
60 TUGboat, Volume 42 (2021), No. 1

Scaled fonts and glyphs
Hans Hagen

1 History
The infrastructure for fonts makes up a large part of
the code of any TEX macro package. We have to go
back in time to understand why. When TEX showed
up, fonts were collections of bitmaps and measures.
There were at most 256 glyphs in a font and in order
to do its job, TEX needed to know (and still needs to
know) the width, height and depth of glyphs. If you
want ligatures it also needs to know how to construct
them from the input and when you want kerning
there has to be additional information about what
neighboring glyphs need a kern in between. Math is
yet another subtask that demands extra information,
like chains of glyphs that grow in size and if needed
even recipes of how to construct large shapes from
smaller ones.

Fonts come in sizes. Latin Modern and the
original Computer Modern, for instance, have quite a
few variants where the shapes are adapted to the size.
This means that when you need a 9pt regular shape
alongside a 12pt one, two fonts have to be loaded.
This is quite visible in math where we have three
related sizes: text, script and scriptscript, grouped
in so called families. When we scale the digit 2 to
the same height you will notice that the text, script
and scriptscript sizes look different (the last three
are unscaled):

2 2 2 2 2 2 222 2 2 2

Plenty has been written (in various documents
that come with ConTEXt) about how this all works
together and how it impacts the design of the system,
so here I just give a short summary of what a font
system has to deal with.

• In a bodyfont setup different sizes (9pt, 10pt,
12pt) can have their own specific set of fonts.
This can result in quite a number of definitions
that relate to the style, like regular, bold, italic,
bold italic, slanted, bold slanted, etc. When
possible loading the fonts is delayed. In Con-
TEXt often the number of fonts that are actually
loaded is not that large.

• Some font designs have different shapes per
bodyfont size. A minor complication is that
when one is missing some heuristic best-match
choice might be needed. Okay, in practice only
Latin Modern falls into this category for Con-
TEXt. Maybe OpenType variable fonts can be
seen this way, but, although we supported that

right from the start, I haven’t noticed much
interest in the TEX community.

• Within a bodyfont size we distinguish size vari-
ants. We can go smaller (x and xx), for instance
when we use sub- and superscripts in text, or
we can go larger, for instance in titles (a, b, c, d,
. . .). Fortunately most of the loading of these
can be delayed too.

• When instances are not available, scaling can
be used, as happens for instance with 11pt in
Computer Modern. Actually, this is why in
ConTEXt we default to 12pt, because the scaled
versions didn’t look as nice as the others (keep
in mind that we started in the age of bitmaps).

• Special features, such as smallcaps or oldstyle nu-
merals, can demand their own definitions. More
loading and automatic definitions can be trig-
gered by sizes needed in, e.g., scripts and titles.

• A document can have a mixed setup, that is:
using different font designs within one document,
so some kind of namespace subsystem is needed.

• In an eight-bit font world, we not only have text
fonts but also collections of symbols, and even
in math there are additional symbol collections.
In OpenType symbols end up in text fonts, but
there we have tons of emojis and color fonts. All
has to be dealt with in an integrated way. And
we’re not even talking of virtual fonts, (runtime)
MetaPost generated fonts, and so on.

• In traditional eight-bit engines, hyphenation de-
pends on a font’s encoding, which can require
loading a font multiple times in different encod-
ings. This depends on the language mix used.
A side point is that defining a European encod-
ing covering most Latin languages was not that
hard, especially when one keeps in mind that
many eight-bit encodings waste slots on seldom
used symbols, but by that time OpenType and
Unicode input started to dominate.

• In the more modern OpenType fonts combi-
nations of features can demand additional in-
stances: one can think of language/script com-
binations, substitutions in base mode, special
effects like emboldening, color fonts, etc.

