sum of the param-
eters \adjdemerits, \doublehyphendemerits, and
\finalhyphendemerits that TEX assigns based on
a comparison of lines ¢ and ¢ — 1; line ¢ gets these de-
merits. Note two special cases: A last line cannot get
\doublehyphendemerits and only a very loose first
line has §; > 0 because of \adjdemerits; see [6].

The badness 8 is an approximation based on
how much the glue of the line must use either its
stretchability or shrinkability to make a line of a
given length. It is a function of two dimensions but
they are usually dropped in the notation.

B(u, a) ~ 100 (5)3 a>0pt (A2)

where w is the amount of either stretchability or
shrinkability that was used in the construction of
the line and a is the available amount of stretchabil-
ity or shrinkability, resp., in this line; see [2, p. 97].

Badness is a function that is monotone increas-
ing in v and monotone decreasing in a; see §108 of
[3]. This means for x,y > 0pt:

Blu,a) < B(u+z,a) A B(u,a) > B(u,a+y).
Thus, if material is added to a line, in which the glue
can only stretch, its badness is reduced.

The function (A + 8(u,a))? has the same prop-
erty if A > 0; in plain TEX A = 10. So a difference
built for two lines only from their first term in (A1)
is positive if the line whose badness is subtracted
contains more material. And it also means that such
a difference is larger than the difference of the same
lines both extended by more identical material.

One line. First we show that a negative penalty
must be involved if a text that TEX can typeset
in one line is split and the glue can only stretch.
By (Al) and as A = 10 in plain TEX
Ay =A% =100
as the badness must be 0, the final break has no
penalty contribution, and no additional demerits are
applied to a single line if \parfillskip has TEX’s
default value. For a pair of lines we have by (A1)
A1 + Ag = (/\ + 61)2 + Sgn(ﬂ'l)ﬂ'% + (51
+ (A B2) + sgn(ma)m5 + 62
> A2 +sgn(my)i + A2
as both badness values are > 0, both additional de-
merits are > 0, and mo = 0. Thus 7 must be less
than 0 to make the left hand side < A2. A similar
argument shows that with two line breaks at least
one must have a negative penalty. Thus, both lines
in such a paragraph don’t break with a hyphen, i.e.,
no \doublehyphendemerits are involved.

TUGDboat, Volume 43 (2022), No. 3

To distinguish between a last line that is pro-
duced with the default \parfillskip and one that
is output with \parfillskip=0Opt, a prime is at-
tached to the variables in the second case. Primed
non-last line variables have identical values to their
unprimed version.

With \parfillskip=0pt we have the single line
as the best solution so that any two-line paragraph
must have higher demerits:

A/1/1 < A’1/2 + A/Q/2 . (A3)
The subscript to identify line demerits and the asso-

ciated parameters is written here as a pair of the line
number and the total lines in a set of line breaks.

Three lines. TEX typesets three lines only if the
sum of the demerits for these three lines is smaller
than the demerits for the one-line solution as well as
for any two-line solution.

Apyss + Agyzs + Ajzyys < A (A4)

Ay + Agyys + Az < Arjo +Age (AD)
Here the line numbers on the left hand sides are set
in brackets to mark them as fixed. If two or three
lines from these fixed lines are joined together then
we write, for example, [2&3]/2 or [1&2&3]/1.

The single line is unique, of course, and there-

fore (A4) is better written as

Apyzs + A2z + Apayys < Apeaesjn -
Construction: Step 1. Because of (A5) we know
Apyza + Ayss + Appyys < Apaeayze + Apgy2
where A[1g9]/2 stands for the line demerits of the line
Li1&2)/2 that consists of the input for the first two
lines, Lj1)/3 and L3, of the three-line solution as
explained above. Note: Lj;j/3 must end in a negative

penalty as shown in subsection “One line”.

A3)/3 and Ajz) /o are identical except if the line
L(g)/3 is very loose; then the first term has the addi-
tional demerits \adjdemerits. In order to remem-
ber this situation better we write d,[L)/3 v] instead
of d(3)/3. Here d, is the value of \adjdemerits and
the bracket has the value 1 if the stated condition is
true, otherwise it’s 0. Thus instead of

Apyss + Apyys + 03173 < Apeayy
we write
Apyys + Apzyys + 0alLpzs vl < Mgz -
Next we apply (A1) and it follows that
Apyys < Apeayyz — Ay — dalLigys V]
= Apyys < A+ Bueary2)” + sen(mgs)/2) g 2
+ dp1&2)/2
— (A Brayya)® — sen(m)/s)
— 02173 — 6alLi21/3 V] -

349

We can simplify this inequality as m[1g2)/2 = 7[2)/3
(it is the same line break) and dp19)/2 = 0 (because
in the first pass a very loose line that gets more text
isn’t very loose any more so \adjdemerits can’t be
charged). As \doublehyphendemerits can’t occur,
d[21/3 can only be \adjdemerits if either the first
line is decent and the second very loose or the first
line is very loose and the second decent. That is,
O21/3 = alLpuyya VI[Lizya d] + da[Lpzy/a VI[Lpy s d] or
short: 0121/3 = da[Lp1]/3/L2)/3 d/V]. Therefore:

Az < A+ Bugary2)® — (A + Brayys)? (A6)

= Ga[Lpy/a/Liays d/v] = GalLpa/3 v]
Construction: Step 2. All we know for sure is
that the text can be broken at two places. The third
line of the three-line solution is short and so lines two
and three must be joined for \parfillskip=0pt to
create a two-line solution. Thus, by (A3)

A/[1&2&3]/1 < Ah]/z + Af2&3]/2 (AT)
must be true. For the left hand side we have
Argogsn = A+ Bhgsws i)’ (A8)

by (A1) because a last line has no countable penalty
at its end and only \adjdemerits could be charged
for a first line. But as a join of more than two lines,
the line isn’t very loose and (5{1&2&3]/1 =0.

Of course,
Afyy2 = Apyyz as well as (A9)

Buea = Bligz and Bz = By

as in both cases the same break is used and all lines

stretch to h with the same badness. By (Al)
Mgy o = (A + 5{2&3}/2)2 + Ojag3) /2

as there is no penalty for the break. Next, 5{2&3]/2

can only be \adjdemerits as shown above. So if

(5{2&3] /2 # 0 then the first line must be very loose

and this line decent. Thus with

Afggzyo = A+ Blagg2)? + allinyys VI[Lizes) 2 d)
and together with (A9), (A6), and (A8) we compute
Afyja + Moga)2 — Migowa

< A+ Bliegyy2)® — A+ Blyys)?
= dalLp)/a/Liz /3 d/V] = dalLia)a V]
+ (A + Blagg2)® + 0alliyys vILizes 2 d]
- (>‘ + ﬂf1&2&3]/1)2
< dalLp1)/3 VI[Li2&3) 2 Al = dallpy/a/Lizy 3 d/V]
—dalLjgy3v] =1 A

(Note, A is a short-cut for the sum of the three d,.)
We discussed that badness is a monotone function

Can “\parfillskip=0pt” shorten a short paragraph in plain TEX by two lines?

350

after (A2) and that this property can be extended
to the first term of (A1). Here

(A+ 5{2]/3)2 (A + 5{2&3]/2)2 > A+ Bfl&z]/z)2

—(A+ ﬂf1&2&3]/1)2
holds and thus a negative value was dropped above.

Construction: Final step. If A <0 then

/2 T Mogayje — Migagsyn <0
— Afyyje + Moga 2 < Aigowa i
and this is a contradiction to (A7): There is a two-
line solution in the case \parfillskip=0pt that has
less total demerits than the single line which is out-
put by TEX by assumption.

