TUGDboat, Volume 42 (2021), No. 2

Continuous integration and TEX
with Org-Mode

Rohit Goswami

Abstract

Virtual or cloud computational resources in the form
of build servers on public git hosting servers have
become increasingly common. Herein we discuss how
these may be leveraged for providing an asynchronous
distributed collaborative workflow.

Additionally, we demonstrate how the Org-Mode
markup language can be used to provide a user-
friendly point of contact for novices and experts
alike, and includes data analysis techniques.

1 Introduction

Since the acquisition of ShareLaTeX, and the integra-
tion with publishing houses, Overleaf has increased
its prominence in academic circles. This has been
accelerated by the global pandemic [8]. In the inter-
ests of preventing the promulgation of commercial
monopolies we investigate the usage of continuous in-
tegration (CI) services to generate documents on the
fly. At the same time, for many data-intensive stud-
ies, rapid analysis and plotting during the ideation
phase has become de rigueur. This has led to the
rise of Jupyter notebooks which meld analysis and
context together in executable formats and have been
a major driver in the rapid adoption of Python in
scientific circles [5]. This can be seen also in the
trend in publishing which has recently veered to-
wards the adoption of such data-driven executable
content [1, 6].

In these scenarios, the usage of TEX is often
dependent on the programming language and envi-
ronment used; e.g., R provides an almost complete
format for preparing reports (RMarkdown and knitr)
which exports to TEX [9, 12]. Here, we demonstrate
the flexibility of the org-mode markup language,
which can be extended in a straightforward manner
to replace Jupyter notebooks for data analysis in a
transparent, language agnostic manner.

2 CI setup

We will consider here the specific examples which
are intended to run on the free “GitHub Actions’
CI infrastructure. Given that most build-bots are
configured in a similar manner, the key concepts
are applicable to other setups as well. In broad
strokes, a texlive installation controlled by a mini-
mal profile is used for TEX, since the default build
systems tend to be pinned to older distributions (e.g.,
Ubuntu 18.04 or even Alpine Linux).

)

doi.org/10.47397/tb/42-2/tb131goswami-ci-org

135

2.1 Emacs and Org

To ensure that TEX exports are feasible on a CI
without provisioning an entire emacs configuration
in each repository, the following listing contains the
minimal execution setup script. Links to more com-
plete versions are given in section 4.4.

Listing 1: Minimal Lisp execution script

(require ’package)
(setq package-check-signature nil)
(add-to-list ’package-archives

’("melpa" . "https://melpa.org/packages/") t)
(package-initialize)
(unless package-archive-contents

(package-refresh-contents))
(package-install ’use-package)
(package-install ’org)

(dolist (package ’(use-package))
(unless (package-installed-p package)
(package-install package)))

(use-package org-ref
rensure t)

(require ’ox-latex)

(setq org-latex-packages-alist ’nil

org-latex-minted-options ’nil

org-latex-listings ’minted

org-latex-default-packages-alist
7((Illl

(nn n lipsum"

"graphicx" t)
t)))

(defun org-export-to-pdf-dir (files)
"Export, ,all FILES to latex."
(interactive "ORG-->TEX")
(save-excursion

(let ((org-files-1st))
(dolist (org-file files)
(message "#*x_Exporting file
LuuuuuLuAuSU*** " org-file)
(find-file org-file)
(org-latex-export-to-latex)
(kill-buffer)))))

;; Export all org files from CLI
(org-export-to-pdf-dir argv)

This can now be executed on a CI as seen in
Listing 2.

2.2 Caching and determinism

For continuous integration, control over dependen-
cies is of paramount importance. In this workflow,

Continuous integration and TEX with Org-Mode

https://doi.org/10.47397/tb/42-2/tb131goswami-ci-org

136

Listing 2: Using Lisp exporter on the CI

- name: Generate TeX

run: |

emacs -q -nl -script \
scripts/org2tex.el src/super.org

the primary dependency considered is the TEX in-
stallation. There have been many attempts to ensure
reproducibility and automation of installation, rang-
ing from language-specific measures like tinytex
for R [11] to the alternate TEX-compatible systems
like Tectonic [7]. There have also been recent CI-
specific projects like the Island of TEX which provide
Docker images for ensuring reproducibility [3]. Our
approach to this problem is to leverage the stan-
dard TEX Live installation approach, along with
caching to prevent unnecessary strain on the build
servers. Packages are obtained on-the-fly from the
Comprehensive TEX Archive Network (CTAN) via
the texliveonfly package, which is a Python script
for dependency resolution; it uses tlmgr to install
packages needed for a given compilation.