• Math is complicated by the fact that in tradi-
tional TEX, alphabets come from different fonts,
which is why we have many so-called families;
a font can have several alphabets which means
that some mapping can be needed. Operating
on the size, shape, encoding and style axes puts
some demands on the font system. Add to this
the (often) partial (due to lack of fonts) bold
support and it gets even more complicated. In
OpenType all the alphabets come from one font.

doi.org/10.47397/tb/42-1/tb130hagen-scaled

Hans Hagen

https://doi.org/10.47397/tb/42-1/tb130hagen-scaled

TUGboat, Volume 42 (2021), No. 1 61

• There is additional math auto-definition and
loading code for the sizes used in text scripts
and titles.
All this has resulted in a pretty complex sub-

system. Although going OpenType (and emulated
OpenType with Type 1 fonts as we do in MkIV)
removes some complications, like encodings, it also
adds complexity because of the many possible font
features, either dependent or not on script and lan-
guage. Text as well as math got simpler in the TEX
code, though that was traded for quite a bit of Lua
code to deal with new features.

So, in order to let the font subsystem not impact
performance too much, let alone extensive memory
usage, the ConTEXt font subsystem is rather opti-
mized. The biggest burden comes from fonts that
have a dynamic (adaptive) definition because then
we need to do quite a bit of testing per font switch,
but even that has always been rather fast.

2 Reality
In MkIV and therefore also in LuaMetaTEX (LMTX)
more font magic happens. The initial node lists that
make up a box or paragraph can get manipulated in
several ways and often fonts are involved. The font
features (smallcaps, oldstyle, alternates, etc.) can be
defined as static (part of the definition) or as dynamic
(resolved on the spot at the cost of some overhead).
Characters can be remapped, fonts can be replaced.
The math subsystem in MkIV was different right
from the start: we use a limited number of families
(regular, bold, l2r and r2l), and stay abstract till the
moment we need to deal with the specific alphabets.
But still, in MkIV, we have the families with three
fonts.

In the LuaMetaTEX manual we show some math
magic for different fonts. As a side effect, we set up
half a dozen bodyfont collections: Lucida, Pagella,
Latin Modern, Dejavu, the math standard Cambria,
etc. Even with delayed and shared font loading, we
end up with 158 instances but quite a few of them
are math fonts, at least six per bodyfont size: regular
and bold (emboldened) text, script and scriptscript.
Of course most are just copies with different scaling
that reuse already loaded resources. In the final PDF
we have 21 subsetted fonts.

If we look at the math fonts that we use today,
there is however quite some overlap. It starts with a
text font. From that, script and scriptscript variants
are derived, but often these variants use many text
size related shapes too. Some shapes get alterna-
tives (from the ssty feature), and the whole clone
gets scaled. But, much of the logic of, for instance,
extensibles is the same.

A similar situation happens with large CJK fonts:
there are hardly any advanced features involved there,
so any size is basically a copy with scaled dimensions,
and these fonts can be truly huge!

When we talk about features, in many cases
in ConTEXt you don’t define them as part of the
font. For instance small caps can best be triggered
by using a dynamic feature: applied to a specific
stretch of text. In fact, often features like superiors
of fractions only work well on characters that fit
the bill and produce weird side effects otherwise (a
matter of design completeness).

When the font handler does its work there are ac-
tually four cases: no features get applied (something
that happens with, for instance, most monospaced
fonts); base mode is used (which means that the TEX
machinery takes care of constructing ligatures and
injecting kerns); and node mode (where Lua handles
the features). The fourth case is a special case of
node mode where a different feature set is applied.1
At the cost of some extra overhead (for each node
mode run) dynamic features are quite powerful and
save quite a lot of memory and definitions.2 The
overhead comes from much more testing regarding
the font we deal with because suddenly the same
font can demand different treatments, depending on
what dynamic features are active.3

Although the font handling is responsible for
much of the time spent in Lua, it is still reasonable
given what has to be done. Because we have an
extensible system, it’s often the extensions that takes
additional runtime. Flexibility comes at a price.

3 Progress
At some point I started playing with realtime glyph
scaling. Here realtime means that it doesn’t depend
on the font definition. To get an idea, here is an
example (all examples are additionally scaled for
TUGboat):
test {\glyphxscale 2500 test} test

test test test
The glyphs in the current font get scaled hori-

zontally without the need for an extra font instance.
Now, this kind of trickery puts some constraints on
the font handling, as is demonstrated in the next
example. We use Latin Modern because that font
has all these ligatures:

1 We also have so-called plug mode where an external
renderer can do the work but that one is only around due to
some experiments during Idris Hamid’s font development.

