TUGDboat, Volume 41 (2020), No. 2

Using Overleaf for collaborative projects:
First impressions and lessons learned

Boris Veytsman

1 Introduction

The COVID19 pandemic has changed many things.
Among them are the ways scientific papers are writ-
ten. In the past, an author could assume to have
physical meetings with the coauthors, to exchange
written pages, ideas and thoughts. Unfortunately to-
day these meetings also may mean exchanging virion
particles. Thus many collaborations now rely exclu-
sively on virtual meetings. Anybody who has partic-
ipated in such meetings knows they cannot compare
with the lively back and forth of in-person interac-
tion. This puts a heavy burden on the technology
involved: we need to compensate for the deficiency
of the virtual collaboration with our tools.

In the first months of the pandemic I partici-
pated in two completely virtual collaborations, re-
sulting in the papers [1, 2]. One paper has seven
coauthors, the other has four. The proper orga-
nization of the writing process was therefore very
important for us.

Collaboration tools should have several impor-
tant features. At a minimum they should track the
changes in the manuscript and the contributions by
the different authors. They should be able to typeset
the manuscript at each stage of the preparation. Ide-
ally they ought to provide a way for the coauthors
to exchange metacomments about the text.

In the past my tool of choice was the combina-
tion of a local TEX installation (TEX Live) and a
version control system (git, svn, cvs). This is a very
good solution for typesetting and change tracking.
On the other hand, it is not a good solution for meta-
comments, unless one was willing to put the paper
on GitHub and use their issue-tracking system. Fre-
quent physical meetings between the coauthors some-
what alleviated the lack of metacomments: the coau-
thors could always give their comments in person.

The big disadvantage of this workflow is the
rather demanding requirements on the coauthors.
They need to be not only comfortable with TEX (this
is something to be expected from math and science
people); they also need to have and maintain a lo-
cal TEX installation and be familiar with a version
control system. Personally, I think the ability to
use version control is an essential skill for anybody
working professionally with texts. Unfortunately, the
reality is that this knowledge is rare outside the pro-
gramming community (and even in this community
it is often rudimentary; see Figure 1).

179

THISIS GIT. IT TRACKS COLLABORATIVE. LJORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HOU DO WEVSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YoU GET ERRORS, SAVE. YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\

Figure 1: Git, from https://xkcd.com/1597/

Overleaf (overleaf . com) was suggested as a col-
laboration tool. We used it for the papers mentioned
above. In this paper I discuss our experience and
the lessons learned.

2 Overleaf workflows

There are several ways of working with Overleaf.
First, one can use its native interface; each coauthor
logs into the site, uses its online editor to create TEX
files, uploads the images for the figures, and uses
the cloud TEX installation for compilation. Some
of my collaborators chose this workflow. However,
it was not convenient for me. As a person who
has spent countless hours with my trusty Emacs,
I cannot imagine writing texts with anything else
(an obligatory aside: I have complete respect for my
vi-using friends). Also, I did not trust the Overleaf
version control system, so I wanted to use my own.

Fortunately, Overleaf provides another workflow
(currently only for paid accounts—but see below).
Namely, it can serve as a git remote server. You can
do a git clone for an Overleaf repository, and then
use the familiar git push & git pull commands to
sync the local git repository with the one at Overleaf.
This workflow has the additional advantage of being
very flexible; some coauthors can use the native
Overleaf interface, while some coauthors can use git,
and the two are smoothly integrated.

It should be noted that Overleaf offers yet an-
other workflow: integration with GitHub rather than
a local user’s repository. However, we considered
this scheme too complex, and we did not use it.

Using Overleaf for collaborative projects: First impressions and lessons learned


https://xkcd.com/1597/
https://overleaf.com

180

3 Overleaf access control

Whether the resulting paper is freely distributed or
not, most authors would not like to show the world
their unfinished work, with all its embarrassing errors,
vague ideas postponed for the future papers, heedless
statements, etc. Thus it is crucial for a collaboration
tool to support defining who has the right to read
and edit the manuscript.

Overleaf has two modes of access control. The
first mode, available for both free and paid accounts,
is based on link sharing. A project has a link for
read/write access and a link for read-only access.
Anybody in possession of these links (each being a
long combination of random letters and digits) has
the corresponding rights.

In the second mode, one can give the rights
(read/write or read-only) to the chosen Overleaf users
(who must log in to Overleaf to participate). The
maximum number of collaborators for each project
depends on the account tier: from one collaborator
for free accounts to unlimited collaborators for “Pro-
fessional” ones. It is important to note that the limit
is determined by the tier of the project owner: if
the owner has a “Professional” account, any number
of other collaborators can have free accounts. The
same is true for the git integration discussed above:
if the project owner has a paid account, all other
collaborators can use git.

In general, the Overleaf access control model
seems to be mature and corresponds to the cur-
rent industry best practices. The possibility to use
third parties’ credentials to login to Overleaf (IEEE,
Google, Twitter, and ORCID) is also a convenient
feature.

4 Overleaf TEX

To tell the truth, I had my doubts about the Over-
leaf TEX installation. My TEX is sometimes rather
complex, and I wondered whether Overleaf could
tackle it. These doubts proved to be wrong. I was
quite impressed by the fast and correct typesetting
on Overleaf servers.

The installation is rather complete. Currently
the user can choose between pdfiatex, xelatex, and
lualatex, and the site has TEX Live installations from
2014 to 2019. Both bibtex and biber are supported.

In general, Overleaf has solved the problem that
has always bugged novice TEX users: administration-
free maintenance of the installation.

5 Comments system

In the old times manuscripts and books had large
margins because coauthors, editors, and sometimes
even readers used them for metacomments (Figure 2).