A solution to the problem might only be found
with A > 0. This can only happen if the first line
is very loose, the second combined with the third
decent, and the second line itself loose. We know
that 73 < 0. It’s best to have it < —151 as

1512 > line demerits of a very loose first line
+ minimal line demerits of a loose line
= ((10 +100)% + 10000) + (10 + 13)?
= 22629 > 150°.

So all elements of a solution are found. Q.E.D.

Appendix B: A bound for the stretch ratio

The badness values of a successfully broken para-
graph must not be greater than the tolerance for
the pass. The first pass sets the tolerance to 100,
the second and third use 200 [2, p. 96].

In the first pass a very loose line, L, needs all
of its stretchability to fill the line. With a badness
larger than 100 it needs more; see (A2).

Waw(L) + S (L) = h if badness is 100;

Waw (L) + V255 (L) = h if badness is 200.

A decent line can either stretch or shrink but it
uses at most half of the related capacity to fill the

line; see [2, p. 97]. That is, if the line L is decent and
its glue stretches, then

Whw (L) + %SJ(L) > h > Waw(L) . (B2)

(B1)

The bound. Let a be the max. stretch ratio. The
first line, L1, must be very loose, so it needs all of its
stretchability to reach h. Note: the text is typeset in
the first pass as shown in section 4. Thus by (B1)

Waw(L1) + S5 (L1) = h

— Wi (L1) 4+ 0y SS(L1) >
= (14 oy) Wi (L1) > B
h
nw(L1) > .
— w, (1) 1+a+

Here we use S§(L1) < Wyw(L1).

Udo Wermuth

TUGDboat, Volume 43 (2022), No. 3

The line Log 3 is decent and its glue stretches.
This means by (B2)

1
WIIW(L2&3) + §S(—)i_ (L2&3) Z h
(6%
= Whw(Lags) + %58(L2&3) >h

= 1+ O%) Wiw (Logs) > h

h
>
T 14 ay/2
If the single line gets longer than h then the
above construction fails. Thus we must have
h > Whw(Ligags) > Waw(L1) + Waw (Logs)
S h n h
T ltar 14ag/2°
Therefore, 1/(1 + ay) + 1/(1 + a4 /2) must be at

most 1. This means
1 1

=1
1+a++1+a+/2

— an (L2&3)

« 3 1
%+1+0&+:1+§O{++§

_ 2
— 2=af

so that a; = V2 ~ 1.41 is the maximal allowed
factor for the stretchability compared to the natural
width. Q.E.D.

2
e 1+ a

References

[1] Robert Bringhurst, The Elements of Typographic
Style, 4th edition, version 4.2, Seattle, Washington:
Hartley & Marks, 2016.

[2] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[3] Donald E. Knuth, TEX: The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[4] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[5] Udo Wermuth, “Tracing paragraphs”, TUGboat
37:3 (2016), 358-373; errata in TUGboat 38:3
(2017), 414.
tug.org/TUGboat/tb37-3/tbl17wermuth. pdf

[6] Udo Wermuth, “TEX’s ‘additional demerits’
parameters”, TUGboat 39:1 (2018), 81-87.
tug.org/TUGboat/tb39-1/tbl121wermuth-adem.pdf

[7] Udo Wermuth, “Experiments with \parfillskip”,
TUGboat 39:3 (2018), 276-303.

tug.org/TUGboat/tb39-3/tb123wermuth-parfillskip.

pdf

o Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

TUGboat, Volume 43 (2022), No. 3 351

LaTeX2Nemeth and the amsmath package

Andreas Papasalouros, Antonis Tsolomitis

1 Introduction

LaTeX2Nemeth is a software package written in Java that converts IATEX files written in the
UTF-8 encoding to Braille using the Nemeth standard for mathematics. It has supported more
than 800 mathematics symbols up to now and a great amount of mathematics structures from
simple exponents to multiline equation arrays.

Recently the project attracted the attention of the TEX development fund, and additional
support was given to cover the American Mathematical Society (AMS) packages and extended
Unicode mathematics support, including all symbols found in unimath-symbols.pdf, to the
extent that this is possible by the structure of the Nemeth standard.

The current version of latex2nemeth found on CTAN incorporates these additions. If
something fails to work and is neither described here nor is a capability of the AMS packages
that has only a visual effect (and hence irrelevant to the blind), it should be considered a bug,
and it should be reported to the authors as such.

As for languages, it supports the Latin alphabet (so English is supported in gradel Braille)
and it also supports the Greek language, both monotonic and polytonic.

2 Extended Unicode mathematics support

All symbols in Will Robertson’s unimath-symbols.pdf file are supported with the exception
of the symbols found in the table at the end of the article. We found no way to support those
in the Nemeth standard. If someone knows how to support them we will gladly add them.
Please contact us in such a case.

The unsupported symbols listed at the end of the article (in Section 13) are only 95 out
of the 2441 symbols found in unimath-symbols.pdf. So more than 96% of the symbols are
supported. In practice the number is even higher, since out of those unsupported symbols, the
ones at the beginning of the table that are used to compose large operators or delimiters are
either irrelevant to the blind (such as the pieces of the parenthesis) or both irrelevant to the
blind and unsupported by xelatex/lualatex, such as the pieces that compose large integrals
or sums.

3 Support for the amsmath package

Most structures of the amsmath package are supported. Unsupported features are those ir-
relevant to the blind (things that have only visual interest), for example options that set the
placement of tags (e.g., centertags), and the commands provided by the amscd and amsxtra
packages.

3.1 Displayed equations

All of the environments below are supported:

equation equation* align alignx*
gather gather* alignat alignatx*
multline multlinex* flalign flalign*
split
Let us take an example from the AMS documentation. The code
ap =by+¢ (1)
ag =by +cyg—dy+ ey (2)

will produce

Notice that latex2nemeth will always use the number indicator :i before a number even if the
Nemeth standard allows its absence in some cases, as in indices, to save space. Also notice

LaTeX2Nemeth and the amsmath package

doi.org/10.47397/tb/43-3/tb135papasalouros-amsmath

352 TUGboat, Volume 43 (2022), No. 3

that commands that modify the spacing (like \multlinegap) are not supported as they are of
no use for the blind and embossers.
Another example taken from the amsmath documentation is

PR SRS H(’;%)
=0 2

L+, =l i=1
, / (3)

=0 = (= I [(=02 = Y (s = 1)?].
j=1

with code
\begin{equation}\label{e:barwq}\begin{split}
H_c&=\frac{1}{2n} \sum™n_{1=0}(-1) {1} (n-{1}) ~{p-2}

\sum_{1 _1+\dots+ 1 _p=1}\prod~p_{i=1} \binom{n_i}{1l _i}\\
&\quad\cdot[(n-1)-(n_i-1 _i)]"{n_i-1 _i}\cdot

\Bigl[(n-1)~2-\sum”™p_{j=1}(n_i-1 _i)~2\Bigr].
\end{split}\end{equation}
works and will give

where we added some line breaks by hand to help typeset the Braille dots for this article.
The “-ed” environments such as aligned and cases etc are also supported (notice that
\ (and \) are supported as well as single dollar signs, and \ [and \] as well as double dollars):

Code TEX

$$ P_{r-j}=\begin{cases}
0& \text{if $r-j$ is oddl},\\

!\, (-1)"{(r-j)/2}& P - 0 if r— 7 is odd,
\text{if $r-j$ is even}. T P (=1) 2 if s even.
\end{cases}
$$
Braille

3.2 Display interruption

\intertext (as well as \shortintertext, from mathtools) is supported:
Code:

\begin{align}

A_1&=N_0(\lambda;\Omega')-\phi(\lambda;\Omega'),\\
A_2&=\phi(\lambda;\Omega')-\phi(\lambda;\Omega) ,\\

\intertext{and}

A_3%=\mathcal{N}(\lambda;\omega) .