3 GitHub bots

The workflow in the previous section can be aug-
mented to use “Bots” to perform additional auto-
mated tasks. Beyond the convenience factor, the
usage of GitHub allows for using the embedded rich
text editor, and even Codespaces. Rendered doc-
uments can also be viewed on GitHub, which is a
bonus. This section will assume the usage of GitHub
as the platform of choice.

Other “Bots” not mentioned here include run-
ning latexdiff on pull requests to enhance the col-
laborative workflow.

3.1 Branches and deployments

To “deploy” the rendered document in a manner
which is accessible from the web interface, a PDF may
be deployed to an orphan branch which will be recre-
ated each time, without history so as to not take up
excessive space. Though this may be accomplished by
manually adding a commit step, actions-gh-pages
makes this even simpler, as shown in the Listing 3
fragment.

Pushing to a branch requires a personal access
token. However, since each GitHub Actions runner
automatically creates the GITHUB_TOKEN secret for
the authentication of the workflow itself, this bot
abstracts the authentication mechanism from the
user.

Rohit Goswami

TUGhboat, Volume 42 (2021), No. 2

Listing 3: PDF rendering fragment on CI

- name: Render to Branch
uses: peaceiris/actions-gh-pages@v3
with:
github_token: |
${{ secrets.GITHUB_TOKEN }}
./pdfdir
publish_branch: pdf

publish_dir:

force_orphan: true

4 Org markup and TEX

Generating a TEX layout with org-mode demands an
understanding of the standard layout of KTEX docu-
ments, and also the Emacs Lisp variables and hooks
which control and modify the export process from
org to TEX. The org-mode syntax is described in
great detail in its manual at orgmode.org/manual/.
Furthermore, syntax highlighting of org-mode is
provided by extensions to most editors, including
Visual Studio Code. Finally, org-mode is rendered
for HTML previews on GitHub, GitLab, and other
servers, making its use and adoption easier.

4.1 Standard modifications

The basic setup for working with org-mode files in
general is depicted in Figure 1, where importantly,
the :ignore: tags can be used to demarcate the
document into logically consistent parts. With code
folding and narrowing to trees, this allows for an
optimally efficient setup.

1 #+TITLE: Super Stuff

2 #+SUBTITLE: Awesome Subtitle

3 #+AUTHOR: John Doe, Jane Doe

4 #+OPTIONS: toc:t \n:nil enable-local-variables:t
5 #+STARTUP: fninline

6 #+EXCLUDE_TAGS: noexport

7

8 * Configuration :ignoreheading:ignore:

9 :PROPERTIES:. ..

12 #+BEGIN_SRC emacs-lisp :exports none :eval always
13 (require 'ox-extra)

14 (ox-extras-activate '(ignore-headlines))

15 #+END_SRC

16 Theme :ignoreheading:ignore:

17 #+HEADER: :results none :eval always

18 #+BEGIN_SRC emacs-lisp :exports none ...
u3 TeX activation :ignoreheading:ignore:...
51 Cover Page :ignoreheading:ignore:...

92 * Start Here :ignoreheading:ignore:

93 * Context...

374 * Implementations...

494 * Conclusions...

519 * Bibliography :ignoreheading:ignore:

520 #+BEGIN_EXPORT latex

521 \newpage

522 \printbibliography[title=Bibliography]

523 #+END_EXPORT

524

525 # Local Variables :ignoreheading:ignore:

526 :PROPERTIES:. ..

529 # Local Variables:

530 # before-save-hook: org-babel-execute-buffer
531 # after-save-hook: (lambda () (org-latex-export-to-latex) t)
532 # End:

Figure 1: Standard document layout with hook and
code folding

https://orgmode.org/manual/

TUGDboat, Volume 42 (2021), No. 2

Listing 4: Sample demonstrating the usage of a
“super” class

#+HEADER :
#+BEGIN_SRC emacs-lisp :exports none

:eval always :results none

(org-babel-tangle)
(add-to-list ’org-latex-classes
> ("super" "\\documentclass{super}"
("\\part{/%s}" . "\\part*{/s}")
("\\chapter{/s}" . "\\chapterx{/s}")
("\\section{%s}" . "\\section*{Js}")
("\\subsection{%s}" .
"\\subsection*{}s}")
("\\subsubsection{¥s}" .
"\\subsubsection*{%s}")
("\\paragraph{%s}" .
"\\paragraph*{%s}")
("\\subparagraph{/s}" .
"\\subparagraph*{%s}")))
(setq org-latex-packages-alist ’nil)
(setq org-latex-minted-options ’nil)
#+END_SRC

Listing 5: Snippet of a custom class

#+header: :results none
#+header: :tangle super.cls
#+header: :exports none

#+begin_src latex :eval always

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{super}

#+end_src

4.2 Archive emulation

Perhaps the simplest approach is to leverage the
.org file as a plain text archive, which expands
to a layout defined by #+begin_export latex and
#+end_export directives for layouts in the document
itself. For the preamble and to define what tradition-
ally falls under the purview of .cls files, it is easiest
to literally export the TEX commands to a file before
loading it.

