
186 TUGboat, Volume 42 (2021), No. 2

Markdown 2.10.0: LATEX themes & snippets,
two flavors of comments, and LuaMetaTEX

Vı́t Novotný

Abstract

Celebrating its fifth birthday, the Markdown package
has received five new features: user-defined LATEX
themes, LATEX setup snippets, semantic HTML com-
ments, lexical TEX comments, and support for the
LuaMetaTEX engine. In this article, we introduce
each of these features and show how they can be
used in practice. We also discuss five ideas for the
future of Markdown and show how you can help turn
them into a reality.

1 LATEX themes & snippets

The goal of the Markdown package is simply to bring
fire to the users of TEX, so that they can playfully
incinerate each and every element of their markdown
documents. The Markdown package does not aim
to provide comprehensive defaults that would satisfy
every kind of a document. Instead, all attention is di-
rected towards making it easy for TEX programmers
to style markdown. Although this goal fulfills the
Unix philosophy of doing one thing well , the Mark-
down package would be well-served by encouraging
users to lecture it on ever-new things and release
their lecture notes to the whole world.

It is a paradox that one of the greatest successes
of the LATEX project may be its initial lack of features.
Unlike in the cathedral of ConTEXt, where packages
are few and most development is centralized, an ex-
traordinary bazaar of action, ferment, and innovation
has sprung up in the wake of the LATEX2ε kernel.
To make it easier for Markdown users to share their
lecture notes and combine them into thick tomes of
tutelage, version 2.10.0 of the Markdown package
has introduced LATEX themes & setup snippets.

In Section 1.1, we introduce three example LATEX
themes that are included with the Markdown package.
In Section 1.2, we show how users can create and use
their own LATEX themes. In Section 1.3, we introduce
LATEX setup snippets and show how users can create
and use their own setup snippets.

1.1 Built-in themes

LATEX themes are user-defined building blocks that

1. specify what markdown elements do,

2. can be shared and applied as a single unit, and

3. can be combined with one another to achieve
high-level goals without low-level programming.

Since LATEX is a Turing-complete language, what
markdown elements do is not restricted to presenta-

tion, but includes computation and logic: We may
typeset a table in various ways, but we may also store
it as a matrix and compute its determinant, inverse,
and eigenvalues, or we may apply it to an image as
a linear transformation and display the result.

The Markdown package comes with three exam-
ple LATEX themes, listed by increasing complexity.
These examples should help you develop an intuition
for themes and what you can accomplish with them.

1.1.1 The witiko/tilde theme

The witiko/tilde theme redefines the tilde (~), so
that it produces a non-breaking space:

\documentclass{article}

\usepackage[theme=witiko/tilde]{markdown}

\begin{document}

\begin{markdown}

Bartel~Leendert van~der~Waerden

\end{markdown}

\end{document}

The above code will produce the text “Bartel·Leen-
dert van·der·Waerden”, where the middle dot (·)
represents a non-breaking space.

1.1.2 The witiko/dot theme

The witiko/dot theme renders fenced code blocks
with the dot infostring using Graphviz tools:

\documentclass{article}

\usepackage[theme=witiko/dot]{markdown}

\begin{document}

\begin{markdown}

```dot A parse tree of “Let's eat grandma!”
digraph tree {

graph [margin = 0]; node [shape = none]

edge [arrowhead = none]

{rank=same; S}

{rank=same; VP1[label = VP]}

{rank=same; Let

NP1[label = NP]

VP2[label = VP]}

{rank=same; us; eat; NP2[label = NP]}

{rank=same; grandma}

S -> VP1; VP1 -> Let; VP1 -> NP1

VP1 -> VP2; NP1 -> us; VP2 -> eat

VP2 -> NP2; NP2 -> grandma }

\end{markdown}

\end{document}

The above code will produce Figure 1. The size
of the graphics as well as other attributes can be
controlled with the \setkeys{Gin}{...} command
of the graphicx package. The placement of the figure
can be controlled by redefining the \fps@figure

LATEX command.

doi.org/10.47397/tb/42-2/tb131novotny-markdown

Vı́t Novotný

https://doi.org/10.47397/tb/42-2/tb131novotny-markdown


TUGboat, Volume 42 (2021), No. 2 187

Figure 1: A parse tree of “Let’s eat grandma!”

Figure 2: The banner of the Markdown package

1.1.3 The witiko/graphicx/http theme

The witiko/graphicx/http theme downloads on-
line images using either GNU Wget or cURL, which-
ever is available on your system, and displays them:

\documentclass{article}

\usepackage{markdown}

\markdownSetup{texComments, contentBlocks,

theme=witiko/graphicx/http}

\begin{document}

\begin{markdown}

https://github.com/witiko/markdown/raw%

/main/banner.png

(The banner of the Markdown package)

\end{markdown}

\end{document}

The above code will produce Figure 2 (grayscaled for
TUGboat). As before, the size and placement of the
figure can be controlled using the \setkeys{Gin}

{...} and \fps@figure LATEX commands.

1.2 Creating your own theme

To create your own LATEX theme, you should de-
cide on a name in the form xtheme authory/xtarget
packagey/xprivate namingy, where xtheme authory

specifies the provenance of the theme, xtarget pack-
agey specifies a LATEX or software package that the
theme relates to, and xprivate namingy specifies ad-
ditional slash-delimited name segments. The xtarget
packagey and xprivate namingy name segments are
optional, but at least one of them must be present.

Let us suppose that Jane Doe wishes to create a
simple theme for the Beamer LATEX package. Beamer
creates presentation slides and Jane’s theme will
redefine markdown’s first- and second-level headings
to typeset the titles and subtitles of presentation
slides. Therefore, Jane has decided to name her
theme jdoe/beamer/headings.

Next, Jane will munge the name of the theme
by substituting slashes (/) with underscores (_), and
she will attach the prefix markdowntheme and the
suffix .sty to arrive at the following filename:

markdownthemejdoe_beamer_headings.sty

Jane will create a text file with the above filename
and the following content:

\ProvidesPackage{markdownthemejdoe_beamer_%

headings}[2021/06/04]

\markdownSetup{

rendererPrototypes = {

headingOne = {\frametitle{#1}},

headingTwo = {\framesubtitle{#1}}

}

}

Finally, Jane will use her new theme in her
presentation slides, together with the witiko/dot

theme, which she uses to typeset dietary assessments:

\documentclass[

aspectratio=169

]{beamer}

\usepackage[

theme = witiko/dot,

theme = jdoe/beamer/headings

]{markdown}

\setkeys{Gin}{

width=\columnwidth,

keepaspectratio

}

\title{Dietary Assessment of Big Bad Wolf}

\author{Jane Doe}

\date{June 4, 2021}

\begin{document}

\maketitle

\begin{frame}[fragile]

\begin{markdown}

Markdown 2.10.0: LATEX themes & snippets, two flavors of comments, and LuaMetaTEX



188 TUGboat, Volume 42 (2021), No. 2

Dietary Assessment of Big Bad Wolf

Jane Doe

June 4, 2021

What’s on the Menu?
Dietary Assessment

Big Bad Wolf

Grandma Little Red Riding Hood

Figure 3: Presentation slides produced by Jane Doe using her jdoe/beamer/headings LATEX theme

# What's on the Menu?

## Dietary Assessment

``` dot

digraph tree {

Wolf -> Grandma

Wolf -> Hood

Wolf [label = "Big Bad Wolf"]

Hood [label = "Little Red Riding Hood"]

}

\end{markdown}

\end{frame}

\end{document}

The above code will produce the two presentation
slides shown in Figure 3. After adding a couple more
features, Jane publishes her theme on CTAN, so that
other authors can benefit from it.

1.3 Setup snippets

Let us suppose that Jane Doe has decided to cre-
ate another theme named jdoe/lists/roman, which
will make her ordered lists use Roman numerals:

\ProvidesPackage{markdownthemejdoe_lists_%

roman}[2021/06/04]

\markdownSetup{

rendererPrototypes = {

olItemWithNumber = {%

\item[\romannumeral#1\relax.]%

}

}

}

Jane attempts to apply her theme in a local scope,
displaying one of her ordered lists in Arabic numerals
and another ordered list in Roman numerals:

\documentclass{article}

\usepackage{markdown}

\begin{document}

\begin{markdown}

1. wahid

2. aithnayn

\end{markdown} % This won't work!

\begin{markdown*}{theme=jdoe/lists/roman}

3. tres

4. quattuor

\end{markdown*}

\end{document}

However, the above code will fail and produce the
following LATEX error: “Can be used only in pream-
ble”. LATEX themes are full-featured LATEX packages,
which make permanent changes to a document, can
only be loaded in the preamble of a document, and
thus can’t be applied in a local scope.