Boris Veytsman

TUGboat, Volume 41 (2020), No. 2

s B

Figure 2: Annotations by Linus Pauling made

to a passage in the book Disturbing the Universe,
by Freeman Dyson, from http://scarc.library.
oregonstate.edu/coll/pauling/dna/notes/unpbl7.
1-automata.html

When word processors appeared, they featured “com-
ments”: a user could click on a document and insert
a special text, which was not part of the main flow,
but a note for other authors. Web collaboration tools
kept this feature and added integration with e-mails,
messaging and task recording software; the comment
could be “assigned” to a coauthor as a new task, and
the assignee would be notified electronically with the
corresponding record made in the task list.

TEX (or TEX) by itself lacks this sophistication.
Of course, one can add comments in the code using,
for example, the percent sign convention, as in

\begin{equation}
2\times 2 = 5
\end{equation}

%h% Are you sure?

Unfortunately, sometimes these comments are over-
looked by coauthors. For better visibility, KTEX
packages like todo may typeset them in the PDF
output, for example, as marginal paragraphs.

The use of version control servers like GitHub
allows one to employ a modern issue-tracking sys-
tem which has all the functionality of the integrated
comments, including notifications, assignments, etc.
Moreover, the issues become part of the version con-
trol archive, so one can look at the history and es-
tablish that the given change in the manuscript was
made by author A as a response to the comment
made by author B— complete with the dated his-
tory of all responses.

For a user accustomed to these goodies, the
Overleaf system of comments seems to be rather
old-fashioned. Overleaf allows the users to create


http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html
http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html
http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html

TUGDboat, Volume 41 (2020), No. 2

a “comment” in the style of early word processors.
These comments can be answered and “resolved”.
However, they are not shown in the PDF, cannot
be addressed to a specific coauthor, and are not
integrated with emails or the version history. While
relatively easy to use, these comments are probably
not adequate for a sophisticated user.

6 Overleaf version control system

An important feature of a collaboration tool is the
ability to establish who wrote what, when and why.
This is one of the tasks for a version control system.
A version control system keeps track of the changes in
the files, noting their authorship, dates, and, through
commit messages, the reason for change. Ideally,
it allows easy mixing of versions; a good program
should understand a command like “Please delete all
changes made in June, but keep the ones made in
July”.

The native version control system in Overleaf
can do some of these tasks. It allows the user to
compare the states of the document at the different
stages of editing, find the changes, establish their
authors and download the files at a previous version.
This makes the work with Overleaf easier than with
typical office software.

Unfortunately, the Overleaf version control sys-
tem lacks branching capabilities. This means that
major changes in a project require copying and re-
naming files—something that a version control sys-
tem is intended to prevent. I thought initially that
only the Overleaf interface to version control was
deficient, and I could use branching in my git reposi-
tory, and then synchronize with the Overleaf one. I
was wrong; sadly, Overleaf allows only one branch
to be uploaded to its repository.

Overleaf also lacks tags, and does not allow one
to push them from the local git repository.

Reverting to a previous version is not a self-
evident task in Overleaf. One of the coauthors in-
advertently deleted a large portion of our TEX file
in Overleaf. We found that the simplest way to re-
cover was to use the tools provided by git on a local
repository.

I was able to perform non-trivial merging of two
different versions only by downloading them to the
local computer, and using the tools there.

Overleaf version control system has “labels”.
They are mapped into commit messages rather than
tags. They are also not enforced, so most changes
in the files are not commented (in contrast, most
version control systems refuse to accept commits
without comments).

181

Of course, many git users complain it is too
complex. The simplified version control of Overleaf
might be a clever decision. While a sophisticated
version control system allows an advanced user to
perform many non-trivial tasks, it is indeed complex
exactly because it has a rich feature set. An ideal
system would be the one that works simply for a
novice, but can do complex things. Clearly, designing
such a system is not a trivial task. On the other
hand, Overleaf solved the highly non-trivial problem
of creating an intuitive interface for TEX — maybe it
can create an intuitive interface for git as well?

7 Conclusions

Overleaf as a collaboration platform is a viable so-
lution for coauthoring scientific manuscripts. Its
strong features are a good access control model and
underlying TEX installation. On the other hand, its
system of metacomments can be improved, and its
version control system is probably too simplistic.

Acknowledgments and disclaimers

I am deeply indebted to my colleagues who allowed
me to observe their work with Overleaf.

Being a TUG officer, I acknowledge the generos-
ity of Overleaf in their support of the organization
through their institutional membership and several
donations, including their help with TUG 2020, es-
pecially the ITEX workshop held there. The work
described in this paper was done using a Professional
level account, paid by Chan Zuckerberg Initiative.

The opinions in this article belong to me, and
do not necessarily reflect the opinions of TUG, Chan
Zuckerberg Initiative or George Mason University.

References

[1] G.Huber, M. Kamb, K. Kawagoe, L. Li, B. Veyts-
man, D. Yllanes, and D. Zigmond. A mini-
mal model for household effects in epidemics.
medRxiv, 2020.
doi:10.1101/2020.07.09.20150227

[2] S. Satish, Z. Yao, A. Drozdov, and B. Veytsman.
[A paper under blind review]. In [Not disclosed],
2020. We were asked to suppress all information
about the paper until it is reviewed.

¢ Boris Veytsman
Chan Zuckerberg Initiative
& George Mason University
& TEX Users Group
borisv (at) 1k dot net

Using Overleaf for collaborative projects: First impressions and lessons learned


http://dx.doi.org/10.1101/2020.07.09.20150227

	Introduction
	Overleaf workflows
	Overleaf access control
	Overleaf TeX
	Comments system
	Overleaf version control system
	Conclusions