\end{align}

TEX:
Ay = No(A; Q) — (N Q), (4)
Ay = ¢\ Q) — d(N;), (5)

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3

and

Ag =N\ w).

Braille:

353

3.3 Equation numbering

Equation numbering with the standard \label and \ref mechanism is supported as well as
with \eqref. Commands that modify the style of the references (such as a change of fonts)
make no sense for the blind and are not supported.

4 Miscellaneous mathematical features

4.1 Matrices

Matrix environments as well as \hdotsfor are supported

Code ‘ TEX output Braille
$$ \begin{matrix} a&b&c&d\\ a b c d i
e&\hdotsfor{3} \end{matrix}$$ € ...
Small matrices (smallmatrix) too:
Code ‘ TEX output Braille

$\bigl(\begin{smallmatrix} (a8)

a&b\\ c&d

\end{smallmatrix} \bigr)$

Parenthesized matrices (pmatrix), as well as bmatrix and Bmatrix too:

Code TEX output
$$\begin{pmatrix}
D_1t&-a_{12}t_2&\dots&-a_{in}t_n\\ Dyt —ayst, ap,t,
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\ —agt Dt Aoty
\hdotsfor [2J{41\\ L
-a_{ni}t_1&-a_{n2}t_2&\dots&D_nt Ayt —pots D,t

\end{pmatrix}$$
Braille

4.2 Math spacing commands

Math spacing commands are irrelevant to the blind so they are ignored. However, a warning
will be printed on standard output about unknown math symbols.

4.3 Dots

All dot commands \dotsc, \dotsb, \dotsm, \dotsi, and \dotso are supported.

4.4 Nonbreaking dashes

Nonbreaking dashes are irrelevant to the blind so they are ignored.

LaTeX2Nemeth and the amsmath package

354 TUGboat, Volume 43 (2022), No. 3

4.5 Accents in math

All accents are supported but commands related to better positioning of the accents are irrel-
evant to the blind.

A is $\hat{\hat{A}}$ and gives & i EiHHEH
4.6 Roots

Any kind of root is supported but \leftroot and \uproot are irrelevant to the blind and
ignored.

Vk is $\sqrt[\leftroot{-2}\uproot{2}\betal {k}$ and gives i3l
4.7 Boxed formulas
Boxes around formulas are irrelevant to the blind and ignored. However, the contents of
\boxed will be transcribed provided that the whole \boxed command is inside math mode.
So $\boxed{x=1}$ will work, but \boxed{x=1} will fail (although I4TEX works with both).
4.8 Over and under arrows
All over and under arrows are supported. For example,

7 is \underleftarrow{x} and gives i

4.9 Extensible arrows

\xleftarrow and \xrightarrow are supported:

n+p—1
A # B —) Cis $A\xleftarrow{n+\mu 1} B \xrlghtarrow [T] {n\pm i-1}C$ and

glves R R R R R T R TR
4.10 Affixing symbols to other symbols
\overset, \underset, and \overunderset are supported:

f‘ I‘ 1'*‘ is $\overset{*}{\Gamma}$
$\underset{\c1rc}{\Gamma}$ $\overunderset{*}{\01rc}{\Gamma}$

and gives (il NG nsmnnaan
4.11 Fractions and related constructions
4.11.1 The \frac, \dfrac, and \tfrac commands

All these commands are supported:

1
n+_2, -t and — n+2 which is

$\frac{1}{n+2}$ $\dfrac{1}{n+2}$ s and $\tfrac{1}{n+2}$
gives fifdititiiiiiii i
Notice that display and text fractions have the same output as there is no reason to differentiate
them for the blind.
4.11.2 The \binom, \dbinom, and \tbinom commands
All these commands are supported:
2k — (M)2k-1 4 (5)2F-2 is $2°k-\binom{k}{1}2 {k-1}+\binom{k}{2}2"{k-2}$

and gives @i inaniigadga o naniNaggEaEnaggs

4.11.3 The \genfrac command

The \genfrac command relates only to visual issues so it is not supported.

4.12 Continued fractions

Continued fractions are supported using the \cfrac command. This is one of the few cases
where latex2nemeth produces two-dimensional output:

Andreas Papasalouros, Antonis Tsolomitis

355

TUGboat, Volume 43 (2022), No. 3
Code TEX output Braille
$$\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+ 1
\cfrac{1}{\sqrt{2}+\dotsb 1
3y V2 + -
33 V2+

4.13 Smash options

\smash is visual and ignored.

5 Delimiters

All sizing commands for delimiters are supported. Both \left and \right commands as well

as all variants of \big.

5.1 Vertical bar notations

All commands \1lvert, \rvert, \1Vert, \rVert are supported.

6 Operator names

6.1 Defining new operator names

\DeclareMathOperator and \DeclareMathOperator* are supported in the preamble.

example, placing \DeclareMathOperator*{\Lim}{Lim} in the preamble allows for
Lim,, which is \Lim_n and gives i

Moreover \operatorname and \operatorname#* in math formule are supported.
In addition to the above, predefined operator names are supported:

{iin which is \varprojlim and gives il

6.2 \mod and relatives

\mod, \bmod, \pmod, \pod also work:
ged(n,mmodn); z=y (modbd); z=y mode¢; z=y (d)
which is

$\gcd (n,m\bmod n);\quad x\equiv y\pmod b;
\quad x\equiv y\mod c;\quad x\equiv y\pod d$

gives

7 The \text command
The \text command is supported. For example:

0, f(x) = a;zof(x) for x = xy + Iz;.

which is

$$\partial_s f(x) = \frac{\partial}{\partial x_0} £f(x)\quad
\text{for $x= x 0 + I x_1%.}
$$

gives

For

LaTeX2Nemeth and the amsmath package

356 TUGboat, Volume 43 (2022), No. 3

8 Integrals and sums
8.1 Multiline subscripts and superscripts

Work has been done to support multiline subscripts and superscripts. Again, let’s look at
examples from the AMS documentation:

Code TEX output Braille
$$\sum_{\substack{
0\le i\le m\\ P(i, j)
0<j <I1}} OSiZ'Sm
P (l s J) 0<j<n

3
Notice that the Braille substack is produced from bottom up. That is, 0 < j < n is
written first and then 0 < ¢ < m, as is typical in the Nemeth standard.

Code TEX output Braille
$$\sum_{\begin{subarray}{1}
i\in\Lambda\\ 0<j<n > P(i,g)
\end{subarray}} 6e<1}<n
P(i,j)
$$

Here we notice that since an array is used the output is two-dimensional.

8.2 The \sideset command

The \sideset command is supported. An example:

Code ‘ TEX output Braille
$$\sideset{}{'} ML oy
\sum_{n<k,\;\text{n odd}} Z/ nE

IlE_Il n<k, n odd
$$
Another example:
Code ‘ TEX output ‘ Braille
$$\sideset{_*"*}{_x"*}\prods R R R

8.3 Placement of subscripts and limits

\limits and \nolimits are supported but \displaylimits is ignored as it is of no use to
the blind.

