
340 TUGboat, Volume 43 (2022), No. 3

Updates to “Automatically removing
widows and orphans with lua-widow-control”,
TUGboat 43:119012

Max Chernoffinfinite

A request from Zpravodaj, the journal of the Czech/
Slovak TEX group, to republish the subject article
led to these updates. The section numbers here
correspond to those in the original article.2334

3.3 Clubs
In the original article, I discussed the origin of the
typographical terms “widow”, “orphan”, and “club”.
The first two terms are fairly well-known, but I had
this to say regarding the third:4078

The TEXbook never refers to “orphans” as
such; rather, it refers to them as “clubs”. This
term is remarkably rare: I could only find a
single source published before The TEXbook —
a compilation article about the definition of
“widow” — that mentions a “club line” [. . .]39709

I spent a few hours searching through Google
Books and my university library catalogue,
but I could not find a single additional source.
If anyone has any more information on the def-
inition of a “club line” or why Knuth chose to
use this archaic Scottish term in TEX, please
let me know!1761

Conveniently, Don Knuth — the creator of TEX —
read my plea and sent me this reply:33108

I cannot remember where I found the term
“club line”. Evidently the books that I scoured
in 1977 and 1978 had taught me only that
an isolated line, caused by breaking between
pages in the midst of a paragraph, was called
a “widow”; hence TEX78 had only “\chpar4”
to change the “widowpenalty”. Sometime
between then and TEX82 I must have come
across what appeared to be an authoritative
source that distinguished between widows at
the beginning of a paragraph and orphans or
club lines at the end. I may have felt that the
term “orphan” was somewhat pejorative, who
knows?1369

So this (somewhat) resolves the question of where
the term “club” came from.infinite

9 Options
The overview to the “options” section stated
that:1092

Plain TEX/OpTEX Some options are set by
modifying a register, while others must be set

manually using \directlua. 32617

However, this is no longer true. Now, commands
are provided for all options in all formats, so you
no longer need to use ugly \directlua commands
in your documents. The old commands still work,
although they will likely be removed at some point
in the future. 17589

9.5 Penalties
\brokenpenalty now also exists as a LATEX and
ConTEXt key. lua-widow-control will pick up on
the values of \widowpenalty, \clubpenalty, and
\brokenpenalty regardless of how you set them, so
the use of these dedicated keys is entirely optional. 31907

9.6 \nobreak behaviour
The Plain/OpTEX command is now: infinite

\lwcnobreak{〈value〉} infinite

9.8 Draft mode
Since v2.2.0, lua-widow-control has a “draft mode”
which shows how lua-widow-control processes
pages. 1391

Plain TEX/OpTEX 1391\lwcdraft 1
LATEX 1391\lwcsetup{draft}
ConTEXt 1391\setuplwc[draft=start]

Draft mode has been used for typesetting this
article. It has two main features: 53221

First, it colours lines in the document according
to their status. Any remaining widows and orphans
will be coloured red, any expanded paragraphs will
be coloured green, and any lines moved to the next
page will be coloured blue. 3420

Second, this draft mode shows the paragraph
costs at the end each paragraph, in the margin. 2659

This draft mode leads to a neat trick: if you
don’t quite trust lua-widow-control, or you’re writing
a document whose final version will need to be com-
pilable by both pdfLATEX and LuaLATEX, you can
load the package with: 16115

\usepackage[draft, disable] infinite

{lua-widow-control} infinite

This way, all the widows and orphans will be
coloured red and listed in your log file. When you
go through the document to try and manually re-
move the widows and orphans — whether through
the \looseness trick or by rewriting certain lines —
you can easily find the best paragraphs to modify
by looking at the paragraph costs in the margins.
If you’re less cautious, you can compile your docu-
ment with lua-widow-control enabled as normal and
inspect all the green paragraphs to see if they look

doi.org/10.47397/tb/43-3/tb135chernoff-lwc

Max Chernoff

https://doi.org/10.47397/tb/43-3/tb135chernoff-lwc


TUGboat, Volume 43 (2022), No. 3 341

acceptable to you.2705

You can also toggle the paragraph colouring and
cost displays individually:infinite

