120

The Tectonic Project: Envisioning
a 21st-century TEX experience

Peter K. G. Williams

Abstract

Tectonic is a software project built around an al-
ternative TEX engine forked from XHTEX. It has
been created to explore the answers to two questions.
The first question relates to documents: in an era
of 21st-century technologies — where interactive dis-
plays, computation, and internet connectivity are
generally cheap and ubiquitous— what new forms
of technical document have become possible? The
second question relates to tools: how can we use
those same technologies to better empower people
to create excellent technical documents?

The premise of the Tectonic project is that while
TEX may be venerable, it is still an ideal system for
creating “21st-century” technical documents —but
that a project with an independent identity and
infrastructure can make progress in ways that can’t
happen in mainline TEX. Tectonic is compiled using
standard Rust tools, installs as a single executable
file, and downloads support files from a prebuilt TEX
Live distribution on demand.

In the past year, long-threatened work on native
HTML output has finally started landing, including
a possibly novel Unicode math rendering scheme in-
spired by font subsetting. Current efforts are fleshing
out this HTML support using XqTEX: The Program
as a test case, with an eye towards substantially im-
proving the documentation of Tectonic itself. While
Tectonic positions itself as “outside of” traditional
TEX in a certain sense, the project could not exist
without the efforts of the entire TEX community,
to whom the author and the project are gratefully
indebted.

1 Introduction

This article will motivate the Tectonic project (§2),
discuss some of its distinctive characteristics (§3),
delve into how it is implementing HTML output (§4),
and briefly discuss the outlook for its future (§5).

2 Motivation

I (PKGW) will motivate the Tectonic project with
a somewhat stylized history of my journey through
the TEX ecosystem. My background is in scientific
research (astronomy), and to the best of my recollec-
tion, my first use of TEX was for typesetting problem
sets in college. I still remember the satisfaction of
creating a beautifully typeset equation, and under-
standing that there was no other tool in the world

Peter K. G. Williams

doi.org/10.47397/tb/43-2/tb134williams-tectonic

TUGDboat, Volume 43 (2022), No. 2

Mﬁl Previous| Contents| Index

Next: Quality of Printed Images Up: Figures and Image Conversion Previous: An
Embedded Image Example Contents Index

Image Sharing and Recycling

change he96.1
It is not hard too see how reasonably sized papers, especially scientific articles, can require
the use of many hundreds of external images. For this reason, image sharing and recycling
is of critical importance. In this context, “sharing” refers to the use of one image in more

Figure 1: A screenshot of typical WTEX2HTML
output. From www.sci.utah.edu/~macleod/latex/
latex2html/Enode8.html, chosen arbitrarily.

that could typeset math nearly as well—at least,
none that could be freely used by a college student.

During my college career (2002-2006, if you
must ask), it was clear that the Internet and World
Wide Web were on their way to transforming society.
But for the most part, design on the web was notori-
ously poor. ITEX could be converted to HTML and
rendered, but the results resembled Figure 1: legi-
ble, mostly, but absolutely inferior to what could be
accomplished in PDF. And while HTML documents
had hypertext capabilities, they were generally static
documents: words and figures arranged on a page in
a facsimile of the “real thing”: ink on paper.

For me, there were two major “watershed mo-
ments” demonstrating that web documents weren’t
always going to be inferior. First, the release of
Google Maps (February, 2005; maps.google.com)
showed that websites could be applications, not just
static documents. In my mind, this opened up ex-
citing possibilities for new forms of scientific and
technical communication: not just hypertextual fac-
similes of paper, but interactive documents.! More
broadly, I'll define 21st-century documents as those
that leverage the technologies that have been un-
rolling since then: documents designed for a world
where interactive digital displays, computation, and
internet connectivity are often cheap and ubiquitous.
(I don’t love this terminology — smacks of naive futur-
ism —but don’t have anything better.) In principle,
21st-century documents can target any of a variety
of technology platforms, but in my opinion, the web
is the only one that matters. Web content can be
experienced nearly anywhere, from smartphones to
billboards, and private industry is spending billions
of dollars every year to enhance its power and reach.
Nothing else comes close.