2 The generic font handler that is derived from the Con-
TEXt one doesn’t implement this, so it runs a little faster.

3 Originally this model was introduced for a dynamic para-
graph optimization subsystem for Arabic but in practice no
one uses it because there are no suitable fonts.

Scaled fonts and glyphs

62 TUGboat, Volume 42 (2021), No. 1

\definedfont[lmroman10-regular*default]%
e{\glyphxscale 2500 ff}icient
ef{\glyphxscale 2500 f}icient
ef{\glyphxscale 2500 fi}cient
e{\glyphxscale 2500 ffi}cient

efficient efficient efficient efficient
In order to deal with this kind of scaling, we

now operate not only on the font (id) and dynamic
feature axes, but also on the scales, of which we have
three variants: glyph scale, glyph xscale and glyph
yscale. There is actually also a state dimension but
we omit that for now (think of flagging glyphs as
initial or final). This brings the number of axes to
six. It is important to stress that in these examples
the same font instance is used!

Just for the record: several approaches to switch-
ing fonts are possible but for now we stick to a simple
font id switch plus glyph scale settings at the TEX
end. A variant would be to introduce a new mecha-
nism where id’s and scales go together but for now I
see no real gain in that.

4 Math
Given what has been discussed in the previous sec-
tions, a logical question would be “Can we apply
scaling to math?” and the answer is “Yes, we can!”.
We can even go a bit further and that is partly due
to some other properties of the engine.

From pdfTEX the LuaTEX engines inherited
character protrusion and glyph expansions, aka hz.
However, where in pdfTEX copies of the font are made
that carry the expanded dimensions, in LuaTEX at
some point this was replaced by an expansion field
in the glyph and kern nodes. So, instead of chang-
ing the font id of expanded glyphs, the same id is
used but with the applied expansion factor set in
the glyph. A side effect was that in places where
dimensions are needed, we call functions that calcu-
late the expanded widths on request (as these can
change during linebreak calculations) in combination
with accessing font dimensions directly. This level
of abstraction is even more present in LuaMetaTEX.
This means that we have an uniform interface to
fonts and as a side effect scaling need be dealt with
in only a few places in the code.

Now, in math we have a few more complications.
First of all, we have three sizes to consider and we
also have lots of parameters that depend on the
size. But, as I wanted to be able to apply scaling
to math, the whole machinery was also abstracted
in a way that, at the cost of some extra overhead,
made it easier to work with scaled glyph properties.
This means that we can stick to loading only one
bodyfont size of math (note that each math family

has three sizes, where the script and script sizes can
have different, fine tuned, shapes) and just scale that
on demand.

Once all that was in place it was a logical next
step to see if we could stick to just a single instance.
Because in LuaMetaTEX we try to load fonts effi-
ciently we store only the minimally needed informa-
tion at the TEX end. A font with no math therefore
has less data per glyph. Again, this brings some ab-
straction that helped to implement the one instance
mechanism. A math glyph has optional lists of in-
creasing sizes and vertical or horizontal extensibles.
So what got added was an optional chain of smaller
sizes. If a character has three different glyphs for
the three sizes, the text glyph has a pointer to the
script glyph which in turn has a pointer to the script-
script glyph. This means that when the math engine
needs a specific character at a given size (text, script,
scriptscript) we just follow that chain.

In an OpenType math font the script and script-
script sizes are specified as percentages of the text
size. When the dimensions of a glyph are needed, we
just scale on the fly. Again this adds some overhead
but I’m pretty sure that no user will notice.

So, to summarize: if we need a character at
scriptscript size, we access the text size glyph, check
for a pointer to a script size, go there, and again
check for a smaller size. We use only what fits the bill.
And, when we need dimensions we just scale. In order
to scale we need the relative size, so we need to set
that up when we load the font. Because in ConTEXt
we also can assemble a virtual OpenType font from
Type 1 fonts, it was actually that (old) compatibility
feature, the one that implements Type 1 based on
OpenType math, that took the most time to adapt,
not so much because it is complicated but because
in LMTX we have to bypass some advanced loading
mechanisms. Because we can scale in two dimensions
the many (font-related) math parameters also need
to be dealt with accordingly.