8.4 Multiple integral signs
Multiple integral signs are all supported:

// which is $$\idotsint\limits_A$$ gives &iiiiiiiiiiii
A

9 Commutative diagrams

Commutative diagrams are not supported; they must be produced as tactile graphics.
10 Using math fonts

All \mathbf, \mathsf, \mathcal, \mathrm, \mathsf, \mathtt are supported.

11 A short guide for conversion to Braille and Nemeth

To convert TEX to Braille is impossible! There is a mathematical proof for this, but the short
reason is the macro capabilities of TEX. So you can not convert arbitrary code to Braille. But

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 357

on the other hand you do not want to either, because many things are done for visual results
that the blind do not need. So some minimal editing of the TEX file is unavoidable.

First, all pictures must be removed from the TEX file because pictures need another
procedure to produce tactile graphics. However, latex2nemeth supports pstricks. So if your
pictures are in the form

\begin{figure} [ht]
\begin{pspicture}(-2,-2)(2,3)

(ps picture commands)
\end{pspicture}

\caption{A picture}\label{mypici}
\end{figure}

The program, while running, will:

o move the contents from \begin{pspicture} to \end{pspicture} to a separate file
in your working directory,

e leave a comment in place of the figure to “see figure label”,
e change all pstricks labels to Braille in the new picture files.

So while your file has been transcribed, you now have to modify the picture files it produced to
give them proper characteristics for the blind. This part is discussed below with an example.

Assume now that we have a file.tex without any pictures in it. We start by simplifying
the preamble. We should not have complicated macros. For example, running heads’ configu-
ration must be removed. It makes no sense for the blind. Customization of sections, chapter
heads, etc., make no sense and must be removed.

Any \tableofcontents or similar is also removed; this needs some explanation. Braille
files are not in a typeset format such as pdf files. They are simple text files. In order to predict
the page of, say, the chapter of a book one needs to know how many lines will be embossed per
page and how many braille characters per line. This information is not a standard. Embossers
have different settings and it is only the driver of the embosser that could know this informa-
tion. So a conversion program such as latex2nemeth cannot have access to such information.
This is one of the reasons that the output of the program is split into chapters—to give the
opportunity to the blind to organize in different folders (or to use tabs) the material of the book.

Latex2nemeth will not parse your \usepackage commands but will mostly ignore them.
\newtheorem and simple \newcommand (with or without arguments) are supported. Finally
the file must be in UTF-8 encoding. We now start the attempt to convert.

Run xelatex or lualatex in order to check that your file compiles and produces the
file.aux file which is needed for the references mechanism.

Now run

latex2nemeth file.tex file.aux

Most of the time the first run will fail. Typically the user has forgotten to remove visual
parts from the preamble. The program will inform you of the line and column of the problem
it encountered. Fix it and re-run the above command. After enough corrections of your .tex
file, the program will succeed. It will produce a .nemeth file for each chapter. These are plain
text Braille files but in UTF-16 encoding. We need to convert them to UTF-8 and then either
import them to LibreOffice for embossing or convert them to LibreOffice automatically.

Let’s see the manual procedure first. Conversion to UTF-8 can be done with iconv:

iconv -f utf-16 -t utf-8 fileO.nemeth > fileO-u8.txt
Now convert to a LibreOffice .odt file:
libreoffice --headless --convert-to odt fileO-u8.txt >/dev/null

This will produce file0-u8.odt. LibreOffice has a builtin default for the font. But we need
a font that has Braille characters, such as DejaVu-Serif. So the final step is to open the .odt
file, select the whole text (Control-a) and change the font to DejaVu Serif. Save the file.

LaTeX2Nemeth and the amsmath package

358 TUGboat, Volume 43 (2022), No. 3

LibreOffice has a plugin called odt2braille. This plugin must be installed in order
to be able to drive the embosser. With the plugin installed, open the odt file and choose
File—Emboss.

The whole process can be automated by a simple script such as this
#!/bin/sh
#get a random name first of 8 chars
tmpdir="cat /dev/urandom | tr -cd 'a-f0-9' | head -c 8°

#make a folder
mkdir $tmpdir

#get the base name of the file to convert
file="basename "$1" .nemeth"

#convert nemeth from utf16 to utf8
iconv —-f utf-16 -t utf-8 "$1" >$file.txt

#convert txt file to odt
libreoffice --headless --convert-to odt $file.txt >/dev/null

odt is setup with a bultin template for conversions

from text that uses Liberation Mono font.

we need DejaVu Serif. We change the font and repack

the odt file.

unzip -qq -d $tmpdir $file.odt

rm -f $file.odt

find $tmpdir -type f | xargs sed -i 's/Liberation Mono/DejaVu Serif/g'
(cd $tmpdir; zip -qq -r ../$file.odt .)

#cleanup
/bin/rm -rf $tmpdir $file.txt

11.1 Conversion of pictures

Now let us turn to pictures. This is most of the work because we have to replace all labels
in the picture with Braille (unless you used pstricks in which case the program automatically
transcribes the labels) and make new placement decisions, since the Braille is usually long and
will not fit in the original position of the label. The easy part is to make the picture lines
wider so they can be detected by the hands of the blind. All lines should vary from 1.2 mm
minimum to 1.8 mm. We can use this range to distinguish between logically different lines. For
example, suppose we want to graph the function f(x) = 22 from —2 to 2. The original graph
may look like the one in Figure 1. The Braille for f(z) = x2 is 3 B (we will
come to this soon). We will change the axis width to 1.2 mm and the graph of the function to
1.8 mm. Since the file will be a pdf file produced in a tactile printer on micro-capsule paper,
the Braille is not embossed. So we need to increase its character size to at least 24pt in order
to be readable. Moreover the font must be a font such as NewCMSans10-Book.otf so that the
Braille dots are for blind and not for sighted persons (as is the case with NewCM10-Book.otf).
So the final graph will be as in Figure 2.

Finally we need an easy way to get the labels into Braille if we used a system other than
pstricks for our graphics (e.g., tikz). An easy way, although time-consuming, is to use a
command-line script for this. Create a script, say 12n.sh, with contents:

#!/bin/bash

echo "\documentclass{articlel}\usepackage{amsfonts}\begin{document}" \
> ~/tmp/12n.tex

echo "$1" >> ~/tmp/12n.tex

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 359

Figure 1: The f(x) = x? function for sighted persons.

o0 o° [X] [] [] [X] [] []
[] (X] [X] [] o o
o0 00 o0 [] [N J o0 o
Figure 2: The f(z) = 22 function for the blind
echo "\end{document}" >> ~/tmp/12n.tex
touch ~/tmp/12n.aux
cd ~/tmp/
latex2nemeth 12n.tex 12n.aux 2>/dev/null
iconv -f utf-16 -t utf8 12n0.nemeth
echo n n
rm -f 12n.tex 12n0.nemeth 12n.aux
Then on the command-line, to get the Braille string for f(z) = 2 run this

sh 12n.sh "\$f (x)=x"2\$"
and copy the output to your picture file at the proper label place. Produce the pdf file as
you would normally (say with xelatex! or lualatex) and proceed to the tactile printer with
micro-capsule paper. Pictures go as pdfs to tactile printers and the Braille text of the TEX
files go as odt files to embossers.

12 Implementation

Latex2nemeth is written in Java using the JavaCC compiler construction tool. Its design is
based on object-oriented techniques such as the Interpreter and Composite design patterns [1]
for the representation of mathematical expressions. In order to support spatial aligned struc-
tures, as in the case of the \cfrac command, a two-dimensional buffer is created for every
Braille expression, which is filled in a bottom-up fashion, so as to correctly calculate the dimen-
sions of containing boxes, for example, the width and height of numerator and denominator
in a fraction expression. In this way, a generic mechanism for two-dimensional structures was
implemented. However, in expressions such as fractions (command \frac) which can be ex-

1 You may need xelatex-unsafe if you are using pstricks

LaTeX2Nemeth and the amsmath package

360 TUGboat, Volume 43 (2022), No. 3

pressed in Nemeth code in both linear and two-dimensional arrangements, the current version
of the program only provides the linear form of the output.