1 See the slides to my talk, which are in HTML, for an
example of an embedded interactive plot (tug.org/tug2022/
assets/html/Peter_K_G_Williams-TUG2022-slides/).

Because TUGboat is delivered in PDF format, I can’t
reproduce the plot here.

https://www.sci.utah.edu/~macleod/latex/latex2html/Enode8.html
https://www.sci.utah.edu/~macleod/latex/latex2html/Enode8.html
https://maps.google.com
https://tug.org/tug2022/assets/html/Peter_K_G_Williams-TUG2022-slides/
https://tug.org/tug2022/assets/html/Peter_K_G_Williams-TUG2022-slides/
https://doi.org/10.47397/tb/43-2/tb134williams-tectonic

TUGDboat, Volume 43 (2022), No. 2

But in 2005, the state of web typography was
still pretty poor, and so PDF was still easily the best
choice for scientific papers and other kinds of tech-
nical documents. While I won’t attempt to define
this category precisely, common characteristics of
technical documents include substantial length; use
of mathematics, figures, or tables; complex structure;
dense internal or external referencing; and more re-
cently, integration with source code and computation.
While every kind of document deserves excellent ty-
pography, I will assert that technical documents
probably suffer more from bad typography than non-
technical ones. The second watershed moment for
me was therefore the release of the pdf.js library
for displaying PDFs in the web browser (July, 2011;
mozilla.github.io/pdf.js/). What better way to
demonstrate that you can do high-precision typogra-
phy on the web than by demonstrating that you can
render arbitrary PDF files?

After seeing pdf.js, I was convinced that all of
the pieces were in place to start trying to bring the
typographic quality of TEX to the world of web-
native, 21st-century documents. Even attempting
this would surely require new software to be cre-
ated — but alongside my scientific training, I’'ve been
involved in open-source software development since
even before I started college, and I’'m more than
happy to tackle such problems myself.

My first push, undertaken around 2014, was an
attempt to do a clean-room implementation of the
core TEX engine in JavaScript, using The TEXbook
as a reference. It went about as well as you might
expect. I made decent progress, but quickly came
to understand that the TEX engine itself is just the
tip of the proverbial iceberg of code needed to com-
pile actual modern IATEX documents, and that The
TEXbook is only a partial —in fact, sometimes mis-
leading — guide to how modern TEX engines operate,
with no discussion of e-TEX, Unicode, OpenType
fonts, and more. I concluded that in order to com-
pile “real” WTEX documents for the web, one would
need to build on “real” KTEX.

So I started to look into hacking TEX. More
specifically, I looked into modifying the XATEX en-
gine, since it includes support for Unicode and Open-
Type fonts, which struck me as essential for creating
truly web-native documents. As a person with a long
history in open-source projects, the experience was
frankly frustrating and discouraging. Even the tradi-
tional first step for getting to understand a codebase —
checking out the source code from version control —
felt like an ordeal, primarily due to a lack of clarity
about which repository to use, the huge size and
deeply nested structure of the TEX Live repository,

121

and the use of Subversion. Modern software develop-
ment conveniences, above all the availability of some
kind of GitHub-like “pull request” mechanism and
continuous integration (CI), were missing.

While there’s no shortage of fads in the world
of software development, there have been some real
advances, and as a developer I find them extremely
important. For me, undertaking a software project
without them is like trying to write a research paper
in Microsoft Word rather than IATEX. I can do it if
I have to, but I won’t enjoy it, and the inferior tools
close off entire ways of working that I don’t want to
give up. I didn’t feel that I could work with the TEX
code in the way that I wanted to, if I was forced to
use the existing infrastructure.

But if you take a software project and rebuild
its development infrastructure, it is unlikely to be
feasible to merge your changes back into the original
source. Such changes result in a long-lived fork,
not a temporary branch. Forking a project is a
weighty decision, not to be taken lightly. But as I
thought about the experiments I wanted to try, I
came to believe that forking was an appropriate path.
Besides allowing me to explore newer development
tools, it would allow me to explore a new “persona’
for the project—a distinct brand identity. This
may sound like business jargon, because it is, but
it captures the right concept. I wanted the ability
to try all sorts of things that you couldn’t do with
traditional TEX: tidy up the output, change default
behaviors, drop compatibility with various ancient
packages. It wouldn’t be right to describe such a
system as a regular TEX system. New branding gives
an opportunity to reset user expectations all at once,
without having to explain the details of individual
technical changes.