The end result is that for math we now only
need to define two fonts per bodyfont setup: regular
and bold at the natural scale (normally 10pt) and we
share these for all sizes. As a result of this and what
we describe in the next section, the 158 instances for
the LuaMetaTEX manual can be reduced to 30.

5 Text
Sharing instances in text mode is relatively simple,
although we do have to keep in mind that scaling
is an extra axis when dealing with font features:
two neighboring glyphs with the same font id and
dynamics but with different scales are effectively
from different fonts.

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 63

Another complication is that when we use font
fallbacks (read: take missing glyphs from another
font) we no longer have a dedicated instance but use
a shared one. This in itself is not a problem but we
do need to handle specified relative scales. This was
not that hard to patch in ConTEXt LMTX.

We can enforce aggressive font sharing with:
\enableexperiments[fonts.compact]

After that we often use fewer instances. Just
to give an idea, on the LuaMetaTEX manual we get
these stats:
290 pages, 10.8 sec, 292M lua, 99M tex, 158 instances
290 pages, 9.5 sec, 149M lua, 35M tex, 30 instances

So, we win on all fronts when we use this glyph
scaling mechanism. The magic primitive that deals
with this is named \glyphscale; it accepts a number,
where 1200 and 1.2 both mean scaling to 20% more
than normal. But it’s best not to use this primitive
directly.

A specific scaled font can be defined using the
\definefont command. In LMTX a regular scaler
can be followed by two scale factors. The next exam-
ple demonstrates this (as can be seen, the yoffset
affects the baseline):
\definefont[FooA][Serif*default @ 12pt 1800 500]
\definefont[FooB][Serif*default @ 12pt 0.85 0.4]
\definefont[FooC][Serif*default @ 12pt]

\definetweakedfont[runwider] [xscale=1.5]
\definetweakedfont[runtaller][yscale=2.5,

xscale=.8,yoffset=-.2ex]

\def\testtext{test test \runwider test test
\runtaller test test}

{\FooA \testtext}\par
{\FooB \testtext}\par
{\FooC \testtext}\par

test test test test test test
test test test test test test
test test test test test test

We also use the new \definetweakedfont com-
mand here. This example not only shows the two
scales but also introduces the offset.

In compact mode this is one font. Here is an-
other example:
\definetweakedfont[squeezed][xscale=0.9]
\startlines
$a = bˆ2 + \sqrt{c}$
{\squeezed $a = bˆ2 + \sqrt{c}$}
\stoplines

𝑎 = 𝑏2 + √𝑐
𝑎 = 𝑏2 + √𝑐

Watch this:
\startcombination[3*1]
{\bTABLE

\bTR \bTD foo \eTD \bTD[style=\squeezed] $x = 1$
\eTD \eTR
\bTR \bTD oof \eTD \bTD[style=\squeezed] $x = 2$
\eTD \eTR

\eTABLE}
{local}
{\bTABLE[style=\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR
\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}
{global}
{\bTABLE[style=\squeezed\squeezed]

\bTR \bTD $x = 1$ \eTD \bTD $x = 3$ \eTD \eTR
\bTR \bTD $x = 2$ \eTD \bTD $x = 4$ \eTD \eTR

\eTABLE}
{multiple}

\stopcombination

foo 𝑥 = 1

oof 𝑥 = 2

𝑥 = 1 𝑥 = 3

𝑥 = 2 𝑥 = 4

𝑥 = 1 𝑥 = 3

𝑥 = 2 𝑥 = 4

local global multiple

An additional style parameter is also honored:
\definetweakedfont[MyLargerFontA]

[scale=2000,style=bold]
test {\MyLargerFontA test} test

This gives:

test test test
Just for the record: the Latin Modern fonts,

when set up to use design sizes, will still use the
specific size-related files.