13 Symbols included in unimath-symbols.pdf but unsupported in Nemeth

\arabicmaj _z arabic mathematical operator meem with hah with tatweel
\arabichad > arabic mathematical operator hah with dal
\inttop f top half integral

\intbottom J bottom half integral

\varhexagonlrbonds 0 six carbon ring, corner down, double bonds lower right etc
\1lparenuend (left parenthesis upper hook

\lparenextender | left parenthesis extension

\lparenlend \ left parenthesis lower hook

\rparenuend \ right parenthesis upper hook

\rparenextender 1 right parenthesis extension

\rparenlend } right parenthesis lower hook

\lbrackuend [left square bracket upper corner
\lbrackextender | left square bracket extension

\1lbracklend |. left square bracket lower corner

\rbrackuend —I right square bracket upper corner
\rbrackextender | right square bracket extension

\rbracklend J right square bracket lower corner

\1lbraceuend (left curly bracket upper hook

\1lbracemid 4 left curly bracket middle piece

\1lbracelend N left curly bracket lower hook

\vbraceextender | curly bracket extension

\rbraceuend l right curly bracket upper hook

\rbracemid > right curly bracket middle piece

\rbracelend) right curly bracket lower hook

\intextender | integral extension

\harrowextender - horizontal line extension (used to extend arrows)
\sumtop \" summation top

\sumbottom L summation bottom

\sqrtbottom \j radical symbol bottom

\1lvboxline ‘ left vertical box line

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3

\rvboxline ‘
\elinters %

\blocklefthalf 1

\blockrighthalf
\circlelefthalfblack
\circlerighthalfblack
\circlebottomhalfblack
\circletophalfblack

\circleurquadblack

e G 0 0 e ©

\blackcircleulquadwhite

\blacklefthalfcircle

\blackrighthalfcircle)

\invwhiteupperhalfcircle ™
\invwhitelowerhalfcircle |=
\ularc
\urarc
\lrarc s

\llarc

-

\lrblacktriangle
\llblacktriangle
\ulblacktriangle
\urblacktriangle
\squareleftblack
\squarerightblack
\squareulblack
\squarelrblack
\triangleleftblack
\trianglerightblack
\squareulquad
\squarellquad
\squarelrquad
\squareurquad
\circleulquad
\circlellquad
\circlelrquad
\circleurquad
\ultriangle

\urtriangle

V 4 N 606 © © ¢ OB B 8 0O p B N N @ B 4 7V

\lltriangle

361

right vertical box line

electrical intersection

left half block

right half block

circle, filled left half [harvey ball]

circle, filled right half

circle, filled bottom half

circle, filled top half

circle with upper right quadrant black
circle with all but upper left quadrant black
left half black circle

right half black circle

upper half inverse white circle

lower half inverse white circle

upper left quadrant circular arc

upper right quadrant circular arc

lower right quadrant circular arc

lower left quadrant circular arc

lower right triangle, filled

lower left triangle, filled

upper left triangle, filled

upper right triangle, filled

square, filled left half

square, filled right half

square, filled top left corner

square, filled bottom right corner
up-pointing triangle with left half black
up-pointing triangle with right half black
white square with upper left quadrant
white square with lower left quadrant
white square with lower right quadrant
white square with upper right quadrant
white circle with upper left quadrant
white circle with lower left quadrant
white circle with lower right quadrant
white circle with upper right quadrant
upper left triangle

upper right triangle

lower left triangle

LaTeX2Nemeth and the amsmath package

362

\1lrtriangle
\quarternote
\eighthnote
\twonotes
\iinfin

\laplac

\downtriangleleftblack

\downtrianglerightblack

\squaretopblack
\squarebotblack
\squareurblack
\squarellblack
\diamondleftblack
\diamondrightblack
\diamondtopblack
\diamondbotblack
\mttzero

\mttone

\mtttwo

\mttthree
\mttfour

\mttfive

\mttsix

\mttseven
\mtteight

\mttnine

References

[1] E. Gamma, R. Helm, et al. Design Patterns: Elements of Reusable Object-oriented Software.

Andreas Papasalouros, Antonis Tsolomitis

- N

© ¢ > e S VW Ed D O 4 40 9 & ¢«

e

TUGboat, Volume 43 (2022), No. 3

lower right triangle

music note (sung text sign)

eighth note

beamed eighth notes

incomplete infinity

square with contoured outline
down-pointing triangle with left half black
down-pointing triangle with right half black
square with top half black

square with bottom half black

square with upper right diagonal half black
square with lower left diagonal half black
diamond with left half black

diamond with right half black

diamond with top half black

diamond with bottom half black
mathematical monospace digit 0
mathematical monospace digit 1
mathematical monospace digit 2
mathematical monospace digit 3
mathematical monospace digit 4
mathematical monospace digit 5
mathematical monospace digit 6
mathematical monospace digit 7
mathematical monospace digit 8

mathematical monospace digit 9

Addison-Wesley, Boston, MA, USA, 1994.

¢ Andreas Papasalouros

University of the Aegean

Department of Mathematics

83200 Karlovassi

Samos, Greece

http://www.samos.aegean.
gr/math/andpapas/cv_en.html

Antonis Tsolomitis

University of the Aegean

Department of Mathematics

83200 Karlovassi

Samos, Greece
http://myria.math.aegean.gr/~atsol

TUGboat, Volume 43 (2022), No. 3

%@’ The Treasure Chest

These are the new packages posted to CTAN (ctan.org)
from August—October 2022. Descriptions are based on
the announcements and edited for extreme brevity.

Entries are listed alphabetically within CTAN di-
rectories. More information about any package can be
found at ctan.org/pkg/pkgname.

¢ Karl Berry
https://tug.org/TUGboat/Chest
https://ctan.org/topic

biblio
ctan-bibdata in biblio
Bibliography of CTAN packages; updated daily.

fonts

cooperhewitt in fonts

Cross-engine support for the Cooper Hewitt sans

serif family, designed for the Smithsonian.
heros-otf in fonts

Using the OpenType fonts TEX Gyre Heros.
neo-euler in fonts

OpenType version of Zapf’s Euler math fonts.
pagella-otf in fonts

Using the OpenType fonts TEX Gyre Pagella.
schola-otf in fonts

Using the OpenType fonts TEX Gyre Schola.
termes-otf in fonts

Using the OpenType fonts TEX Gyre Termes.

graphics

chemobabel in fonts

Convert chemical structures from ChemDraw,

MDL or SMILES using Open Babel.
pgf-periodictable in graphics/pgf/contrib

Customizable periodic table of elements.
wheelchart in graphics/pgf/contrib

Draw wheel charts.

info
mathtrip in info
Formulae from different fields of mathematics.

macros/latex/contrib

abntexto in macros/latex/contrib

Support for Associagdo Brasileira de Normas

Técnicas (ABNT) standards.
abspos in macros/latex/contrib

Absolute placement with coffins.
colorframed in macros/latex/contrib

Fix color problems with the framed package.