)

3 The Tectonic Project
The narrative of the previous section has suggested
an interrelated set of gaps in the TEX ecosystem:

e support for creating modern HTML output with
a full-featured TEX engine;

e a modernized developer experience;
e a modernized user experience; and

e a project with a distinct brand identity to serve
as a platform for experimentation.

Launched in 2016, the Tectonic project aims to fill
these gaps. Key elements of its design are as follows.

3.1 Form factor

Tectonic is delivered as a single executable, named
tectonic, that bundles the capabilities of XHTEX, bib-
tex, xdvipdfmx, and supporting machinery for driving

The Tectonic Project: Envisioning a 21st-century TEX experience

https://mozilla.github.io/pdf.js/

122

these engines. The executable is designed to be as
self-contained as possible, with minimal dependen-
cies on system libraries, environment variables, user
configuration files, or external tools. In particular,
dependencies on Ghostscript have been removed for
security, eliminating PostScript capabilities.

3.2 Engine implementation

The engines, most notably XHTEX, are implemented
with C/C++ code obtained from the standard WEB2C
pipeline implemented by TEX Live. The C/C++ files
extracted from the pipeline have been extensively re-
formatted and refactored to make them more human-
readable and, for instance, reintroduce symbolic con-
stants that do not survive the WEB2C workflow. A
few refactorings have been conducted automatically
with coccinelle [2]. Due to these customizations, how-
ever, engine updates from TEX Live cannot be auto-
matically incorporated into the Tectonic codebase.
This is the price of forking. To aid the process of
synchronizing Tectonic with TEX Live, a framework

called tectonic-staging (code repository at github.

com/tectonic-typesetting/tectonic-staging/)
contains a pipeline that can automatically generate
a readable set of C/C++ “reference sources” from
the TEX Live repository. When updates from a
new TEX Live release are to be incorporated into
Tectonic, the pipeline is run and changes to the refer-
ence sources are manually imported into Tectonic’s
codebase. This system heavily leverages the change-
tracking features of the git version control system.

3.3 Use of Rust

Excepting the engines, Tectonic is implemented in
the Rust language. Rust is a systems-level language
focusing on performance, reliability, and productiv-
ity. Rust’s packaging and compilation model is an
excellent fit for a project like Tectonic: while Rust of-
fers a sophisticated package ecosystem that makes it
easy to import support for anything from the HTTPS
protocol to image loading, it compiles by default into
self-contained executables that lack external depen-
dencies. Rust also has excellent support for cross-
platform work and bridging with C and C++ code.
Rust’s packaging tool, cargo, allows codebases to be
organized into “crates” with well-defined interfaces,
and has a “feature” system for the management of
build options. The main Tectonic codebase currently
consists of 22 crates.

More broadly, the Rust language has a similar
spirit to TEX. Both are regarded as best-in-class
tools that can be demanding, but rewarding as well.
Both have a reputation for being complicated and
hard to learn. Despite this reputation, Rust has

Peter K. G. Williams

TUGDboat, Volume 43 (2022), No. 2

achieved a tremendous level of success in a rela-
tively short period of time, being named the “most
loved language” by stackexchange.com for seven
consecutive years as of this writing. Rust support-
ers generally attribute this success to several factors.
First, Rust is technically excellent: it actually deliv-
ers on its promises in a rigorous way, and third-party
Rust packages are often well-designed, performant,
and reliable. Second, Rust has excellent tooling,
with high-quality built-in support for package man-
agement (cargo), documentation, testing, and more.
Third, the Rust user community explicitly values
being welcoming and inclusive. Many aspects of the
Rust design aim to support new users, most famously
the Rust compiler’s error messages, which generally
offer impressively clear diagnoses of problems and
useful advice for fixing them. Spanning these factors
is a theme of experience-centered design: elements of
the Rust ecosystem are designed primarily around a
vision of what it will be like for people to use them,
with technical goals flowing from that vision. Tec-
tonic explicitly aims to emulate these characteristics
of the Rust ecosystem and community.