6 Hackery
You can use negative scale values, as is demonstrated
in the following code:
\bTABLE[align=middle]
\bTR
\bTD a{\glyphxscale 1000 \glyphyscale 1000 bc}d\eTD
\bTD a{\glyphxscale 1000 \glyphyscale-1000 bc}d\eTD
\bTD a{\glyphxscale-1000 \glyphyscale-1000 bc}d\eTD
\bTD a{\glyphxscale-1000 \glyphyscale 1000 bc}d\eTD

\eTR
\bTR
\bTD \tttf +1000 +1000 \eTD
\bTD \tttf +1000 -1000 \eTD
\bTD \tttf -1000 -1000 \eTD
\bTD \tttf -1000 +1000 \eTD

\eTR
\eTABLE

gives:
abcd abcd abcd abcd

+1000 +1000 +1000 -1000 -1000 -1000 -1000 +1000

Glyphs can have offsets and these are used for
implementing OpenType features. However, they are
also available on the TEX side. Take this example

Scaled fonts and glyphs

64 TUGboat, Volume 42 (2021), No. 1

where we use the new \glyph primitive (a variant of
\char that takes keywords):
\ruledhbox{
% left curly brace:
\ruledhbox{\glyph yoffset 1ex options 0 123}
\ruledhbox{\glyph xoffset .5em yoffset 1ex

options "C0 123}
\ruledhbox{oeps%

{\glyphyoffset 1ex \glyphxscale 800
\glyphyscale\glyphxscale oeps}oeps}

}

{ { oepsoepsoeps
This example demonstrates that the \glyph primi-
tive takes quite a few keywords: xoffset, yoffset,
xscale, yscale, left, right, raise, options, font
and id where the last two take a font identifier or font
id (a positive number). For this article it’s enough to
know that the option indicates that glyph dimension
should include the offset. In a moment we will see
an alternative that doesn’t need that.
\samplefile{jojomayer}
{\glyphyoffset .8ex
\glyphxscale 700 \glyphyscale\glyphxscale
\samplefile{jojomayer}}

{\glyphyscale\numexpr3*\glyphxscale/2\relax
\samplefile{jojomayer}}

{\glyphyoffset -.2ex
\glyphxscale 500 \glyphyscale\glyphxscale
\samplefile{jojomayer}}

\samplefile{jojomayer}

To quote Jojo Mayer:
If we surrender the thing that separates us from machines, we will be replaced by ma-
chines. The more advancedmachines will be, the more human we will have to become.
If we surrender the thing that separates us from machines, we will be replaced by machines. The more advanced machines

will be, the more human we will have to become. If we surrender the thing that separates us from
machines, we will be replaced by machines. The more advanced machines will be, the
more human we will have to become. If we surrender the thing that separates us from machines, we will be replaced by machines. The

more advanced machines will be, the more human we will have to become. If we surrender the thing that separates us from
machines, we will be replaced by machines. The more advanced machines will be, the
more human we will have to become.

Keep in mind that this can interfere badly with
font feature processing which also used offsets. It
might often work out okay vertically, but less well
horizontally.

The scales, as mentioned, works with pseudo-
scales but that is sometimes a bit cumbersome. This
is why a special \numericscale primitive has been
introduced.
1200 : \the\numericscale1200
1.20 : \the\numericscale1.200

Both these lines produce the same integer:
1200 : 1200
1.20 : 1200

You can do strange things with these primitives
but keep in mind that you can also waste the defaults.

\def\UnKernedTeX
{T%
{\glyph xoffset -.2ex yoffset -.4ex ‘E}%
{\glyph xoffset -.4ex options "60 ‘X}}

We use \UnKernedTeX\ and {\bf \UnKernedTeX} and
{\bs \UnKernedTeX}: the slanted version could
use some more left shifting of the E.

This gives the TEX logos but of course we nor-
mally use the more official definitions instead.

We use TEX and TEX and TEX: the slanted version
could use somemore left shifting of the E.

Because offsets are (also) used for handling font
features like mark and cursive placement as well
as special inter-character positioning, the above is
suboptimal. Here is a better alternative:
\def\UnKernedTeX

{T\glyph left .2ex raise -.4ex ‘E%
\glyph left .4ex ‘X\relax}

The result is the same:
We use TEX and TEX and TEX: the slanted version
could use somemore left shifting of the E.