doi.org/10.47397/tb/43-3/tb135chest

363

coolfn in macros/latex/contrib

Typeset long legal footnotes.
darkmode in macros/latex/contrib

Provide IfDarkMode. .. conditionals.
democodetools in macros/latex/contrib

Show code and its typeset results.
docshots in macros/latex/contrib

TEX code next to PDF snapshots in .dtx.
eolang in macros/latex/contrib

Formulas and graphs for the EO language.
gitstatus in macros/latex/contrib

Git information as a watermark or variables.
huaz in macros/latex/contrib

Automatic Hungarian definite articles.
jobname-suffix in macros/latex/contrib

Compile differently based on the filename.
opencolor in macros/latex/contrib

Colors from the Open Color library for UI design.
photobook in macros/latex/contrib

Support for image-based books.
ppt-slides in macros/latex/contrib

Slide decks a la PowerPoint.
se2thesis in macros/latex/contrib

KOMA-Script-based thesis class for Software

Engineering II, University of Passau (Germany).
textcsc in macros/latex/contrib

Typing caps-to-small-caps text.
udes-genie-these in macros/latex/contrib

Thesis class for the Faculté de génie at the U. de

Sherbrooke (Canada).
ufrgscca in macros/latex/contrib

Support for undergraduates at the Federal U. of

Rio Grande do Sul (Brazil), Engineering School.
unigrazpub in macros/latex/contrib

University of Graz Library Publishing Services.
wargame in macros/latex/contrib

Preparation of hex and counter wargames.

m/1/c/beamer-contrib/themes

beamertheme-simpleplus in m/1/c/b-c/themes
A simple and clean theme.

macros/luatex/latex

japanese-mathformulas in macros/luatex/latex
Compiling basic math formulas in Japanese using
LualATEX.

luatruthtable in macros/luatex/latex
Generate boolean truth tables in Lual#TEX.

piton in macros/luatex/latex
Typeset Python listings without external programs.
Written in Lua, using LPEG.

support

texaccents in support
Convert text accent control sequences to Unicode.
Written in Snobol.

support/texaccents

https://ctan.org
https://ctan.org/pkg/
https://ctan.org/pkg/ctan-bibdata
https://ctan.org/pkg/cooperhewitt
https://ctan.org/pkg/heros-otf
https://ctan.org/pkg/neo-euler
https://ctan.org/pkg/pagella-otf
https://ctan.org/pkg/schola-otf
https://ctan.org/pkg/termes-otf
https://ctan.org/pkg/chemobabel
https://ctan.org/pkg/pgf-periodictable
https://ctan.org/pkg/wheelchart
https://ctan.org/pkg/mathtrip
https://ctan.org/pkg/abntexto
https://ctan.org/pkg/abspos
https://ctan.org/pkg/colorframed
https://ctan.org/pkg/coolfn
https://ctan.org/pkg/darkmode
https://ctan.org/pkg/democodetools
https://ctan.org/pkg/docshots
https://ctan.org/pkg/eolang
https://ctan.org/pkg/gitstatus
https://ctan.org/pkg/huaz
https://ctan.org/pkg/jobname-suffix
https://ctan.org/pkg/opencolor
https://ctan.org/pkg/photobook
https://ctan.org/pkg/ppt-slides
https://ctan.org/pkg/se2thesis
https://ctan.org/pkg/textcsc
https://ctan.org/pkg/udes-genie-these
https://ctan.org/pkg/ufrgscca
https://ctan.org/pkg/unigrazpub
https://ctan.org/pkg/wargame
https://ctan.org/pkg/beamertheme-simpleplus
https://ctan.org/pkg/japanese-mathformulas
https://ctan.org/pkg/luatruthtable
https://ctan.org/pkg/piton
https://ctan.org/pkg/texaccents
https://doi.org/10.47397/tb/43-3/tb135chest

364

TUGDboat, Volume 43 (2022), No. 3

Die TEXnische Komdadie 3/2022

Die TpXnische Komdédie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

MARTIN SIEVERS, Einladung zur digitalen
Herbsttagung 2022 [Invitation to the digital
autumn meeting 2022]; pp.7-8

On November 19, 2022, DANTE will have a digital
autumn meeting.

UWE ZIEGENHAGEN, Time to say Goodbye—
Stabwechsel im Biiro von DANTE e. V. [Time to say
goodbye — Staff change in the office of DANTE e. V.];
pp-9-11

Karin Dornacher retired, Frank Gerhard is her suc-
Cessor.

RoOBIN GARcIA, Bericht zur Sommertagung von
DANTE e. V. 2022 in Magdeburg [Report on the Dante
summer meeting in Magdeburg]; pp.11-16

DANTE e. Vs summer meeting took place in Magde-
burg, Sachsen-Anhalt.

ADELHEID BONNETSMULLER, Having Fun with ETEX:
Gliicksspiel sauber gesetzt [Having fun with KTEX:
Typesetting dice games|; pp.16-20

A tutorial on typesetting dice.

ADELHEID BONNETSMULLER, Having Fun with IATEX:
Mein Hut, der hat drei Ecken... [Having fun with
KTEX: My hat, it has three corners...]; pp.20-21

A tutorial on using the realhats package to typeset
tiny hats.

WiLLiaM WENIG, Skalierbare Vektorgrafiken einbinden
mit Inkscape [Embedding scalable vector graphics
with Inkscape]; pp.21-27

A tutorial on embedding Inkscape graphics.

HENNING HRABAN RAMM, ConTEXt kurz notiert
[ConTEXt short news]; pp.27-29
News from the ConTEXt world.

FRANK MITTELBACH, ITEX News: Issue 35, November
2022 [sic]; pp. 3046

German translation of this B TEX news installment,
published in TUGboat 43:2, and on the KTEX web site:
latex-project.org/news.

JURGEN FENN, Neue Pakete auf CTAN [New packages
on CTAN]; pp.46-50
List of new packages on CTAN.

JOHANNES HIELSCHER, Comment to Druck oder
Nichtdruck in DTK 02/2022 [To print or not to print];
pp. 51-52

A reader’s comment on the mentioned article.

[Received from Uwe Ziegenhagen.]

doi.org/10.47397/tb/43-3/tb135komo

La Lettre GUTenberg 46, 2022

La Lettre GUTenberg is a publication of
GUTenberg, the French-language TEX user group
(www.gutenberg-asso.fr).

La Lettre GUTenberg #46
Published October 20, 2022.

PATRICK BIDEAULT, Editorial [Editorial]; pp.1-5

PATRICK BIDEAULT, Les différents travaux de
lassociation [The various works of the group]; pp.7-8

DENIS BiToUZE, Compte rendu du conseil
d’administration [Report of board’s meetings];
pp-9-12

YvON HENEL, L’écureuil sur I’épaule du typographe
[The squirrel on the typographer’s shoulder]; p. 13
About the association’s website.

PaTrick BiDEAULT, MAXIME CHUPIN & YVON HENEL,
Et maintenant, une bonne vieille veille technologique !
[Technology watch]; pp.14-21

82 new CTAN packages, May—October 2022.

STEFAN KOTTWITZ, Les serveurs de DANTE [DANTE’s
servers]; pp.22-25

Translation of the article “Bericht {iber Projektfor-
derung von ETEX-Servern” published in Die TEXnische
Komédie 2/2022, pp.6-10. Stefan Kottwitz is hosting,
among others, the French Q&A website texnique.fr.