To accomplish this, it is necessary to provide
an Emacs Lisp snippet which disables much of the
underlying machinery, while augmenting it with the
desired .cls as seen in Listing 4.

While the class itself can be within the same file,
as shown in Listing 5, the :eval always header and
the org-babel-tangle call in Listing 4 ensures that
the file is (re)generated during the export process.

137

Listing 6: Mathematica code to export an image
(solutions for a hyperbolic equation)
ClearAll[u, x, t, pl;

len = 1;

pde = D[ulx, t], t, t] ==

16#D[ulx, t], x, x];

(* initial conditions *)

ic = {ulx, 0] == Sin[Pi*x], \
Derivative[0, 1][u] [x, 0] == 0};

(* boundary conditions *)

bc = {ul0, t] == 0, ullen, t] == 0};
sol = ulx, t1 /. \
First@DSolve[{pde, ic, bcl}, \

ulx, t1, {x, t}1;

p = Plot3D[sol, {x, 0, 1}, \

{t, 0, 1}, PlotPoints -> 30];
Export["images/q2aM.png",pl;
Print["images/q2aM.png"]

4.3 Data driven development

The previous sections used Lisp to configure the
Org and IXTEX configuration in a reproducible man-
ner. The org-babel tangling works for arbitrary
languages as well, with minor workflow modifica-
tions. Consider the Mathematica code in Listing 6.

The key element in Listing 6 from the perspec-
tive of the end user is that the image must exist on
disk, and the filename must be returned from the
code block for it to be picked up in the orgmode
workflow. This has the added benefit of being more
WYSIWYG (what you see is what you get) compared
to Jupyter Notebooks or RStudio which often render
images which must be saved to disk manually with
additional configurational changes.

4.4 Workflow samples

For full examples of a report generated with a CI-
based collaborative workflow, interested readers are
referred to:
github.com/HaoZeke/ipam21_tqc_wg_report

or slides for TUG 2021 at:
github.com/HaoZeke/haozeke.github.io/blob/
src/presentations/TUG2021/tug2lrgpres.org
and for a more involved example that showcases
org-mode and its integration with R, see:
github.com/HaoZeke/haozeke.github.io/blob/
src/content-org/solutions/SR2/s0103.Rorg

5 Discussion

The workflow outlined in this short article is not with-
out its rough edges. The content presented in this

Continuous integration and TEX with Org-Mode

https://github.com/HaoZeke/ipam21_tqc_wg_report
https://github.com/HaoZeke/haozeke.github.io/blob/src/presentations/TUG2021/tug21rgpres.org
https://github.com/HaoZeke/haozeke.github.io/blob/src/presentations/TUG2021/tug21rgpres.org
https://github.com/HaoZeke/haozeke.github.io/blob/src/content-org/solutions/SR2/sol03.Rorg
https://github.com/HaoZeke/haozeke.github.io/blob/src/content-org/solutions/SR2/sol03.Rorg

138

article are aimed at groups of collaborators with at
least one intermediate user of both the Unix shell and
git to set up the initial workflow. It is expected, with
the adoption of Wizards on Windows [4] along with
template repositories [2] and GitHub Codespaces,
that this workflow will have an even lower barrier of
entry. In its current form, it is expected to be of in-
terest to asynchronously communicating authors who
are unwilling or unable to leverage solutions in com-
mercial domains or those invested in the org-mode
ecosystem.

The CI aspects are independent of the under-
lying method used to generate the TEX, and plain
TEX workflows are also supported with ease, along
with alternative markup methods like the R ecosys-
tem’s bookdown [10], or even other TEX generation
techniques using pandoc are viable approaches.

However, the utility of using org-mode cannot
be discounted, given that variables are retained be-
tween code blocks during execution. This means
that programming languages may be freely mixed in
an org document and tangled and executed subse-
quently by org-babel while retaining desired TEX
layouts. Additionally, org-mode is “closest to bare
metal” in that there are far fewer defaults compared
to other approaches.