LATEX setup snippets make it possible to separate
the cause from the effect : We will load a LATEX theme
once in the preamble, the theme will define setup snip-
pets, and we can apply the snippets in local scopes.
Jane will first shorten her theme to jdoe/lists,
making the roman segment into a snippet:

\ProvidesPackage{markdownthemejdoe_lists}%

[2021/06/04]

\markdownSetupSnippet{roman}{

rendererPrototypes = {

olItemWithNumber = {%

\item[\romannumeral#1\relax.]%

}

}

}

Next, Jane will separate the loading of her jdoe/

/lists theme from using her roman setup snippet:

\documentclass{article}

\usepackage[theme=jdoe/lists]{markdown}

\begin{document}

\begin{markdown}

1. wahid

2. aithnayn

\end{markdown}

\begin{markdown*}{snippet=jdoe/lists/roman}

3. tres

4. quattuor

Vı́t Novotný

TUGboat, Volume 42 (2021), No. 2 189

\end{markdown*}

\end{document}

The above code will produce the following list:

1. wahid

2. aithnayn

iii. tres

iv. quattuor

Notice how the setup snippet roman has been auto-
matically namespaced to jdoe/lists/roman. This
makes it less likely that different themes will de-
fine setup snippets with the same name. Snippets
can also be defined outside of themes, in which case
namespacing is not applied and roman stays roman.

2 Two flavors of comments

In TEX, comments fulfill several distinct roles:

1. We can use comments to prevent the processing
of some parts of our code without deleting them:

%\author{Authors anonymized for review}

\author{John Doe \and Jane Roe}

2. We can use comments to write two parallel doc-
uments, a technique frequently used to produce
documentation in literate programming [4]:

% The \cs{foo} command prints ``bar'':

% \begin{macrocode}

\def\foo{bar}

% \end{macrocode}

3. We can use comments to insert little side notes:

% Aren't we missing a comma here?

Let's eat grandma!

4. We can use comments to prevent TEX’s input
processor from inserting spaces or starting a
new paragraph when word-wrapping newline
characters are encountered:

My parents have first met in Llanfairp%

wllgwyngyllgogerychwyrndrobwllllantysi%

liogogogoch.

The language of markdown started out as a
preprocessor for the HTML language. As a conse-
quence, markdown does not provide its own syntax
for comments and authors are expected to use HTML

comments instead:

<!-- Aren't we missing a comma here? -->

Let's eat grandma!

Unlike TEX’s comments, which consume the rest of a
line (including the occasional grandma), HTML com-
ments consume just a part of a line, which increases
their expressiveness at the expense of verbosity:

Let's <!-- eat --> visit grandma!

However, the markdown language only allows HTML

comments in text, not in the middle of other elements,
such as hyperlinks. This makes HTML comments
unsuitable for general word-wrapping (point 4):

<!-- This won't work! -->

[1]: http://a.very.long.url/that/should<!--

-->/enjoy%20some%20serious#word-wrapping

Although HTML comments can be extracted from
an HTML document to create a parallel document
for literate programming (point 2), no such option
exists in the TEX Markdown package. As a con-
sequence, users of the Markdown package will find
HTML comments useful but often lacking compared
to TEX comments.

In Section 2.1, we first show how version 2.10.0
of the Markdown package improves the support for
HTML comments. In Section 2.2, we introduce a
new flavor of markdown comments, which can be
combined with HTML comments to cover all use
cases of TEX comments and more.

2.1 Semantic HTML comments

Since version 2.3.0, the Markdown package has rec-
ognized HTML elements, entities, processing instruc-
tions, and comments when the html option is enabled.
HTML entities are resolved, and HTML elements, pro-
cessing instructions, and comments are omitted from
the output:

\documentclass{article}

\usepackage[html]{markdown}

\begin{document}

\begin{markdown}

<!-- Aren't we missing *a comma* here? -->

Let's eat <emph>grandma</emph>!