3.4 Bundles

Tectonic can be delivered as a single executable be-
cause it can download files from a backing TEX dis-
tribution on the fly, during document compilation.
This functionality is implemented by virtualizing the
I/0O subsystem underlying the engines so that it can
search not just the local filesystem, but also remote
“bundles”, for files. Files from bundles are cached
locally, and the implementation is designed such that
the network is needed only if a new file must be
fetched. Bundles are created using a reproducible,
automated pipeline based on the TEX Live installa-
tion process (github.com/tectonic-typesetting/
tectonic-texlive-bundles/). The bundle file as
served over the network is essentially a large Unix tar
file with an associated index, which the tectonic pro-
gram downloads in pieces using HTTPS byte-range
requests.

The bundle scheme is also the backbone of Tec-
tonic’s approach to reproducible document builds.
Bundle files are intended to be immutable, and it
is possible to associate a given Tectonic document
(see below) with a specific bundle, identified by its
url or a SHA256 cryptographic digest based on its
contents. It is thus possible to specify the exact TEX
distribution that a document should be built against.
There is an associated loss of flexibility: to update or
extend a package contained in the bundle, you must
generate your own bundle or install the package files
locally, currently on a per-document basis.

https://github.com/tectonic-typesetting/tectonic-staging/
https://github.com/tectonic-typesetting/tectonic-staging/
https://stackexchange.com
https://github.com/tectonic-typesetting/tectonic-texlive-bundles/
https://github.com/tectonic-typesetting/tectonic-texlive-bundles/

TUGDboat, Volume 43 (2022), No. 2

3.5 Document model

Tectonic offers a “document model” for defining com-
pilations. Its design is heavily indebted to that of
Rust’s cargo tool. Tectonic documents are direc-
tory structures indicated by the existence of a file
named Tectonic.toml at the root. This file, in the
TOML structured-data format (toml.io), declares
basic metadata about a document and how it should
be built. By default, the top-level document source
code is contained in a subdirectory named src in files
named -preamble.tex, index.tex, and _postamble.tex,
that are processed in that order.

A document can be built by running the com-
mand tectonic -X build anywhere in its source tree.
This will create one or more versions of the docu-
ment in a build directory below the Tectonic.toml
file. The -X flag marks the use of Tectonic’s “ver-
sion 2” command-line interface, which uses a “sub-
command” or “multi-tool” paradigm like git or svn.
For compatibility, the default mode of operation is
still “version 1”: tectonic myfile.tex will compile the
specified input file without invoking the document
model. This form of one-shot compilation is accessi-
ble in the version 2 interface with tectonic -X compile
myfile.tex. The version 1 interface will eventually be
deprecated and the -X flag will become optional.

The main purpose of the Tectonic document
model is to make document builds automatable, re-
producible, and analyzable by rendering document-
specific choices as configuration, rather than (e.g.)
a string of command-line options. For instance, the
Tectonic.toml file can record what TEX format file a
build requires, or whether it needs shell-escape func-
tionality. (A runtime flag can override this setting
when the document to be built is not from a trusted
source.) As alluded to above, the specification can
define multiple outputs for a single document, such
as PDFs in both US Letter and A4 sizes.

While the document model has not yet been
developed thoroughly in Tectonic, it is expected to
provide a platform for additional utilities in the fu-
ture. For instance, a future tectonic -X format com-
mand might automatically reformat a document’s
sources into a consistent style, or tectonic -X doc
might generate meta-documentation about available
control sequences customized to a particular docu-
ment’s selection of packages.

4 HTML output

Although high-quality HTML output has been a goal
of the Tectonic project from its inception, little work
has happened on this front —until this year. Inter-
esting progress has begun to occur.

123

The overall approach taken while implement-
ing HTML output for Tectonic has been to focus on
achieving high-quality results with documents that
specifically target that output format. While the
eventual goal is to be able to produce good HTML
output from arbitrary input documents, that is a
larger problem that is being avoided for the time
being. Current efforts also prioritize visual appear-
ance over proper semantic tagging, and focus on the
English language.