Plain TEX/ \lwcshowcosts 1
OpTEX \lwcshowcolours 0

LATEX \lwcsetup{showcosts=true}
\lwcsetup{showcolours=false}

ConTEXt \setuplwc[showcosts=start]
\setuplwc[showcolours=stop]

To demonstrate the new draft mode, I have
tricked lua-widow-control into thinking that every
column in this article ends in a widow, even when
they actually don’t. This means that lua-widow-
control is attempting to expand paragraphs on
every column. This gives terrible page breaks and
often creates new widows and orphans, but it’s
a good demonstration of how lua-widow-control
works.1354

10 Presets
The original article stated that “presets are LATEX-
only”. However, lua-widow-control now supports pre-
sets with both LATEX and ConTEXt using the follow-
ing commands:infinite

LATEX \lwcsetup{〈preset〉}
ConTEXt \setuplwc[〈preset〉]infinite

11 Compatibility
This quote:infinite

It doesn’t modify [. . .], inserts/floats,infinite

isn’t strictly true since v2.1.2 since lua-widow-control
now handles moving footnotes.infinite

This statement is also no longer true:infinite

there are a few issues with ConTEXt [. . .] lua-
widow-control is inevitably more reliable with
Plain TEX and LATEX than with ConTEXt.27175

All issues with ConTEXt — including grid snapping —
have now been resolved. lua-widow-control should be
equally reliable with all formats.20410

11.1 Formats
In addition to the previously-mentioned formats/en-
gines, lua-widow-control now has preliminary support
for LuaMetaLATEX and LuaMetaPlain.1 Aside from
a few minor bugs, the LuaMetaLATEX and LuaMeta-
Plain versions work identically to their respective
LuaLATEX versions. With this addition, lua-widow-
control now supports seven different format/engine

1 github.com/zauguin/luametalatex20410

combinations. 14788

11.3 Performance
Earlier versions of lua-widow-control had some mem-
ory leaks. These weren’t noticeable for small docu-
ments, although it could cause slowdowns for docu-
ments larger than a few hundred pages. However, I
have implemented a new testing suite to ensure that
there are no memory leaks, so lua-widow-control can
now easily compile documents > 10 000 pages long. 10149

13.4 Footnotes
Earlier versions of lua-widow-control completely ig-
nored inserts. This meant that if a moved line had
associated footnotes, lua-widow-control would move
the “footnote mark” but not the associated “foot-
note text”. lua-widow-control now handles footnotes
correctly through the mechanism detailed in the next
section. 22828

13.4.1 Inserts
Before we go into the details of how lua-widow-control
handles footnotes, we need to look at what footnotes
actually are to TEX. Every \footnote command
ultimately expands to something like \insert〈class〉
{〈content〉}, where 〈class〉 is an insertion class num-
ber, defined as \footins in this case (in Plain TEX
and LATEX). Inserts can be found in horizontal mode
(footnotes) or in vertical mode (\topins in Plain
TEX and floats in LATEX), but they cannot be inside
boxes. Each of these insert types is assigned a dif-
ferent class number, but the mechanism is otherwise
identical. lua-widow-control treats all inserts identi-
cally, although it safely ignores vertical mode inserts
since they are only ever found between paragraphs. 5309

But what does \insert do exactly? When TEX
sees an \insert primitive in horizontal mode (when
typesetting a paragraph), it does two things: first, it
processes the insert’s content and saves it invisibly
just below the current line. Second, it effectively
adds the insert content’s height to the height of the
material on the current page. Also, for the first insert
on a page, the glue in \skip〈class〉 is added to the
current height. All this is done to ensure that there
is sufficient room for the insert on the page whenever
the line is output onto the page. 7124

If there is absolutely no way to make the
insert fit on the page — say, if you placed an
entire paragraph in a footnote on the last line of
a page — then TEX will begrudgingly “split” the
insert, placing the first part on the current page
and “holding over” the second part until the next
page. 902

There are some other TEXnicalities involving

Updates to lua-widow-control

https://github.com/zauguin/luametalatex


342 TUGboat, Volume 43 (2022), No. 3

\count〈class〉 and \dimen〈class〉, but they mostly
don’t affect lua-widow-control. See Chapter 15 in
The TEXbook or some other reference for all the
details.infinite