\end{markdown}

\end{document}

The above code will produce the text “Let’s eat
grandma!”

HTML comments are semantic in the sense that
they are not stripped away by an input processor, but
recognized as an element of the markdown language.
Since version 2.10.0, the Markdown package includes
a renderer that makes the text of the comments
actionable:

\documentclass{article}

\usepackage{marginnote}

\usepackage[html]{markdown}

\markdownSetup{

renderers = {

inlineHtmlComment = {\marginnote{#1}},

},

}

Markdown 2.10.0: LATEX themes & snippets, two flavors of comments, and LuaMetaTEX

190 TUGboat, Volume 42 (2021), No. 2

\begin{document}

\begin{markdown}

<!-- Aren't we missing *a comma* here? -->

Let's eat grandma!

\end{markdown}

\end{document}

The above code will produce the text “Let’s eat
grandma!” with the comment displayed as a margin
note as we see here.Aren’t we

missing
a comma

here?

This makes HTML comments
useful for inserting notes (point 3).

Notice that the inline markdown markup for
emphasis is recognized as well. This support for
nested formatting makes HTML comments useful for
writing parallel documents (point 2).

2.2 Lexical TEX comments

The Markdown package has always supported the
hybrid option, which allows users to use LATEX com-
mands such as \label and \ref inside markdown:

\documentclass{article}

\usepackage[hybrid]{markdown}

\begin{document}

\begin{markdown}

I conclude in Section~\ref{sec:conclusion}.

Conclusion

==========

\label{sec:conclusion}

In this paper, we have discovered that most

grandmas would rather eat dinner with their

grandchildren than get eaten. Begone, wolf!

\end{markdown}

\end{document}

However, since the conversion of markdown to TEX
does not preserve newlines, using TEX comments in
the hybrid mode will lead to unexpected results. For
example, typesetting the markdown document from
point 4 on page 189 in the hybrid mode will produce
the text “My parents have first met in Llanfairp”.

Since version 2.6.0, the Markdown package has
supported the stripPercentSigns option, which
makes it possible to use TEX comments to produce
documentation in literate programming (point 2). [5]

Since version 2.10.0, the Markdown package sets
the category code of the percent sign to other when
typesetting markdown documents, so that TEX com-
ments can’t produce malformed documents in the
hybrid mode. Additionally, a lexical input processor
that recognizes the regular language of TEX com-
ments (for technical details, see Figure 4) has been
added to the Markdown package and can be enabled
with the texComments option. For example, type-
setting the markdown document from point 4 on

page 189 with the texComments option enabled will
produce the expected text “My parents have first
met in Llanfairpwllgwyngyllgogerychwyrndrobwlll-
lantysiliogogogoch.”

TEX comments are lexical in the sense that they
are unaware of markdown. Therefore, we can use
them for general word-wrapping (point 4):

[1]: http://a.very.long.url/that/should/%

enjoy\%20some\%20serious#word-wrapping

In conclusion, both the semantic HTML com-
ments and the lexical TEX comments are well-suited
for preventing the processing of some parts of our
documents (point 1) and for writing parallel doc-
uments (point 2). Whereas HTML comments are
better-suited for writing and optionally typesetting
little side notes (point 3), TEX comments can be used
for word-wrapping anywhere in the text (point 4).

3 LuaMetaTEX

The LuaMetaTEX engine is a minimalist development
version of LuaTEX, which removes many features of
LuaTEX and alters some interfaces. LuaMetaTEX is
used in the ConTEXt LMTX format [1], which may
soon make its way into TEX Live and other TEX
distributions. Since the Markdown package supports
ConTEXt, the time is ripe to make Markdown play
nice with LuaMetaTEX as well.

LuaTEX contains the Selene Unicode library,
which the Markdown package uses to transform Uni-
code text. LuaMetaTEX removes Selene Unicode,
but uses Lua 5.4, which contains a built-in utf8 li-
brary. The utf8 library has a similar interface and
functionality to Selene Unicode. Since version 2.10.0,
the Markdown package will use either Selene Unicode
or utf8, whichever is available in Lua.