As a broad approach, when HTML output is
called for, a special flag in the X{TEX engine is ac-
tivated that alters various aspects of its behavior.
Linebreaking of paragraphs is disabled to avoid deal-
ing with hyphenation, and \specials are inserted
to indicate engine-suggested locations for insertions
of HTML tags such as <p>. The resulting output file
is essentially in the XHTEX XDV format, but it is
relabeled as a new “SPX” format to avoid confusion.
(SPX stands for “semantically-paginated XDV”, but
it is a misnomer because semantic pagination turned
out to be technically infeasible.)

A new processing step written in Rust, spx2html,
uses the Tera templating framework (tera.netlify.
app) to convert the single SPX file into one or more
HTML outputs, and creates or copies associated files
such as CSS stylesheets, JavaScript user interface
code, and font files. The spx2html stage is designed
under the assumption that the input document uses
OpenType fonts everywhere, including mathematics,
via the unicode-math package. This dramatically
reduces the problem space by allowing the code to
only work with fonts that can be rendered directly
by the browser.

4.1 Precise typography in canvases

Initial HTML work focused on demonstrating the
precise character sizing and positioning needed to
render constructs such as “TEX”. In Tectonic, the
bulk of document text is emitted directly into the
HTML, but areas needing careful typographic layout
are handled specially as canvases. Layout in the
canvas mode can either be activated automatically by
the engine (for instance, in math mode) or manually
by the author (with \specials).

Because CSS commands can be used to move
individual HTML elements arbitrarily, the actual
positioning is not difficult, although some care needs
to be taken to achieve proper alignment relative
to the text baseline for inline expressions. More
challenging is the fact that the SPX file specifies how
glyphs in a font should be placed, while the HTML
output must be Unicode text — and these are distinct
concepts. In many cases, there is a direct mapping

The Tectonic Project: Envisioning a 21st-century TEX experience

https://toml.io
https://tera.netlify.app
https://tera.netlify.app

124

Introduction

User Guide
1. Installation

2. Reading Books
3. Creating a Book
Reference Guide
4. Command Line Tool

4.1. init

4.2. build

4.3. watch

4.4. serve

4.5. test

4.6. clean

4.7. completions
5. Format

5.1. SUMMARY.md

5.2. Configuration
5.2.1. General
5.2.2. Preprocessors
5.2.3. Renderers

5.2.4. Environment Variables

I}

TUGhboat, Volume 43 (2022), No. 2

mdBook Documentation 8 0@

Introduction

mdBook is a command line tool to create books with Markdown. It is ideal for creating product or
APl documentation, tutorials, course materials or anything that requires a clean, easily navigable and
customizable presentation.

« Lightweight Markdown syntax helps you focus more on your content

« Integrated search support

« Color syntax highlighting for code blocks for many different languages

« Theme files allow customizing the formatting of the output

« Preprocessors can provide extensions for custom syntax and modifying content
« Backends can render the output to multiple formats

« Written in Rust for speed, safety, and simplicity

« Automated testing of Rust code samples

This guide is an example of what mdBook produces. mdBook is used by the Rust programming
language project, and The Rust Programming Language book is another fine example of mdBook in s
action.

Contributing

mdBook is free and open source. You can find the source code on GitHub and issues and feature
requests can be posted on the GitHub issue tracker. mdBook relies on the community to fix bugs
and add features: if you'd like to contribute, please read the CONTRIBUTING guide and consider
opening a pull request.

Figure 2: The standard mdBook layout, discussed in subsection 4.2. From rust-lang.github.io/mdBook/.

between the two, encoded in a font’s Unicode CMAP
table; but not always. For instance, a display math
environment might call for a large version of an
integral sign that cannot be “reached” by emitting
a U+4222B INTEGRAL character, which maps to a
smaller version of the glyph.

When Tectonic encounters this problem, it ad-
dresses it by creating an additional version of the rel-
evant font file with a customized CMAP table. This
variant glyph approach is a slightly generalized form
of font subsetting, although Tectonic’s implementa-
tion is much more naive than a “real” font subsetter.
In the example above, the new font’s CMAP table
might replace the mapping of U+222B INTEGRAL
from the default integral glyph to the large version
needed by the display math in question. The HTML
for that canvas will then include a tag styled
to load that font, sized and positioned appropriately,
containing a single U+222B INTEGRAL character.