REMI ANGOT, Coopmaths, un collectif d’enseignants
de mathématiques [Coopmaths, a maths teachers
collective]; pp.26-28

MaxXIME CHUPIN, De KTEX vers le braille/nemeth
[From KTEX to braille/nemeth]; pp.28-34

MAXIME CHUPIN, A travers le cyberespace déchainé : a
propos de la somme de deux nombres [Internet report:
about the sum of two numbers]; pp.35-38

MaxiME CHUPIN, La fonte de ce numéro : Bitstream
Charter [This issue’s font: Bitstream Charter];
pp. 39-43

PATRICK BIDEAULT & MAXIME CHUPIN, En bref [At a
glance|; pp.44-47

Short news about the packages sillypage and
profcollege, about TUG sponsoring GUTenberg’s
DOI project, about the new website dedicated to
GUTenberg’s journals (publications.gutenberg-asso.
fr) and more.

[Received from Patrick Bideault.]

doi.org/10.47397/tb/43-3/tb13blettre

TUGboat, Volume 43 (2022), No. 3

2023 TEX Users Group election
TUG Elections committee

The terms of TUG President and five TUG Directors will
expire as of the 2023 Annual Meeting, expected to be
held in July or August 2023. Three positions are open;
thus eight are to be filled.

The terms of these directors will expire in 2023:
Barbara Beeton, Paulo Cereda, Ulrike Fischer,

Jim Hefferon, Norbert Preining.

Continuing directors, with terms ending in 2025:
Karl Berry, Johannes Braams, Kaja Christiansen,
Klaus Hoppner, Frank Mittelbach, Ross Moore,
Arthur Rosendahl.

The election to choose the new President and Direc-
tors will be held in early Spring of 2023. Nominations
for these openings are now invited. A nomination form
is available on this page or via tug.org/election.

The TUG Bylaws provide that “Any member may
be nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election

. shall be by ... ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. A can-
didate’s membership dues for 2023 must be paid before
the nomination deadline. The term of TUG President is
two years, and the term of Director is four years.

A list of informal guidelines for all TUG board mem-
bers is available at tug.org/election/guidelines.html.
It describes the basic functioning of the TUG board, in-
cluding roles for the various offices and ethical consider-
ations. The expectation is that all board members will
abide by the spirit of these guidelines.

Requirements for submitting a nomination are listed
at the top of the form. The deadline for receipt of com-
pleted nomination forms and ballot information is

07:00 a.m. PST, 1 March 2023
at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax, or
scanned and submitted by email to office@tug.org; re-
ceipt will be confirmed by email. In case of any questions
about a candidacy, the full TUG Board will be consulted.

Information for obtaining ballot forms from the TUG
website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

doi.org/10.47397/tb/43-3/tb13belec

365

2023 TUG Election — Nomination Form
Eligibility requirements:

e TUG members whose dues for 2023 have been paid.

e Signatures of two (2) members in good standing at
the time they sign the nomination form.

e Supplementary material to be included with the
form: passport-size photograph, a short biography,
and a statement of intent. The biography and state-
ment together may not exceed 400 words.

e Names that cannot be identified from the TUG mem-
bership records will not be accepted as valid.

The undersigned TUG members propose the nomination of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

0 TUG President

0 Member of the TUG Board of Directors

for a term beginning with the 2023 Annual Meeting.

1.

(please print)

(signature) (date)

(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot, dues payment) must be received at the
TUG office in Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2023.

It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
late or incomplete applications be accepted.

Supplementary material may be sent separately from
the form, and supporting signatures need not all appear
on the same physical form.

2023 membership dues paid
nomination form

photograph

biography /personal statement

ooood

TEX Users Group

Nominations for 2023 Election
P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

366

TUGboat, Volume 43 (2022), No. 3

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you'd like to be listed,
please see there.

Dangerous Curve
Email: typesetting (at) dangerouscurve.org

Typesetting for over 40 years, we have experience in
production typography, graphic design, font design,
and computer science, to name a few things. One DC
co-owner co-authored, designed, and illustrated a TEX
book (TgX for the Impatient).

We can = convert your documents to IATEX from
just about anything = type up your handwritten pages
= proofread, copyedit, and structure documents
in English » apply publishers’ specs » write custom
packages and documentation = resize and edit your
images for a better aesthetic effect = make your
mathematics beautiful = produce commercial-quality
tables with optimal column widths for headers and
wrapped paragraphs = modify bibliography styles
= make images using TEX-related graphic programs
» design programmable fonts using METAFONT = and
more! (Just ask.)

Our clients include high-end branding and
advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades (including
working for them). All quote work is complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8

Brookline, MA 02446

+1 617-738-8029

Email: amyh (at) texnology.com

Web: www.texnology.com
Full time IATEX consultant for more than 30 years;
have worked for major publishing companies, leading
universities, and scientific journals. Our macro
packages are distributed on-line and used by thousands
of authors. See our site for many examples:
texnology.com.

n JATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and more;
Sophisticated documentation for users.

= Design as well as INTEX implementation for
e-publishing, print books and journals, or specialized
projects.

= Data Visualization, database publishing.

» Innovative uses for IATEX, creative solutions our
speciality.

» JATEX Training, customized to your needs, on-site
or via Zoom. See https://texnology.com/train.htm
for sample of course notes.

Call or send email: I'll be glad to discuss your
project with you.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: www.typotexnica.it
Our skills: layout of books, journals, articles; creation
of IATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

Latchman, David

2005 Eye St. Suite #6

Bakersfield, CA 93301

+1 518-951-8786

Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com
IATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized IATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

IATEX Typesetting

Email: enquiries (at) latextypesetting.com

Web: latextypesetting.com
TATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of the service
is on creating high quality IATEX templates and
typesetting for business purposes, but individual
clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of your
business needs. I can also help you with automated
document production using IATEX. I'm a scientist,

TUGDboat, Volume 43 (2022), No. 3

designer and software developer, so no matter your
field, I’ve got you covered.

I invite you to review the extensive
collection of past work at the Showcase
latextypesetting.com/showcase. Submit an enquiry
for a free quote!

Monsurate, Rajiv
Web: www.rajivmonsurate.com
latexwithstyle.com

I offer: design of books and journals for print and
online layouts with IATEX and CSS; production of
books and journals for any layout with publish-ready
PDF, HTML and XML from I#TEX (bypassing any
publishers’ processes); custom development of IATEX
packages with documentation; copyediting and
proofreading for English; training in IATEX for authors,
publishers and typesetters.

I have over two decades of experience in academic
publishing, helping authors, publishers and typesetters
use IATEX. I’ve built typesetting and conversion
systems with IATEX and provided TEX support for a
major publisher.

Sofka, Michael

Email: michael.sofka (at) gmail.com
Professional TEX and IATEX consulting and
programming services. I offer 30 years of experience in
programming, macro writing, and typesetting books,
articles, newsletters, and theses in TEX and IATEX:
Automated document conversion; Programming in
Perl, Python, C, R and other languages; Writing and
customizing macro packages in TEX or IATEX, knitr.

If you have a specialized TEX or IATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

132 Warbler Ln.

Brisbane, CA 94005

+1 703-915-2406

Email: borisv (at) lk.net

Web: www.borisv.lk.net
TEX and IATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom IATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

367

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

90 Resaca Ave.

Box 452

Forest Knolls, CA 94933

+1 650-468-1393

Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com
I have been in academic publishing for 30+ years. 1
was a Linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from editors at Addison-Wesley who were using it to
publish beautifully set math and computer science
books.

Long story short, I started using IATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a strong
developmental editing background in STEM subjects.
If you need assistance getting your manuscript set in
TEX I can help. And if I cannot help I’ll let you know
right away.

TEXnology Inc.