LuaTEX contains the kpathsea library, which is
responsible for finding files in the TEX directory struc-
ture. The Markdown package uses kpathsea to find
JSON files that map filename extensions to names of
programming languages for the contentBlocks syn-
tax extension. LuaMetaTEX removes the kpathsea
library, but provides an optional library interface,
which allows the use of an external kpathsea li-
brary when it is available. Since version 2.10.0, the
Markdown package will search for files only in the
current working directory when kpathsea is unavail-
able. This should only affect ConTEXt Standalone:
in full TEX distributions, where an external kpathsea
library is available, there should be no change of be-
havior.

4 What’s next and how do I contribute?

There are many intriguing ideas for the future of
Markdown. Some of these ideas are already under

Vı́t Novotný

TUGboat, Volume 42 (2021), No. 2 191

initial

odd backslash

even backslash

comment
leading tabs
and spaces

blank line

match [^\%]
capture \2kxmatchy

reset k

match \

match %
capture \k
reset k

match [^ë]

match ë

match [Õ]

match \

match %

ϵ

match [^ Õë\%]
capture xmatchy

match [Õ]

match ë

capture ëë

match \
increment k

match [^\]
for %, capture \k%

for [^%], capture \2k`1xmatchy

reset k

ϵ

Figure 4: An automaton that strips TEX comments from markdown input with the texComments option.
The automaton contains a counter k, which is initially zero. The automaton reads and matches characters

from the input to transition between states. During a state transition, the automaton may capture character
strings by writing them to the output, increment counter k by one, or reset counter k back to zero.

Until the automaton encounters a backslash (\) or a percent sign (%), it stays in the initial state, which
is similar to the state M of TEX’s input processor [2, Chapter 8], capturing every character that it matches.

When the automaton encounters a sequence of backslashes, it counts the pairs of backslashes in counter k.
If a percent sign follows an odd backslash, the percent sign has been escaped and the automaton captures k
backslashes and the percent sign: This makes capture a surjective function, allowing us to write \% as \\\%.
If a character other than a percent sign or a backslash follows an odd or even backslash, the automaton
captures 2k ` 1 or 2k backslashes, respectively, and the matched character: This makes capture an identity
function for inputs that do not contain a percent sign.

When the automaton encounters a percent sign that has not been escaped, the automaton captures k
backslashes and reads the rest of the line as a comment without capturing any characters. After reading the
newline character (ë), the automaton enters a state similar to the state N of TEX’s input processor, reading
any leading tabs and spaces (Õ and) without capturing any characters. If the automaton encounters
additional newline characters, there has been a blank line in the input and the automaton captures two
newline characters (ëë) before it transitions back to the initial state.

Markdown 2.10.0: LATEX themes & snippets, two flavors of comments, and LuaMetaTEX

192 TUGboat, Volume 42 (2021), No. 2

development by contributors and soon to become the
present reality, whereas some other ideas are only
now beginning to be discussed,1 and others yet are
waiting to be discovered by you.

For your inspiration, I list some existing ideas
for improving Markdown by increasing complexity
and suggest how you can contribute:

4.1 Actionable HTML attributes

In my previous article [5, Section 2.4], I introduced
HTML attributes as a way of typesetting only small
parts of markdown documents. However, the HTML

attributes are currently not actionable, which means
that users can’t react to them from TEX.

If the HTML element identifiers were actionable,
we could rewrite the code from Section 2.2 with-
out the hybrid mode and all its security problems.
Additionally, if HTML class names were actionable,
we could apply setup snippets without switching
between markdown and LATEX:

I conclude in Section <#sec:conclusion>.

Conclusion {#sec:conclusion .some-snippet}

==========

In this paper, we have discovered that most

grandmas would rather eat dinner with their

grandchildren than get eaten. Begone, wolf!

Future development should add syntax extensions
such as Pandoc’s fenced_divs, bracketed_spans,
and inline_code_attributes for specifying HTML

attributes on elements other than headings.
If you would like to contribute, you should have

a look at issue 912 and the Contributing section of
the README.md document.3 The introductory article
by Henri Menke [3] about writing parsing expres-
sion grammars (PEG) in the Lua LPeg library is
recommended reading.