In order to determine whether a new variant-
glyph font must be created, Tectonic must parse and
invert the CMAP tables of the fonts used by the
document that it is processing. This process is po-
tentially fragile, since in full generality it essentially
requires inverting character “shaping” algorithms.
Note, however, that it only needs to occur for char-
acters that occur within canvases. For the main
text of a document, in almost all cases Tectonic can
emit Unicode output directly from the ActualText
information emitted by the X{TEX engine.

Peter K. G. Williams

4.2 The chrome: HTML, CSS, JavaScript

Tectonic’s approach aims to minimize the amount
of web design occurring at the TEX level. Instead,
HTML content derived from the TEX input is in-
serted into predesigned templates. It is important
to emphasize that in modern web design, such tem-
plates inevitably consist of interdependent pieces
of HTML, CSS, and JavaScript code. These pieces
combine to form the chrome of the resulting web
document. Chrome encompasses everything from
the high-level page layout to interactive functionality
such as search, hideable sidebars, and non-linear nav-
igation. High-quality default chrome is an essential
component of the web document production pipeline.

Current efforts focus on a clean design emulat-
ing that of the tool mdBook (rust-lang.github.io/
mdBook/), a Markdown-based, web-native documen-
tation system. A screenshot of the default mdBook
layout is shown in Figure 2. On a large screen, the
default view is divided into a main content area and
a sidebar. The main body text is centered within
the main content area, with a maximum width to
prevent line lengths from becoming excessive. An
unobtrusive title bar sticks to the top of the page,
but auto-hides while the reader scrolls through the
main content. On mobile displays, the sidebar re-
mains hidden by default, and can be opened using
the “hamburger menu” of the title bar.

https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/

TUGboat, Volume 43 (2022), No. 2 125

1

Contents

XeTeX: The Program

Index

109. The first arithmetical subroutine we need computes nx +y, where x and y are scaled and
n is an integer. We will also use it to multiply integers.

@define nx_plus_y(#) => mult_and_add(#, ox3fffffff)
@define mult_integers(#) => mult_and_add(#, @, ox7fffffff)

function mult_and_add(
n: integer,
X, y, max_answer: scaled,
): scaled {
if (n< @) {
negate(x);
negate(n);
}
if (n==09) {
mult_and_add = y;
} else if ((
(x <= (max_answer — y) div n)
&% (-x <= (max_answer + y) div n)
N A
mult_and_add = n » x + y;
} else {
arith_error = true;
mult_and_add = 0;
}

Figure 3: A snapshot of the in-development tt-weave presentation
of XifIEX: The Program, with obvious debts to mdBook (Figure 2).

After a great deal of exploration, I believe that
this layout may well be the optimal design for present-
ing general-purpose technical documents on the web.
On wide screens, the positioning of the main body
text becomes awkward if it is not nearly centered in
the browser window. If the maximum width of the
text is not limited, lines become too long, as seen on
Wikipedia. On mobile, there is little enough room
that there should be virtually nothing else on screen
besides the main text while reading— a constraint
that is accommodated well by the combination of the
sticky, auto-hiding title bar and toggle-able sidebar.

Finally, many chrome designs attempt to cram
information into multiple sidebars, headers, and foot-
ers. These clutter the page and are difficult to use on
mobile. A better alternative is to provide these sorts
of extras as “modals”, overlays that can be quickly
brought up and dismissed using icons in the title bar
(on all platforms) or keystrokes (on desktops). This
is an example of the way in which chrome consists of
more than just page layout: 21st-century documents
can have full-blown user interfaces.

4.3 tt-weave

Current work on Tectonic’s HTML output is focus-
ing on a very specific test case: XHTEX: The Pro-
gram, the variant of TEX: The Program [1] produced
from XHTEX’s patched WEB code. It is close to ideal
because it is long, highly structured, densely cross-
referenced, used frequently by the author, and avail-
able as TEX source.

The TEX source generated by the traditional
weave program is highly tuned for print output. Al-
though T could potentially have worked to create
HTML output from the weave-generated TEX code, I
had an additional goal. I regret to say that I have
always found the code listings generated by weave
extremely difficult to read, even though I know that
a great deal of care has gone into their design. I
wanted to see if I could create a weave-like tool that
could reformat the XHTEX WEB code into the sort of
monospaced, syntax-colorized format that I'm more
familiar reading.