Amy Hendrickson

57 Longwood Ave. #8

Brookline, MA 02446

+1 617-738-8029

Email: amyh (at) texnology.com

Web: https://texnology.com
Full time KTEX consultant for more than 30 years;
have worked for major publishing companies,
leading universities, and scientific journals. Our
macro packages are distributed on-line and used by
thousands of authors. See our site for many
examples: texnology.com.

e ITEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and
more; Sophisticated documentation for users.

e Design as well as BTEX implementation for
e-publishing, print books and journals, or
specialized projects.

e Data Visualization, database publishing.

e Innovative uses for HTEX, creative solutions
our speciality.

e IXTEX Training, customized to your needs,
on-site or via Zoom. See
https://texnology.com/train.htm for sample
of course notes.

Call or send email: I'll be glad to discuss your
project with you.

368 TUGDboat, Volume 43 (2022), No. 3
Calendar
2022 Association Typographique Internationale,
. ATypl Paris 2023 (hybrid)

Nov 5 ISType 2022, “Mukaddeme”, Arabic Paris. France
Scrlpt Typography, Istanbul, Turkey. atypi.org/conferences-events/
istype.com/2022 atypi-paris-2023

Nov 12 GUT.enberg extraordinary meeting t9 SHARP 2023, “Affordances and Interfaces:
consider and adopt new bylaws (online). .

Textual Interaction
gutenberg-a§so.fr/Assemblee-generale— Past, Present and Future”,
extraordinaire-refonte-des- Society for the History of Authorship,
statuts-12-novembre-2022 Reading & Publishing.

Nov 18—-19 TypoDay, “Typography for Children”, Hosted online by the
Hosted online by IDC School of Design University of Otago, New Zealand.

(IDC), Indian Institute of Technology www . sharpweb.org/main/conferences
Bombay. www.typoday.in Twenty-first International Conference

Nov 19 DANTE 2022 Herbsttagung (online), on New Directions in the Humanities,
www.dante.de/veranstaltungen/ “Literary Landscapes: Forms of
herbst2022 Knowledge in the Humanities”,

Nov 19 TeXConf 2022 Sorbonne University, Paris, France.
(Japan; online) thehumanities.com/2023-conference
texconf2022. tumblr.com Digital Humanities 2023, Alliance of

Dec 6—9 SIGGRAPH Asia 2022, Digital Humanities Organizations,

Daegu, South Korea. “Collaboration as Opportunity”,
sa2022.siggraph.org Graz, Austria. dh2023.adho.org

Dec 11 GUTenberg annual meeting (online). Ba.ulisage: The Markup Conference
gutenberg-asso.fr/Assemblee-generale- (virtual). www.balisage.net
du-11-decembre-2022 23" ACcM Symposium on Document

Engineering, Limerick, Ireland.

2023 doceng.org/doceng2023

. The Updike Prize for Student Type Design,

Mar 1 TUG election: application deadline, 5:00 p.m. EST.
nominations due, 07:00 a.m. PST. Providence Public Library.
tug.org/election Providence, Rhode Island.

Mar 24 TUGboat 44:1, submission deadline. prov.pub/updikeprize

May BachoTEX 2023, 17" International ConTEXt Meeting,

28th BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex/2022-eno

Prague—Sibfiina, Czech Republic.
meeting.contextgarden.net/2023

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 1 November 2022

For additional information on TUG-sponsored events listed here, contact the TUG office
(4+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 43 (2022), No. 3

Introductory
225 Barbara Beeton / Editorial comments
e typography and TUGboat news
243 David Bellows / Formatting mesostic poems a la John Cage
« use of INTEX by a non-programmer for poetic results
229 Jonathan Fine / The TEX Hour
« general description and some notable specific episodes, available at texhour.github.io
240 Peter Flynn / Typographers’ Inn
» Font packages: Symbats, Swashes; To publish or not to publish; Afterthought: Translations
223 Boris Veytsman / From the president
e on DOIs and classifications
Intermediate
363 Karl Berry / The treasure chest
* new CTAN packages, August—October 2022
232 David Blakesley / The residual concepts of production vs. the emergent cultures of distribution in publishing
« case studies of a textbook, poetry, and the implications of digital publishing
261 Michal Hoftich / What’s new in TEX4ht: 2022
e make4ht updates to documentation, R and related language support, JATS output, and more
252 Richard Koch / TeXShop, Version 5: HTML previews
 general support for simultaneous PDF and HTML previewing in this Mac editor for TEX
273 INTEX Project Team / IATEX news, issue 36, November 2022
e more on key—value arguments; slanted small caps; small-size EC sans serif; plenty more
276 Vit Novotny / Markdown 2.17.1: What’s new, what’s next?
« super/subscripts, strike-throughs, lists, APIs, user-defined syntax, roadmap
293 Chetan Shirore, Ajit Kumar / The luamodulartables and luaset I#TEX packages
* using Lua to generate modular arithmetic tables, and perform set operations
295 Herbert Vofi / Using OpenType and TrueType fonts with XgI4TEX and LualATEX
* succinct examples of searching for and loading OpenType or TrueType fonts
Intermediate Plus
247 Janusz Bieri / Representing Parkosz’s alphabet in the Junicode font
« using Unicode tag characters to handle the earliest Polish spelling treatise
263 Ulrike Fischer, Frank Mittelbach / Adding XMP metadata in I4TEX
* IATEX kernel support for standard metadata
254 Richard Koch / Interactive content using TEX4ht
e TEX4ht environments and invocations, with interactive math examples
230 Stefan Kottwitz / DANTE project funding of TEX servers
* latex.org and many other forums and galleries, in English, German, and French
268 Frank Mittelbach, Ulrike Fischer / The I#TEX Tagged PDF project — A status and progress report
 review of tagged PDF tasks accomplished, in progress, and still to come
351 Andreas Papasalouros, Antonis Tsolomitis / LaTeX2Nemeth and the amsmath package
e supporting amsmath in Nemeth Braille as much as possible
317 Linus Romer / Ventrella’s terdragon in MetaPost
* creating a vector graphic following Ventrella’s “Portraits from the Family Tree of Plane-filling Curves”
280 Herbert Vof3 / Typesetting external program code and its output: hvextern
» powerful methods of running general subprograms and typesetting their output
279 Joseph Wright / Mapping to individual characters in expl3
* text_map-inline:nn and other functions to work with user-perceived characters
Advanced
340 Max Chernoff / Updates to “Automatically removing widows and orphans ...”, TUGboat 43:1
e draft mode, insertion handling, and other enhancements
319 Laurence Finston / An introduction to GNU 3DLDF
» overview of this MetaPost-inspired 3D graphics program
333 Laurence Finston / A graphical ellipse envelope construction with GNU 3DLDF
* demonstrates use of 3DLDF, with annotated code
300 Hans Hagen, Mikael Sundqvist / New directions in math fonts
» work towards improving and regularizing math typesetting with OpenType fonts
311 Hans Hagen, Mikael Sundqvist / Patching Lucida Bright Math
e fixing Lucida OpenType math axis, glyph sizes, extensibles, radicals, et al., with many illustrations
343 Udo Wermuth / Can “\parfillskip = 0pt” shorten a short paragraph in plain TEX by two lines?
¢ detailed analysis of the line-breaking algorithm, interword spacing, and relevant font parameters
Reports and notices
222 Institutional members
226 Jonathan Fine / Regarding TUG and UK-TUG
228 Arthur Rosendahl / Rebuttal
364 From other TEX journals: Die TEXnische Komddie 3/2022; La Lettre GUTenberg 46 (2022)
365 TUG Elections committee / 2023 TEX Users Group election
366 TEX consulting and production services
367 TgXnology Inc.
368 Calendar