But anyway: don’t overdo it. We have dealt
with such cases for decades without these fancy new
features. The next example shows margins in action:

<M> <M> <M>
raise 3pt raise -3pt

<M> <M> <M>
left 3pt right 2pt left 3pt right 2pt

<M> <M> <M>
left -3pt right -2pt left -3pt right -2pt

Here is another way of looking at it:
\glyphscale 4000
\vl\glyph ‘M\vl\quad
\vl\glyph raise .2em ‘M\vl\quad
\vl\glyph left .3em ‘M\vl\quad
\vl\glyph right .2em‘M\vl\quad
\vl\glyph left -.2em right -.2em‘M\vl\quad
\vl\glyph raise -.2em right .4em‘M\vl

M M M M M M
The raise as well as left and right margins are

taken into account when calculating the dimensions
of a glyph.

7 Implementation
Discussing the implementation in the engine makes
no sense here, also because details might change.
However, it is good to know that many properties
travel with the glyph nodes, for instance the scales,
margins, offsets, language, script and state proper-
ties, control over kerning, ligaturing, expansion and
protrusion, etc. The dimensions (width, height and

Hans Hagen

TUGboat, Volume 42 (2021), No. 1 65

depth) are not stored in the glyph node but calcu-
lated from the font, scales and optionally the offsets
and expansion factor. One problem is that the more
clever (and nice) solutions we cook up, the more it
might impact performance. So, I will delay some
experiments till I have a more powerful machine.

One reason for not storing the dimensions in
a glyph node is that we often copy those nodes or
change character fields in the font handler and we
definitely don’t want the wrong dimensions there. At
that moment, offsets and margin fields don’t reflect
features yet, so copying them is no big deal because
at that moment these are still zero. However, di-
mensions are rather character bound so every time
a character is set, we also would have to set the
dimensions. Even worse, when we can set them, the
question arises if they were already set explicitly. So,
this is a can of worms we’re not going to open: the
basic width, height and depth of the glyph as spec-
ified in the font is used and combined with actual
dimensions (likely already scaled according the glyph
scales) in offset and margin fields.

Now, I have to admit that especially playing
with using margins to glyphs instead of font kerns is
more of an experiment to see what the consequences
are than a necessity, but what would be the joy
of TEX without such experiments? And as usual,
in ConTEXt these will become options in the font
handler that one can enable, or not.

⋄ Hans Hagen
http://pragma-ade.com

Some fonts with recent TEX support

Karl Berry

(LA)TEX support for many new typeface families has
been created in recent years. Here is an extremely
terse visual overview of most of those appearing in
the past year or so. All the fonts are shown here at
their own nominal size of 10pt.

All the fonts shown here are available in Type 1
format. Almost all are also available in OpenType
or TrueType, but fonts available only in OpenType/
TrueType are omitted, regrettably.

Each of these families has its own set of addi-
tional variants (bold, bold italic, small caps, differ-
ent encodings, etc.). For more complete showings,
exact package invocations, the myriad other fonts
available, etc., please see the urls in the signature.

TUGboat, Volume 42 (2021), No. 1 65

Serif

Clara: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Domitian: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

ETbb: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

IbarraRealNova: ABC FGHMQ abc fghlmq 012
ABCFGHMQ abc fghlmq 012

MLModern: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Spectral: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

TeXGyreScholaX: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Sans serif

Archiv0: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Arvo: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Atkinson: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

Gudea: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

HindMadurai: ABC FGHMQ abc fghlmq 012

Inter ABC FGHMQ abc fghlmq 
Josefin: ABC FGHMQ abc fghlmq 012
Magra: ABC FGHMQ abc fghlmq 012

Nunito: ABC FGHMQ abc fghlmq 012
ABC FGHMQ abc fghlmq 012

0swald: ABC FGHMQ abc fghlmq 012

Slab serif and typewriter

AlfaSlabOne: ABC FGHMQ abc fghlmq 012
Cascadia Code: ABC FGHMQ abc fghlmq 012
Courier10Pitch: ABC FGHMQ abc fghlmq 012

ABC FGHMQ abc fghlmq 012

� Karl Berry
https://tug.org/FontCatalogue

https://ctan.org/topic/font

doi.org/10.47397/tb/42-1/tb130berry-fontlist

Some fonts with recent TEX support

	History
	Reality
	Progress
	Math
	Text
	Hackery
	Implementation