6 Conclusions

We have outlined a mechanism by which task-spe-
cific ad hoc TEX templates can be generated from
org-mode files, thus enhancing collaboration with
non-TEXnical colleagues. This allows for a transpar-
ent workflow for data analysis and programming via
org-mode extensions such as the babel ecosystem.
Additionally, the use and abuse of build servers
for collaborative TEX editing has been explored. Av-
enues for further development of such cloud-based
distributed collaboration mechanisms have also been
identified. The CI discussion can also be extended to
encompass the automated testing of CTAN packages
themselves, which would aid package developers.

6.1 Acknowledgments

The author would like to thank the attendees of
TUG 2021 for fruitful discussions which enhanced the
article.

References

[1] C. Davidson-Pilon. Bayesian Methods for
Hackers: Probabilistic Programming and
Bayesian Inference. Addison-Wesley, 2016.

[2] GitHub Docs. Creating a repository from a
template. https://docs.github.com/en/
github/creating-cloning-and-archiving-

Rohit Goswami

TUGDboat, Volume 42 (2021), No. 2

repositories/creating-a-repository-on-
github/creating-a-repository-from-a-
template

[3] Island of TEX. The Island of TEX: Developing
abroad, your next destination. TUGboat
41(2):182-184, 2020. https://tug.org/
TUGboat/tb41-2/tb128island.pdf

[4] Microsoft. Wizards - Win32 apps.
https://docs.microsoft.com/en-
us/windows/win32/uxguide/win-wizards

[5] T.E. Oliphant. Python for Scientific
Computing. Computing in Science Engineering
9(3):10-20, May 2007. 10/fjzzc8

[6] R. Peverati. Fitting elephants in the density
functionals zoo: Statistical criteria for the
evaluation of density functional theory
methods as a suitable replacement for
counting parameters. International Journal
of Quantum Chemistry 121(1):26379, 2020.
10.1002/qua.26379

[7] Tectonic typesetting system, Aug. 2021.
https://tectonic-typesetting.github.io

[8] B. Veytsman. Using Overleaf for collaborative
projects: First impressions and lessons learned.
TUGboat 41(2):179-181, July 2020.
https://tug.org/TUGboat/tb41-2/
tb128veytsman-overleaf.pdf

[9] Y. Xie. Dynamic Documents with R and Knitr.
CRC Press, Boca Raton, FL, second edition
ed., 2015.

[10] Y. Xie. Bookdown: Authoring Books and
Technical Publications with R Markdown.
CRC Press, Boca Raton, FL, 2017.

[11] Y. Xie. TinyTeX: A lightweight, cross-platform,
and easy-to-maintain ITEX distribution based
on TEX Live. TUGboat 40(1):30-32, 2019.
https://tug.org/TUGboat/tb40-1/
tbl24xie-tinytex.pdf

[12] Y. Xie, J.J. Allaire, G. Grolemund.
R Markdown: The Definitive Guide.
CRC Press, Boca Raton, FL, 2019.

¢ Rohit Goswami
Science Institute
& Faculty of Physical Sciences
University of Iceland VR-III
107 Reykjavik, Iceland
& Quansight Labs
rog32 (at) hi dot is
https://rgoswami.me
ORCID 0000-0002-2393-8056

https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/creating-a-repository-from-a-template
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/creating-a-repository-from-a-template
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/creating-a-repository-from-a-template
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/creating-a-repository-from-a-template
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/creating-a-repository-from-a-template
https://tug.org/TUGboat/tb41-2/tb128island.pdf
https://tug.org/TUGboat/tb41-2/tb128island.pdf
https://docs.microsoft.com/en-us/windows/win32/uxguide/win-wizards
https://docs.microsoft.com/en-us/windows/win32/uxguide/win-wizards
https://doi.org/10/fjzzc8
https://doi.org/10.1002/qua.26379
https://tectonic-typesetting.github.io
https://tug.org/TUGboat/tb41-2/tb128veytsman-overleaf.pdf
https://tug.org/TUGboat/tb41-2/tb128veytsman-overleaf.pdf
https://tug.org/TUGboat/tb40-1/tb124xie-tinytex.pdf
https://tug.org/TUGboat/tb40-1/tb124xie-tinytex.pdf

	Introduction
	CI setup
	Emacs and Org
	Caching and determinism

	GitHub bots
	Branches and deployments

	Org markup and TeX
	Standard modifications
	Archive emulation
	Data driven development
	Workflow samples

	Discussion
	Conclusions
	Acknowledgments