After TEX has chosen the breakpoints for a para-
graph, it adds the chosen lines one by one to the
current page. Whenever the accumulated page height
is “close enough” to the target page height (normally
\vsize) the \output token list (often called the “out-
put routine”) is expanded.2596

But before \output is called, TEX goes through
the page contents and moves the contents of any
saved inserts into \vboxes corresponding to the in-
serts’ classes, namely \box〈class〉, so \output can
work with them.infinite

And that’s pretty much it on the engine side.
Actually placing the inserts on the page is reserved
for the output routine, which is defined by the for-
mat. This too is a complicated process, although
thankfully not one that lua-widow-control needs to
worry about.19462

13.4.2 LuaMetaTEX
The LuaMetaTEX engine treats inserts slightly differ-
ently than traditional TEX engines. The first major
difference is that insertions have dedicated regis-
ters; so instead of \box〈class〉, LuaMetaTEX has
\insertbox〈class〉; instead of \count〈class〉, Lua-
MetaTEX has \insertmultiplier〈class〉; etc. The
second major difference is that LuaMetaTEX will
pick up inserts that are inside of boxes, meaning
that placing footnotes in things like tables or frames
should mostly just work as expected.2230

There are also a few new parameters and other
minor changes, but the overall mechanism is still
quite similar to traditional TEX.21337

13.4.3 Paragraph breaking
As stated in the original article, lua-widow-control
intercepts TEX’s output immediately before the
output routine. However, this is after all the
inserts on the page have been processed and boxed.
This is a bit of a problem because if we move
a line to the next page, we need to move the
associated insert; however, the insert is already
gone.961

To solve this problem, immediately after TEX
has naturally broken a paragraph, lua-widow-control
copies and stores all its inserts. Then, lua-widow-
control tags the first element of each line (usually a
glyph) with a LuaTEX attribute that contains the
indices for the first and last associated insert. lua-
widow-control also tags each line inside the insert’s
content with its corresponding index so that it can

be found later. 3835

13.4.4 Page breaking
Here, we follow the same algorithm as in the original
article. However, when we move the last line of the
page to the next page, we first need to inspect the
line to see if any of its contents have been marked
with an insert index. If so, we need to move the
corresponding insert to the next page. To do so,
we unpack the attributes value to get all the inserts
associated with this line. 988

Using the stored insert indices and class, we can
iterate through \box〈class〉 and delete any lines that
match one of the current line’s indices. We also need
to iterate through the internal TEX box hold_head —
the box that holds any inserts split onto the next
page — and delete any matching lines. We can safely
delete any of these lines since they are still stored in
the original \insert nodes that we copied earlier. 2752

Now, we can retrieve all of our previously-stored
inserts and add them to the next page, immediately
after the moved line. Then, when TEX builds that
page, it will find these inserts and move their contents
to the appropriate boxes. 3386

16 Known issues
The following two bugs have now been fully resolved: 46404

• When running under LuaMetaTEX, the log may
contain [. . .] infinite

• TEX may warn about overfull \vboxes [. . .] 5547

The fundamental limitations previously listed
still exist; however, these two bugs along with a few
dozen others have all been fixed since the original
article was published. At this point, all known bugs
have been resolved; some bugs certainly still remain,
but I’d feel quite confident using lua-widow-control
in your everyday documents. 2502

There is, however, one new issue: infinite

• lua-widow-control won’t properly move footnotes
if there are multiple different “classes” of inserts
on the same line. To the best of my knowledge,
this shouldn’t happen in any real-world docu-
ments. If this happens to be an issue for you,
please let me know; this problem is relatively
easy to fix, although it will add considerable
complexity for what I think isn’t a real issue. 7337

� Max Chernoff 7337

mseven (at) telus dot net 7337

https://ctan.org/pkg/lua-widow-control 7337

Max Chernoff


	Clubs
	Options
	Penalties
	\nobreak behaviour
	Draft mode

	Presets
	Compatibility
	Formats
	Performance
	Footnotes
	Inserts
	LuaMetaTeX
	Paragraph breaking
	Page breaking


	Known issues