4.2 Jekyll front matter

Jekyll is a static site generator that takes Mark-
down documents and converts them to a website. In
Jekyll, each Markdown document can start with front
matter : a block in your amazing markup language
(YAML) that can specify various metadata:

title: Of *Wolves* and _Grandmas_

author:

- name: Little Red Riding Hood

- name: Big Bad Wolf

1 github.com/witiko/markdown/issues & /discussions
2 github.com/witiko/markdown/issues/91
3 github.com/witiko/markdown#contributing

If Jekyll’s front matter were supported in Mark-
down, we could set up all metadata of a document
from Markdown without ever switching to TEX.

If you would like to contribute, you should have
a look at issue 224 and the implementation drafted
by Marei Peischl in pull request 77.5 The article by
Henri Menke [3] about writing PEG in the Lua LPeg
library is again recommended reading.

4.3 The witiko/graphicx/http theme in Lua

The witiko/graphicx/http LATEX theme from Sec-
tion 1.1.3 requires either GNU Wget or cURL to
download online images. We could remove both
prerequisites by using the socket.http Lua library.

In issue 82,6 I drafted an implementation and
listed several issues that prevent its use:

1. The http.requestmethod mishandles redirects.
2. LuaMetaTEX lacks the socket.http library.
3. The \directlua command needs to be replaced

with a shell escape for non-Lua TEX engines.

Lua programmers familiar with the Luasocket library
are encouraged to help tackle points 1 and 2.

4.4 Integration with Pandoc

Pandoc is a Haskell library for converting between
dozens of document formats. Since it would be dif-
ficult to write conversion functions for every pair
of formats, Pandoc uses an intermediate abstract
syntax tree (AST), so that every document format
only needs a conversion function from the document
format to the AST and back. If the Markdown pack-
age understood the AST, we could typeset any of the
document formats of Pandoc while maintaining full
control over the formatting:

\documentclass{article}

\usepackage[theme=jdoe/lists]{markdown}

\begin{document}

\pandocInput[snippet=jdoe/lists/roman]

{of-wolves-and-grandmas.docx}

\end{document}

If you would like to contribute, you should have
a look at the corresponding issues7 and the GitHub
repository of Dominik Rehák,8 who is extending the
Lunamark Lua parser with an AST reader. Ideas
on how to best integrate the AST reader into the
interface of Markdown will be appreciated.

4 github.com/witiko/markdown/issues/22
5 github.com/witiko/markdown/pull/77
6 github.com/witiko/markdown/issues/82
7 github.com/witiko/markdown/issues/25 & /62
8 github.com/drehak/lunamark

Vı́t Novotný

https://github.com/witiko/markdown/issues
https://github.com/witiko/markdown/discussions
https://github.com/witiko/markdown/issues/91
https://github.com/witiko/markdown#contributing
https://github.com/witiko/markdown/issues/22
https://github.com/witiko/markdown/issues/22
https://github.com/witiko/markdown/issues/82
https://github.com/witiko/markdown/issues/25
https://github.com/witiko/markdown/issues/62
https://github.com/drehak/lunamark

TUGboat, Volume 42 (2021), No. 2 193

4.5 Direct mapping of elements

In Section 1.2, Jane Doe has created a jdoe/beamer/
/headings LATEX theme for producing presentation
slides. However, we still needed to use the LATEX
frame environment for each presentation slide. Could
we produce presentation slides without switching be-
tween markdown and LATEX?

The Markdown package relies on TEX’s expan-
sion processor : For example, the Lua parser converts
the markdown text “# What’s on the Menu?” into
the TEX code

\markdownRendererHeadingOne{What's on the Menu?}

which TEX then expands to

\frametitle{What's on the Menu?}

and typesets. However, we can’t always rely on
TEX’s expansion processor. For example, the Beamer
command \begin{frame} will read input until it
has found a matching \end{frame} command. If
\end{frame} is hidden behind expansion, it will
never be found.

One solution would be to make the conversion of
“# What’s on the Menu?” configurable, so that in-
stead of producing \markdownRendererHeadingOne,
it can map directly to “\begin{frame}{What's on

the Menu?}”. If you would like to contribute, you
should have a look at issue 929 and the Contributing
section of the README.md document.10

On a more decentralized level: play with the
Markdown package, cherish it, use it in your writing,
and find ways to abuse its syntax in unexpected and
unsettling ways. LATEX themes make it easier than
ever to share your discoveries and compose them into
a beautiful cacophony of mayhem.