The result of that work is a Rust tool called
tt-weave (github.com/pkgw/tt-weave). It serves
essentially the same function as weave, but parses
the Pascal portions of WEB code with a high level
of semantic awareness and emits them as blocks of
specialized TEX code in an indented, monospaced
format with embedded commands controlling syn-
tax colorization and interlinking. The syntax of the
emitted code is rewritten to superficially resemble C
and Rust. For instance, logical “and” is represented
using && rather than A. No semantic transforms are
attempted, however. Indexing information is emitted
into JSON data files that can be used by the web
chrome. The tt-weave program is not intended to be
a general-purpose WEB processor, and contains nu-
merous hacks specific to the patched xetex.web input
file. A snapshot of its output is shown in Figure 3.
The design shown here is updated relative to the

The Tectonic Project: Envisioning a 21st-century TEX experience

https://github.com/pkgw/tt-weave

126

version included with the HTML slides associated
with this presentation.

As of this writing, the corresponding chrome
is under development. The entire book text can be
rendered into a single HTML file (~10 MB) that is
actually comfortable to use in the browser, and the
online slides associated with this article include a
snapshot of this form of output. Such a large page
is an impractical delivery mechanism for general use,
however, and work is underway to subdivide the out-
put for dynamic loading. This will also help with
integrating Tectonic’s output into industry-standard
web development frameworks (e.g., npm, webpack),
which would significantly boost the productivity of
development by making it convenient to adopt tech-
nologies such as SASS (sass-lang.com) or Type-
Script (typescriptlang.org).

5 Outlook

The Tectonic project has been successful thus far,
gathering ~2.800 “stars” on GitHub and register-
ing 47 distinct project contributors as of the time
of this writing. While much work remains to be
done to make the HTML output framework gener-
ally usable, the variant-glyph technique successfully
addresses the most technically demanding problem
in the current system.

The documentation of the Tectonic project —
somewhat ironically, given its subject matter and
aspirations —is lacking. Once the tt-weave effort has
demonstrated good success with the existing XqTEX:
The Program book, the intention is to start creating
new documentation to remedy this situation.

Peter K. G. Williams

TUGDboat, Volume 43 (2022), No. 2

Thus far, the prime person driving work on
Tectonic has been the author of this article. Since
the project’s inception, however, the hope has been to
make it a welcoming place for new contributors, and
as the project matures, that is more important than
ever. There are numerous areas — non-Latin scripts,
accessibility, non-IATEX workflows, TEX internals —
where more expertise from around the TEX world
would be hugely beneficial. People interested in
engaging with the Tectonic community should visit
the Tectonic discussion forum attached to its GitHub
repository at github.com/tectonic-typesetting/
tectonic/discussions.

Of course, Tectonic only exists because it is
building on the work of the hundreds, if not thou-
sands, of people who have collaborated to build the
TEX ecosystem over the past few decades. While
Tectonic positions itself as “outside of” traditional
TEX in a certain sense, the sincere intent is to credit
and celebrate the work of all those people as fully as
possible. With immense gratitude, I thank you for
sharing your wonderful creation with the world.

References

[1] D.E. Knuth. TgX: The Program, vol. B of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[2] J. Lawall, G. Muller. Coccinelle: 10 years
of automated evolution in the linux kernel.
In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 601-614, Boston, MA,
July 2018. USENIX Association. www.usenix.org/
conference/atc18/presentation/lawall

¢ Peter K. G. Williams
60 Garden St. MS-20
Cambridge, MA 02138
USA
pwilliams (at) cfa dot harvard dot edu
https://newton.cx/ peter/
ORCID 0000-0003-3734-3587

https://sass-lang.com
https://typescriptlang.org
https://github.com/tectonic-typesetting/tectonic/discussions
https://github.com/tectonic-typesetting/tectonic/discussions
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall

	Introduction
	Motivation
	The Tectonic Project
	Form factor
	Engine implementation
	Use of Rust
	Bundles
	Document model

	HTML output
	Precise typography in canvases
	The chrome: HTML, CSS, JavaScript
	tt-weave

	Outlook