9 github.com/witiko/markdown/issues/92
10 github.com/witiko/markdown#contributing

Figure 5: Grandma Jane and the Big Bad Wolf
celebrate the fifth birthday of the Markdown package.
Illustration by fiverr.com/quickcartoon.

Book announcement

Lloyd R. Prentice and I are writing a book: Publish
Beautiful Books with Markdown: Fast Track to LATEX
(publishbeautifulbooks.com) is about book de-
sign, typography, and technology that allows you
to go from well-chosen words to a beautiful book
with just a few keystrokes.

Lloyd is a novelist and indie book publisher.
His novels include Freein’ Pancho and The Gospel
of Ashes. He wrote and produced the three-year run-
ning web manga Aya Takeo with illustrator Sonia
Leong; print version published in three volumes by
UK independent publisher and comic collaborative
Sweatdrop Studios. Lloyd also co-wrote and pub-
lished the technical programming book Build It with
Nitrogen: The Fast-Off-the-Block Erlang Web Frame-
work. In an earlier life, Lloyd designed and devel-
oped nearly 100 consumer and educational software
products for major US publishers. Web experience
includes design and development of a soup-to-nuts
application to support marketing and management
of world-class technical conferences.

I am a computer scientist, university teacher,
and digital typography enthusiast. Before I devel-
oped the Markdown package, I had prepared a dozen
TEX document templates for universities, scientific
journals, and small businesses. I am the technical
editor of the Czechoslovak TEX users group (CSTUG)
Bulletin, which publishes research works on electronic
document preparation and digital typography.

References

[1] H. Hagen. ConTEXt LMTX. TUGboat
40(1):34–37, 2019. https://tug.org/TUGboat/
tb40-1/tb124hagen-lmtx.pdf

[2] D.E. Knuth. The TEXbook. Addison-Wesley,
1986.

[3] H. Menke. Parsing complex data formats in
LuaTEX with LPEG. TUGboat 40(2):129–135,
2019. https://tug.org/TUGboat/tb40-2/

tb125menke-lpeg.pdf

[4] F. Mittelbach. Format LATEX documentation,
2021. https://ctan.org/pkg/doc

[5] V. Novotný. Markdown 2.7.0: Towards
lightweight markup in TEX. TUGboat
40(1):25–27, 2019. https://tug.org/TUGboat/
tb40-1/tb124novotny-markdown.pdf

˛ Vı́t Novotný
Studená 453/15
Brno, 638 00
Czech Republic
witiko (at) mail dot muni dot cz

github.com/witiko

Markdown 2.10.0: LATEX themes & snippets, two flavors of comments, and LuaMetaTEX

https://youtu.be/gcOzd1d7C4Y
https://github.com/witiko/markdown/issues/92
https://github.com/witiko/markdown#contributing
https://www.fiverr.com/quickcartoon
https://www.amazon.com/s?i=stripbooks&rh=p_27%3ALloyd+R.+Prentice&s=relevancerank&text=Lloyd+R.+Prentice&ref=dp_byline_sr_book_1
https://publishbeautifulbooks.com
https://tug.org/TUGboat/tb40-1/tb124hagen-lmtx.pdf
https://tug.org/TUGboat/tb40-1/tb124hagen-lmtx.pdf
https://tug.org/TUGboat/tb40-2/tb125menke-lpeg.pdf
https://tug.org/TUGboat/tb40-2/tb125menke-lpeg.pdf
https://ctan.org/pkg/doc
https://tug.org/TUGboat/tb40-1/tb124novotny-markdown.pdf
https://tug.org/TUGboat/tb40-1/tb124novotny-markdown.pdf

	LaTeX themes & snippets
	Built-in themes
	The witiko/tilde theme
	The witiko/dot theme
	The witiko/graphicx/http theme

	Creating your own theme
	Setup snippets

	Two flavors of comments
	Semantic HTML comments
	Lexical TeX comments

	LuaMetaTeX
	What's next and how do I contribute?
	Actionable HTML attributes
	Jekyll front matter
	The witiko/graphicx/http theme in Lua
	Integration with Pandoc
	Direct mapping of elements

